人PNRC基因转录调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富含脯氨酸的核受体辅活化因子(proline-rich nuclear receptor coactivator, PNRC)是最近克隆和鉴定的一种新的核受体辅活化因子,是以类固醇源性生长因子(steridogentic factor 1, SF1)作诱饵,利用酵母双杂交系统从人乳腺cDNA表达文库中筛选得到的。PNRC通过其位于C端的SH3(src homology 3)结合模体发挥核受体辅活化因子作用,能以配体依赖的方式与多种核受体相互作用,还能与孤儿受体SF1和ERRα1以配体非依赖的方式相互作用。PNRC除了作为核受体辅活化因子外,还通过SH3结合模体调节生长因子/Ras信号通路,竞争性抑制Ras蛋白的激活。PNRC在多种肿瘤组织及细胞中的表达明显低于正常组织和细胞,这提示PNRC的转录抑制与多种肿瘤的发生、发展相关。
     目前关于PNRC的转录调控机制尚不十分清楚,为了研究PNRC基因的转录调控机制及其转录抑制与多种肿瘤的发生、发展的相关性,我们进行了如下的研究:
     1.人PNRC基因转录起始位点的确定及启动子的活性分析
     采用5′端cDNA末端快速扩增法(rapid amplification of cDNA ends, RACE)确定了PNRC转录起始位点的碱基为G,该转录起始位点较报道的PNRC mRNA (NM 006813) 5′端第一个碱基提前了27 bp。通过生物信息学预测软件(http://www.fruitfly.org/ cgi-bin/seq_tools/promoter.pl.)对人PNRC基因的5′侧翼区约2100bp的序列进行分析,预测5′侧翼区内具有启动子功能的区域。应用TransFac professional 8.1(http://jupiter.coh.org/ cgi-bin/transfac/bin/start.cgi)软件对该区域进行分析,获得可能的转录因子结合位点。通过构建包含PNRC基因5′上游序列的荧光素酶报告质粒,利用脂质体瞬时转染,检测荧光素酶活性,对PNRC启动子区进行分析,结果显示,启动子活性最小区域位于-123 ~ +27,预测结果表明,在这一区域可能存在着NFY和RFX1转录因子结合位点。
     2.细胞内、细胞外鉴定NFY和RFX1与PNRC基因启动子活性区域的结合
     染色质免疫沉淀(chromatin immunoprecipitation assay, ChIP)及电泳迁移率变动实验(electrophoresis mobility shift and supershift assay, EMSA)证明:NFY和RFX1可在细胞内、细胞外与PNRC启动子区域相结合。
     3.NFY和RFX1对PNRC基因启动子活性的调控NFY和RFX1真核表达质粒与PNRC启动子重组报告基因质粒或与突变报告基因质粒(含转录因子结合位点突变)的共转染实验表明:NFY和RFX1通过与PNRC启动子-123 ~ +27区域结合,抑制PNRC启动子的活性,RT-PCR和Western blot证明:过表达NFY和RFX1可下调HepG2细胞中PNRC的表达。
     4.乳腺癌细胞中人PNRC基因启动子CpG岛甲基化状态的研究
     运用“MethPrimer”软件对PNRC启动子区进行分析,预测CpG岛,通过硫化测序PCR (Bisulfite sequencing PCR, BSP),检测PNRC启动子区CpG岛的甲基化状况,结果显示:乳腺癌细胞中PNRC基因启动子区存在CpG岛的甲基化。
     5.PNRC基因启动子CpG岛去甲基化对PNRC转录的调节
     将含PNRC启动子序列的报告质粒转染乳腺癌细胞,细胞再经甲基转移酶抑制剂5-氮杂-2’-脱氧胞苷(5-aza-2’-deoxycytidine, 5-Aza-CdR)处理后,检测PNRC基因启动子的活性;RT-PCR、Northern杂交、Western Blot检测乳腺癌细胞经5-Aza-CdR处理后PNRC的表达情况。结果证明:PNRC基因启动子CpG岛去甲基化可增强PNRC启动子活性并上调PNRC的表达。
     本研究对人PNRC基因5′侧翼区序列进行了一系列缺失分析,确定了启动子的最小活性区域-123 ~ +27,并鉴定了与之相结合的转录因子NFY和RFX1对PNRC启动子的调节作用。此外,我们还从表观遗传学调控方面研究了PNRC基因启动子CpG岛的甲基化状态,发现乳腺癌细胞MCF-7中PNRC基因启动子区存在CpG岛的甲基化,对PNRC基因启动子CpG岛的去甲基化可增强PNRC启动子活性并上调PNRC的表达,进一步证明了PNRC在乳腺癌细胞中的转录抑制与PNRC启动子CpG岛的甲基化相关。本研究结果为阐明PNRC基因自身转录调控机制以及PNRC的转录抑制与肿瘤的相关性奠定了基础。
PNRC (Proline-rich Nuclear Receptor Coactivator) was previously identified using bovine SF-1 (steroidogenic factor 1) as the bait in a yeast two-hybrid screening of a human mammary gland cDNA expression library. PNRC was found to interact with the ligand-binding domains of all the nuclear receptors tested, including ERα, ERβ, PR, GR, TR, RAR, and RXR, in a ligand-dependent manner. PNRC was also found to interact in a ligand-independent manner with orphan receptors such as SF1 and ERRα. Unlike most of the coactivators that interact with nuclear receptors through their LXXLL motif, this new coactivator interacts with nuclear receptors through a proline-rich Src homology domain-3 (SH3)-binding motif, S-D (E)-P-P-S-P-S. In addition to functioning as a nuclear receptor coactivator, PNRC also plays a role in the growth factor/Ras-signaling pathway through its interaction with Grb2, a central adaptor protein in Ras pathway. Significantly reduced PNRC mRNA expression in stomach, colorectal, and hepatocellular carcinomas and in breast cancer was observed in comparison with the corresponding non-cancerous tissues. In addition, time-dependent induction of mRNA expression of PNRC was observed during 5-azacytidine treatment. These data suggest a possibility of PNRC as a tumor-related gene and that the regulation of PNRC expression plays a role in human multistage carcinogenesis. However, very little is known about the regulation of the expression of PNRC gene itself. To better understand the molecular mechanisms that regulate the expression of PNRC gene, we carried out this study and the major results are summarized below:
