用户名: 密码: 验证码:
适用于微小型燃气轮机富氢燃料的无焰燃烧技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着燃气轮机技术的发展,微小型燃气轮机作为分布式能源的核心得到了越来越广泛应用。微小型燃气轮机的传统燃料包括轻油、天然气等,而天然气的资源日趋紧张。富氢燃料气为天然气的有效补充/替代,具有代表性的富氢燃料气包括煤气化合成气、焦炉/高炉煤气、化工尾气、生物质气化气与城市煤气等。富氢燃料气具有火焰传播速度快,热值低与燃烧不稳定等特性。目前主流低污染燃烧技术在将富氢燃料应用于微小型燃气轮机时遇到了困难:以GE公司为代表的燃气轮机厂商目前采用最多的技术为稀释扩散技术,该技术可以将NOx排放控制在25ppm(@15%O2)以内,而在微小型燃气轮机中稀释剂难于获得并且过度稀释会导致燃烧效率下降与燃烧不稳定;燃气轮机燃烧天然气另一种成熟的技术为贫燃料预混燃烧,当应用贫预混燃烧技术于富氢燃料气时面临最大问题为回火与热声振荡。在运行机组中,热声振荡受到很多因素影响,具有很大不确定性,很难得到准确的诊断与控制。针对这一问题,各国学者针对下一代燃机低污染燃烧方式展开研究,目前中期的技术储备包括催化燃烧(CA),富-淬熄-贫(RQL),以及本文所采用的无焰燃烧技术。
     我们认为无焰燃烧是最有希望解决分布式供能系统应用富氢燃料的燃烧技术。无焰燃烧是一种在高温、低氧浓度、低燃料空气当量比条件下产生不可见火焰的燃烧技术。这种技术通常是采用大量回流的高温烟气与新鲜的空气掺混,该种掺混一方面提高了空气的温度使之超过燃料的自点燃温度,另一方面也达到稀释氧化剂、降低氧浓度的目的。这种经过稀释的高温空气遇到射流进入的燃料后燃料发生自燃,这时燃烧是在一定的空间范围内同时发生的,形成高度分散的反应区,不存在扩散燃烧或者预混燃烧那样明显的火焰锋面。无焰燃烧尤其适用于针对富氢燃料的微小型燃气轮机燃烧室,因为微小型燃气轮机带有回热器正好与无焰燃烧的高的入口温度匹配,并且可以同时降低NOx和CO的排放。而目前国际上针对富氢燃料无焰燃烧尚未有系统研究。
     本文中针对应用富氢燃料的无焰燃烧技术分别展开了理论分析、基础实验分析、原型燃烧室设计以及在常压与中压下的性能测试。
     首先,本文通过路径分析与敏感性分析,认为无焰燃烧条件下化学反应机理发生改变,从而导致许多反应参数发生变化,这些参数包括基元反应的强度、路径、层流火焰厚度,层流火焰传播速度、自点火延迟时间等。由于无焰燃烧条件下反应区特征尺度与火焰厚度接近,导致火焰进入了分布式模式。在该模式中,火焰面并不存在,而可以理解为一个不断爆燃与熄灭的过程。
     通过对不同热值、氢含量组分的合成气在不同氧浓度与温度下反应特性的测试,本文得到了无焰燃烧的适用范围,并且结合对污染物排放的测试结果,认为低氧浓度是无焰燃烧低污染排放的关键,但是过低氧浓度会缩