     1. The transcriptional initiation site and the minimal promoter region of the human PNRC gene were identified in this study. Using 5’RACE approach, we identified a major transcriptional initiation site at a nucleotide G, 27 nt more 5’upstream from the 5’end of previous published longest PNRC cDNAs (NM 006813). The sequences in the 2100 bp 5′flanking region from this transcriptional start site of PNRC gene was then analyzed for promoter prediction (http://www.fruitfly.org/cgi-bin/seq_tools/promoter.pl) and for putative transcriptional factor binding site analyses (TRANSFAC Professional 8.1 software in the Biobase Biological Database) (www. biobase.de/pages/products/databases. Htm l # transfac). To identify the promoter sequences of the human PNRC gene, a series of luciferase reporter constructs containing various 5′flanking region deletions of PNRC gene were generated by PCR and they were transient transfected into HepG2 cell by Liposome. Functional assays showed that the minimal promoter region of the human PNRC gene was mapped in the region from nucleotides -123 to +27, and the predicted transcription factor binding sites of NFY and RFX1 were located in this region.
     2. Chromatin immunoprecipitation (ChIP) analysis and electrophoretic mobility shift assay (EMSA) revealed that transcription factor NFY and RFX1 interacted with the–123 ~ +27 promoter region of the human PNRC gene in vivo and in vitro.
     3. The results of the co-transfection experiments showed that the transcriptional activity of human PNRC promoter was found to be regulated negatively by transcription factors NFY and RFX1, through binding two NFY putative binding sites and the RFX1-binding sequence within PNRC promoter region. RT-PCR and Western blot further demonstrated that overexpression of NFY or RFX1 negatively regulated PNRC expression in HepG2 cells.
     4. After prediction of CpG island in promoter of PNRC gene using“MethPrimer”software, the status of methylation of CpG island in promoter of PNRC gene was analyzed using bisulfite sequencing PCR (BSP) and sequence assay. The results revealed that the CpG island in promoter of PNRC was methylated only in breast cancer MCF-7 cells but not in normal breast MCF-10A cells.
     5. MCF-7 cells transfected with the luciferase report plasmid that contains the promoter sequence of PNRC were treated with methyltransferase inhibitor 5-aza-2’-deoxycytidine (5-Aza-CdR) and the promoter activity of PNRC was detected by luciferase assay. The expression of PNRC was analyzed by RT-PCR, Northern hybridization and Western blot after MCF-7 cells were treated with 5-Aza-CdR. The results showed that the promoter activity of PNRC in MCF-7 cells was levated upon the treatment of 5-Aza-CdR, and the levels of mRNA and protein of PNRC in MCF-7 cells were increased dramatically in response to the treatment of 5-Aza- CdR.
     In summary, in this study we have cloned and characterized the 5′flanking region of the human PNRC gene. Potential transcriptional start sites were determined by 5′RACE analysis. The minimal promoter region of the human PNRC gene was mapped in the region from nucleotides -123 to +27. The transcriptional activity of human PNRC promoter was found to be regulated negatively by transcription factors NFY and RFX1, through binding two NFY putative binding sites and the RFX1-binding sequence within PNRC promoter region. In addition, we also investigated the epigenetic regulation of PNRC gene. The results from this study suggest that hypermethylation of CpG island in promoter of PNRC is probably responsible for PNRC expression silencing in breast cancer cells, and the methyltransferase inhibitor such as 5-Aza-dc can effectively activate the expression of PNRC. The information generated from this study provides a solid base for further study of the transcriptional regulation of PNRC gene and the development of a novel strategy in breast cancer diagnosis and treatment by detecting and modulating the DNA methylation of PNRC gene.
引文
1. Robinson-Rechavi M, Escriva Garcia H, Laudet V. The nuclear receptor superfamily. J Cell Sci, 2003, 116( 4): 585-586.
    2. Razeto A, Ramakrishnan V, Litterst CM, et al. Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol, 2004, 336(2): 319-329.
    3. Huang ZQ, Li J, Sachs LM, et al. A role for cofactor-cofactor and cofactor-histone interactions in targeting p300, SWI/SNF and Mediator for transcription. EMBO J. 2003, 22(9): 2146-2155.
    4. Zhou D, Quach KM, Yang C, et al. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERR alpha1 (estrogen related receptor alpha-1). Mol Endocrinol, 2000, 14 (7): 986-998.
    5. Zhou D, Ye JJ, Li Y, et al. The molecular basis of the interaction between the proline-rich SH3-binding motif of PNRC and estrogen receptor alpha. Nucleic Acids Res, 2006, 34(20): 5974-5986.
    6. Albers M., Kranz H, Kober I, et al. Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. Mol Cell Proteomics, 2005, 4(2): 205-213.
    7. Zhou D, Chen B, Ye JJ, et al. A novel crosstalk mechanism between nuclear receptor-mediated and growth factor/Ras-mediated pathways through PNRC-Grb2 interaction. Oncogene, 2004, 23 (31): 5394-5404.
    8. Daly RJ, Gu H, Parmar J, et al. The docking protein Gab2 is overexpressed and estrogen regulated in human breastcancer. Oncogene, 2002, 21(33): 5175-5181.
    9. Zhou D, Zhong S, Ye JJ, et al. PNRC is a unique nuclear receptor coactivator that stimulates RNA polymerase III-dependent transcription. J Mol Signal, 2007, 2: 5.
    10. Kanai Y, Ushijima S, Saito Y, et al. MRNA expression of genes altered by 5-azacytidine treatment in cancer cell lines is associated with clinicopathological parameters of human cancers. J Cancer Res Clin Oncol, 2001, 127(12): 697-706.
    11.卢圣栋主编.现代分子生物学实验技术. 1999;北京:中国协和医科大学出版社.
    12. J.萨姆布鲁克等著.分子克隆实验指南第三版. 2002;北京:科学出版社.
    13. Lee WK, Kim YM, Malik N, et al. Cloning and characterization of the 5'-flanking region of the Ehox gene. Biochem Biophys Res Commun, 2006, 341(1): 225-231.
    14. Zhou D, Masri S, Ye JJ, et al. Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1. Gene, 2005, 361: 89-100.
    15. Ubeda M, Habener JF. CHOP gene expression in response to endoplasmic-reticular stress requires NFY interaction with different domains of a conserved DNA-binding element. Nucleic Acids Res, 2000, 28(24): 4987-97.
    16. Bolognese F, Pitarque-MartìM, Lo Cicero V, et al. Characterization of the human EDF-1 minimal promoter: involvement of NFY and Sp1 in the regulation of basal transcription. Gene. 2006, 374: 87-95.
    17. Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. Gene, 1999, 239(1): 15-27.
    18. Radomska HS, Satterthwaite AB, Taranenko, N, et al. A nuclear factor Y (NFY) site positively regulates the human CD34 stem cell gene. Blood, 1999, 94(11): 3772-3780.
    19. Emery P, Durand B, Mach B, et al. RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucl. Acids Res, 1996, 24(5): 803-807.
    20. Durand B, Vandaele C, Spencer D, et al. Cloning and characterization of dRFX, the Drosophila member of the RFX family of transcription factors. Gene, 2000, 246(1-2): 285-293.
    21. Steimle V, Durand B, Barras E, et al. A novel DNA-binding regulatory factor is mutated in primary MHC class II deficiency. Genes Dev, 1995, 9(9): 1021-1032.
    22. Krawczyk M, Peyraud N, Rybtsova N, et al. Long distance control of MHC class II expression by multiple distal enhancers regulated by regulatory factor X complex and CIITA. J Immunol, 2004, 173(10): 6200-6210.
    23. Burd AL, Ingraham RH, Goldrick SE, et al. Assembly of major histocompatability complex (MHC) class II transcription factors: association and promoter recognition of RFX proteins. Biochemistry, 2004, 43(40): 12750-12760.
    24. Jabrane-Ferrat N, Nekrep N, Tosi G, et al. MHC class II enhanceosome: how is the class II transactivator recruited to DNA-bound activators? Int Immunol, 2003, 15(4): 467-475.
    25. Nakayama A, Murakami H, Maeyama N, et al. Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1Apromoter. J Biol Chem, 2003, 278(1): 233-240.
    26. Borghini S, Vargiolu M, Di Duca M, et al. Nuclear factor Y drives basal transcription of the human TLX3, a gene overexpressed in T-cell acute lymphocytic leukemia. Mol Cancer Res, 2006, 4(9): 635-643.
    27. Uddin RK, Singh SM. cis-Regulatory sequences of the genes involved in apoptosis, cell growth, and proliferation may provide a target for some of the effects of acute ethanol exposure. Brain Res, 2006, 1088(1): 31-44.
    28. Marziali G, Perrotti E, Ilari R, et al. The activity of the CCAAT-box binding factor NF-Y is modulated through the regulated expression of its A subunit during monocyte to macrophage differentiation: regulation of tissue-specific genes through a ubiquitous transcription factor. Blood, 1999, 93(2): 519-526.
    29. Faniello MC, Bevilacqua MA, Condorelli G, et al. The B subunit of the CAAT-binding factor NFY binds the central segment of the Co-activator p300. J Biol Chem, 1999, 274(12): 7623-7626.
    30. Peng Y, Jahroudi N. The NFY transcription factor functions as a repressor and activator of the von Willebrand factor promoter. Blood, 2002, 99(7): 2408-17.
    31. Nicolas M, Noe V, Ciudad CJ. Transcriptional regulation of the human Sp1 gene promoter by the specificity protein (Sp) family members nuclear factor Y (NFY) and E2F. Biochem J, 2003, 371(Pt 2): 265-275.
    32. Bolognese F, Pitarque-MartìM, Lo Cicero V, et al. Characterization of the human EDF-1 minimal promoter: involvement of NFY and Sp1 in the regulation of basal transcription. Gene. 2006, 374: 87-95.
    33. Cagen LM, Deng X, Wilcox HG, et al. Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NFY cis-acting elements. Biochem J, 2005, 385(Pt 1): 207-216.
    34. Taranenko N, Krause DS. Regulation of CD34 transcription by Sp1 requires sites upstream and downstream of the transcription start site. Exp Hematol. 2000, 28(8): 974-984.
    35. Huang DY, Kuo YY, Lai JS, et al. GATA-1 and NFY cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic Acid Res, 2004, 32(13):3935-3946.
    36. Caretti G, Salsi V, Vecchi C, et al. Dynamic recruitment of NFY and histone acetyltransferases on cellcycle promoters. J Biol Chem, 2003, 278(33): 30435-30440.
    37. Li Q, Herrler M, Landsberger N, et al. 1998. Xenopus NF-Ypre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J, 17(21): 6300-6315.
    38. Frontini M, Imbriano C, diSilvio A, et al. NF-Y recruitment of TFIID, multiple interactions with histone fold TAF(II)s. J Biol Chem 2002, 277(8): 5841-5848.
    39. Coustry F, Sinha S, Maity SN, et al. The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the Drosophila TFIID complex. Biochem J, 1998, 331 (Pt 1): 291-297.
    40. Peng Y, Jahroudi N. The NFY transcription factor inhibits von Willebrand factor promoter activation in non-endothelial cells through recruitment of histone deacetylases. J Biol Chem, 2003, 278(10): 8385-8394.
    41. Gajiwala KS, Chen H, Cornille F, et al. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature, 2000, 403(6772): 916-921.
    42. Ma K, Zheng S, Zuo Z. The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3. J Biol Chem, 2006, 281(30): 21250-21255.
    43. Liu M, Lee BH, Mathews MB. Involvement of RFX1 protein in the regulation of the human proliferating cell nuclear antigen promoter. J Biol Chem, 1999, 274(22): 15433-15439.
    44. Zajac-Kaye M, Ben-Baruch N, Kastanos, E, et al. Induction of Myc-intron-binding polypeptides MIBP1 and RFX1 during retinoic acid-mediated differentiation of haemopoietic cells. Biochem. J, 2000, 345(Pt3): 535-541.
    45. Maijgren S, Sur I, Nilsson M, et al. Involvement of RFX proteins in transcriptional activation from a Ras-responsive enhancer element. Arch Dermatol Res, 2004, 295(11): 482-489.
    46. Xu Y, Sengupta PK, Seto E, et al. Regulatory factor for X-box family proteins differentially interact with histone deacetylases to repress collagen alpha2(I) gene (COL1A2) expression. J Biol Chem, 2006, 281(14): 9260-9270.
    47. Sengupta P, Xu Y, Wang L, et al. Collagen alpha1(I) gene (COL1A1) is repressed by RFX family. J Biol Chem, 2005, 280(22): 21004-21014.
    48. Sengupta PK, Fargo J, Smith BD. The RFX family interacts at the collagen (COL1A2) start site and represses transcription. J Biol Chem, 2002, 277(28): 24926-24937.
    49. Li LC. Designing PCR primer for DNA methylation mapping. Methods Mol Biol, 2007, 402: 371-384.
    50. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002, 18(11): 1427-1431.
    51. Szyf M. Targeting DNA methylation in cancer. Bull Cancer, 2006, 93(9): 961-972.
    52. Vaillant I, Paszkowski J. Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol, 2007, 10(5): 528-533.
    53. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007, 134(22): 3959-3965.
    54. He X, Chang S, Zhang J, et al. MethyCancer: the database of human DNA methylation and cancer. Nucleic Acids Res, 2008,36: D836-841.
    55. Davie JK, Dent SY. Histone modifications in corepressor functions. Curr Top Dev Biol, 2004, 59: 145-163.
    56. Robertson KD, Jones PA. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol Cell Biol. 1998,18(11): 6457-6473.
    57. Esteller M, Tortola S, Toyota M, et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res, 2000, 60(1): 129-133.
    58. Badal V, Menendez S, Coomber D, et al. Regulation of the p14ARF promoter by DNA methylation. Cell Cycle, 2008, 7(1): 112-119.
    59. Pluta A, Nyman U, Joseph B, et al. The role of p73 in hematological malignancies. Leukemia, 2006, 20(5): 757-766.
    60. Mund C, Beier V, Bewerunge P, et al. Array-based analysis of genomic DNA methylation patterns of the tumour suppressor gene p16INK4A promoter in colon carcinoma cell lines. Nucleic Acids Res, 2005,33(8): e73.
    61. Mikami T, Yoshida T, Numata Y, et al. Low frequency of promoter methylation ofO6-methylguanine DNA methyltransferase and hMLH1 in ulcerative colitis-associated tumors: comparison with sporadic colonic tumors. Am J Clin Pathol, 2007, 127(3): 366-373.
    62. Miturski R, Postawski K, Semczuk A, et al. Global DNA methylation in relation to hMLH1 and hMSH2 protein immunoreactivity in sporadic human endometrial carcinomas. Int J Mol Med, 2003, 11(5): 569-574.
    63. Oue N, Sentani K, Yokozaki H, et al. Promoter methylation status of the DNA repair genes hMLH1 and MGMT in gastric carcinoma and metaplastic mucosa. Pathobiology, 2001, 69(3): 143-149.
    64. Butcher DT, Mancini-DiNardo DN, Archer TK, et al. DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. Int J Cancer, 2004, 111(5): 669-678.
    65. Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 1992, 89(5): 1827-1831.
    66. Rhee I , Bachman KE , Park BH , et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002, 416(6880): 552-556.
    67. Leone G, Voso MT, Teofili L, et al. Inhibitors of DNA methylation in the treatment of hematological malignancies and MDS. Clin Immunol, 2003, 109(1): 89-102.
    68. Hennessy BT, Garcia-Manero G, Kantarjian HM, et al. DNA methylation in haematological malignancies: the role of decitabine. Expert Opin Investig Drugs, 2003, 12(12): 1985-1993.
    69. Momparler RL. Pharmacology of 5-Aza-2'-deoxycytidine (decitabine). Semin Hematol, 2005, 42(3 Suppl 2): S9-16.
    70. Momparler RL. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine). Semin Oncol, 2005, 32(5): 443-451.
    71. Aparicio A, Weber JS. Review of the clinical experience with 5-azacytidine and 5-aza-2'-deoxycytidine in solid tumors. Curr Opin Investig Drugs, 2002, 3(4): 627-633.
    72. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood, 2006,108(10): 3271-3279.
    1. Ito M, Roeder RG. The TRAP/SMCC/Mediator complex. Trends Endocrinol Metab, 2001, 12(3): 127-134.
    2. Lewis BA, Reinberg D. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J Cell Sci, 2003, 116(Pt 18): 3667-3675.
    3. Stallcup MR, Kim JH, Teyssier C, et al. The roles of protein-protein interactions and protein methylation in transcriptional activation by nuclear receptors and their coactivators. J Steroid Biochem Mol Biol. 2003, 85(2-5): 139-145.
    4. van Vugt JJ, Ranes M, Campsteijn C, et al. The ins and outs of ATP-dependent chromatin remodeling in budding yeast: biophysical and proteomic perspectives. Biochim Biophys Acta. 2007, 1769(3): 153-171.
    5. Trotter KW, Archer TK. Nuclear receptors and chromatin remodeling machinery. Mol Cell Endocrinol. 2007,265-266: 162-167.
    6. Dhananjayan SC, Ismail A, Nawaz Z. Ubiquitin and control of transcription. Essays Biochem, 2005, 41: 69-80.
    7. Verma S, Ismail A, Gao X, et al. The ubiquitin-conjugating enzyme UBCH7 acts as a coactivator for steroid hormone receptors. Mol Cell Biol, 2004, 24(19): 8716-8126.
    8. Shang Y, Hu X, DiRenzo J, et al. Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell, 2000,103(6): 843-852.
    9. Métivier R, Penot G, Hübner MR, et al. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 2003, 115(6): 751-763.
    10. Monsalve M, Wu Z, Adelmant G, et al. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell, 2000, 6(2): 307-316.
    11. H?nig A, Auboeuf D, Parker MM, et al. Regulation of alternative splicing by the ATP-dependent DEAD-box RNA helicase p72. Mol Cell Biol, 2002, 22(16): 5698-5707.
    12. Auboeuf D, Dowhan DH, Li X, et al. CoAA, a nuclear receptor coactivator protein at the interface of transcriptional coactivation and RNA splicing. Mol Cell Biol, 2004, 24(1): 442-453
    13. Auboeuf D, Dowhan DH, Kang YK, et al. Differential recruitment of nuclear receptorcoactivators may determine alternative RNA splice site choice in target genes. Proc Natl Acad Sci U S A. 2004,101(8): 2270-2274.
    14. Dong X, Sweet J, Challis JR, et al. Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol, 2007, 27(13): 4863-4875.
    15. Zhao Y, Goto K, Saitoh M, et al. Activation function-1 domain of androgen receptor contributes to the interaction between subnuclear splicing factor compartment and nuclear receptor compartment. Identification of the p102 U5 small nuclear ribonucleoprotein particle-binding protein as a coactivator for the receptor. J Biol Chem, 2002, 277(33): 30031-30039.
    16. Deroo BJ, Rentsch C, Sampath S, et al. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol, 2002, 22(12): 4113-4123.
    17. Reid G, Hübner MR, Métivier R, et al. Cyclic, proteasome-mediated turnover of unliganded and liganded ERa on responsive promoters is an integral feature of estrogen signaling. Mol Cell, 2003, 11(3): 695-707.
    18. von Mikecz A. The nuclear ubiquitin-proteasome system. J Cell Sci, 2006, 119(Pt 10): 1977-1984.
    19. Wu RC, Smith CL, O'Malley BW. Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr Rev, 2005, 26(3): 393-399.
    20. Sano M, Wang SC, Shirai M , et al. Activation of cardiac Cdk9 represses PGC-1 and confers a predisposition to heart failure. EMBO J, 2004, 23(17): 3559-3569.
    21. Yin N, Wang D, Zhang H, et al. Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res, 2004, 64(16): 5870-5875.
    22. Screaton RA, Conkright MD, Katoh Y, et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell, 2004, 119(1): 61-74.
    23. Xu W, Chen H, Du K, et al. A transcriptional switch mediated by cofactor methylation. Science. 2001, 294(5551): 2507-2511.
    24. Kotaja N, Karvonen U, J?nne OA, et al. The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem, 2002,277(33): 30283-30288.
    25. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004, 96(12): 926-935.
    26. Petrij F, Giles RH, Dauwerse HG, et al. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature, 1995, 376(6538): 348-351.
    27. Matsuura T, Sutcliffe JS, Fang P, et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet, 1997, 15(1): 74-77.
    28. Vimaleswaran KS, Radha V, Ghosh S, et al. Peroxisome proliferator-activated receptor-gamma co-activator-1alpha (PGC-1alpha) gene polymorphisms and their relationship to Type 2 diabetes in Asian Indians. Diabet Med, 2005, 22(11): 1516-1521.
    1. Vaillant I, Paszkowski J. Role of histone and DNA methylation in gene regulation. Curr Opin Plant Biol, 2007, 10(5): 528-533.
    2. Zilberman D, Henikoff S. Genome-wide analysis of DNA methylation patterns. Development. 2007, 134(22): 3959-3965.
    3. Esteller M, Tortola S, Toyota M, et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res, 2000, 60(1): 129-133.
    4. Badal V, Menendez S, Coomber D, et al. Regulation of the p14ARF promoter by DNA methylation. Cell Cycle, 2008, 7(1): 112-119.
    5. Pluta A, Nyman U, Joseph B, et al. The role of p73 in hematological malignancies. Leukemia, 2006, 20(5): 757-766.
    6. Mund C, Beier V, Bewerunge P, et al. Array-based analysis of genomic DNA methylation patterns of the tumour suppressor gene p16INK4A promoter in colon carcinoma cell lines. Nucleic Acids Res, 2005,33(8): e73.
    7. Mikami T, Yoshida T, Numata Y, et al. Low frequency of promoter methylation of O6-methylguanine DNA methyltransferase and hMLH1 in ulcerative colitis-associated tumors: comparison with sporadic colonic tumors. Am J Clin Pathol, 2007, 127(3): 366-373.
    8. Miturski R, Postawski K, Semczuk A, et al. Global DNA methylation in relation to hMLH1 and hMSH2 protein immunoreactivity in sporadic human endometrial carcinomas. Int J Mol Med, 2003, 11(5): 569-574.
    9. Butcher DT, Mancini-DiNardo DN, Archer TK, et al. DNA binding sites for putative methylation boundaries in the unmethylated region of the BRCA1 promoter. Int J Cancer, 2004, 111(5): 669-678.
    10. Schneider-Stock R, Ocker M. Epigenetic therapy in cancer: molecular background and clinical development of histone deacetylase and DNA methyltransferase inhibitors. Idrugs, 200710(8): 557-561.
    11. Cao, R and Zhang, Y. SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. Mol Cell, 2004,15(1): 57–67.
    12. HamamotoR, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol, 2004, 6(8): 731-740
    13. Momparler RL. Epigenetic therapy of cancer with 5-aza-2'-deoxycytidine (decitabine). Semin Oncol, 2005, 32(5): 443-451.
    14. Garcia-Manero G, Kantarjian HM, Sanchez-Gonzalez B, et al. Phase 1/2 study of the combination of 5-aza-2'-deoxycytidine with valproic acid in patients with leukemia. Blood, 2006,108(10): 3271-3279.
    15. Yang AS, Doshi KD, Choi SW, et al. DNA methylation changes after 5-aza-2'-deoxycytidine therapy in patients with leukemia. Cancer Res, 2006, 66(10): 5495-503.
    16. Scott SA, Lakshimikuttysamma A, et al. Zebularine inhibits human acute myeloid leukemia cell growth in vitro in association with p15INK4B demethylation and reexpression. Exp Hematol. 2007, 35(2): 263-273.
    17. Lee BH, Yegnasubramanian S, Lin X, et al. Procainamide is a specific inhibitor of DNA methyltransferase 1. J Biol Chem. 2005, 280(49): 40749-40756.
    18. Peixoto P, Lansiaux A. Histone-deacetylases inhibitors: from TSA to SAHA. Bull Cancer. 2006, 93(1): 27-36.
    19. Balakin KV, Ivanenkov YA, Kiselyov AS, et al. Histone deacetylase inhibitors in cancer therapy: latest developments, trends and medicinal chemistry perspective. Anticancer Agents Med Chem. 2007, 7(5): 576-592.
    20. Shaker S, Bernstein M, Momparler L F, et al. Preclinical evaluation of antineoplastic activity of inhibitors of DNA methylation (5-aza-2'-deoxycytidine) and histone deacetylation (trichostatin A, depsipeptide) in combination against myeloid leukemic cells. Leuk Res, 2003, 27(5): 437-444.
    21. Palmisano WA, Divine KK, Saccomanno G, et al. Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res. 2000, 60(21): 5954-5958.
    22. Esteller M, Hamilton SR, Burger PC, et al. Inactivation of the DNA repair gene O-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. Cancer Res. 1999,59(4): 793-797.
    23. Guasconi V, Ait-Si-Ali S. Chromatin dynamics and cancer. Cancer Biol. Ther. 2004, 3(9): 825-830.
    24. Virmani AK, Rathi A, Zochbauer-Muller S, et al. Promoter methylation and silencing of the retinoic acid receptor-beta gene in lung carcinomas. J. Natl. Cancer Inst. 2000, 92(16): 1303-1307.
    25. Esteller M, Guo M, Moreno V, et al. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer. Cancer Res. 2002, 62(20): 5902-5905.
    1. Chambon, P. (2005) The nuclear receptor superfamily: a personal retrospect on the first two decades. Mol. Endocrinol. 19, 1418–1428
    2. Evans, R,M. (2005) The nuclear receptor superfamily: a rosetta stone for physiology. Mol. Endocrinol. 19,1429–1438
    3. Robyr, D., Wolffe, A.P., and Wahli, W. (2000) Nuclear hormone receptor coregulators in action: diversity for shared tasks. Mol. Endocrinol. 14, 329–347
    4. Smith, CL., and O'Malley, B.W. (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr. Rev. 25, 45–71
    5. Xu, J., and Li, Q. (2003) Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol. Endocrinol. 17, 1681–1692
    6. Zhou, D., Quach, K.M.., Yang, C., Lee, S.Y., Pohajdak, B., and Chen, S. (2000) PNRC: A proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRa1 (estrogen related receptor a-1). Mol. Endocrinol. 14, 986–998
    7. Zhou, D., and Chen, S. (2001) PNRC2 is a 16 kDa coactivator that interacts with nuclear receptors through an SH3-binding motif. Nucleic. Acid. Res. 29, 3939–3948
    8. Albers, M., Kranz, H., Kober, I., Kaiser, C., Klink, M., Suckow, J., Kern, R., and Koegl, M. (2005) Automated yeast two-hybrid screening for nuclear receptor-interacting proteins. Mol. Cell. Proteomics. 4, 205–213
    9. Zhou, D., Ye, J.J., Li, Y., Lui, K., and Chen, S. (2006) The molecular basis of the interaction between the proline-rich SH3-binding motif of PNRC and estrogen receptor alpha. Nucleic. Acids. Res. 34, 5974–5986
    10. Zhou, D., Chen, B., Ye, J.J., and Chen, S. (2004) A novel crosstalk mechanism between nuclear receptor-mediated and growth factor/Ras-mediated pathways through PNRC-Grb2 interaction. Oncogene. 23, 5394–5404
    11. Zhou, D., Zhong, S., Ye, J.J., Qauch, K.M., Johnson, D.L., and Chen, S. (2007) PNRC is a unique nuclear receptor coactivator that stimulates RNA polymerase III-dependent transcription. J. Mo.l Signal. 2, 5
    12. Kanai, Y., Ushijima, S., Saito, Y., Nakanishi, Y., Sakamoto, M., and Hirohashi, S. (2001) MRNA expression of genes altered by 5-azacytidine treatment in cancer cell lines is associated with clinicopathological parameters of human cancers. J. Cancer. Res. Clin. Oncol. 127, 697–706
    13. Zhou, D., Clark, P., Wang, F., and Chen, S. (1996) Identification of a promoter that controls aromatase expression in human breast cancer and adipose stromal cells. J. Biol. Chem. 271, 15194–15202
    14. Mantovani, R. (1999) The molecular biology of the CCAAT-binding factor NFY. Gene. 18, 15–27
    15. Marziali, G.., Perrotti, E., Ilari, R., Coccia, E.M., Mantovani, R,, Testa, U., and Battistini, A. (1999) The activity of the CCAAT-box binding factor NF-Y is modulated through the regulated expression of its A subunit during monocyte to macrophage differentiation: regulation of tissue-specific genes through a ubiquitous transcription factor. Blood. 93, 519–526
    16. Reith, W., Siegrist, C.A., Burand, B., Barra,s E., and Mach, B. (1994) Function of major histocompatibility complex class II promoters requires cooperative binding between factors RFX and NFY. Proc. Natl. Acad. Sci. USA. 91, 554–558
    17. Nicolas, M., Noe, V., and Ciudad, C.J. (2003) Transcriptional regulation of the human Sp1 gene promoter by the specificity protein (Sp) family members nuclear factor Y (NFY) and E2F. Biochem. J. 371, 265–275
    18. Radomska, H.S., Satterthwaite, A.B., Taranenko, N., Narravula, S., Krause, D.S., and Tenen, D.G. (1999) A nuclear factor Y (NFY) site positively regulates the human CD34 stem cell gene. Blood. 94, 3772–3780
    19. Cagen, L.M., Deng, X., Wilcox, H.G., Park, E.A., Raghow, R., and Elam, M.B. (2005) Insulin activates the rat sterol-regulatory-element-binding protein 1c (SREBP-1c) promoter through the combinatorial actions of SREBP, LXR, Sp-1 and NFY cis-acting elements. Biochem. J. 385, 207–216
    20. Huang, D.Y., Kuo, Y.Y., Lai, J.S., Suzuki, Y., Sugano, S., and Chang, Z.F. (2004) GATA-1 and NFY cooperate to mediate erythroid-specific transcription of Gfi-1B gene. Nucleic. Acid. Res. 32, 3935–3946
    21. Caretti, G., Salsi, V., Vecchi, C., Imbriano, C., and Mantovani, R. (2003) Dynamic recruitment of NFY and histone acetyltransferases on cellcycle promoters. J. Biol. Chem. 278, 30435–30440
    22. Li, Q., Herrler, M., Landsberger, N., Kaludov, N., Ogryzko, V.V., Nakatani, Y., and Wolffe, A.P. (1998) Xenopus NF-Ypre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO. J. 17, 6300–6315
    23. Frontini, M., Imbriano, C., diSilvio, A., Bell, B., Bogni, A., Romier, C., Moras, D., Tora, L., Davidson, I., and Mantovani. (2002) NF-Y recruitment of TFIID, multiple interactions with histone fold TAF(II)s. J. Biol. Chem . 277, 5841–5848
    24. Coustry, F., Sinha, S., Maity, S.N., Crombrugghe, B. (1998) The two activation domains of the CCAAT-binding factor CBF interact with the dTAFII110 component of the Drosophila TFIID complex. Biochem. J. 331 (Pt 1), 291–297
    25. Peng, Y., Jahroudi, N. (2003) The NFY transcription factor inhibits von Willebrand factor promoter activation in non-endothelial cells through recruitment of histone deacetylases. J. Biol. Chem. 278, 8385–8394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700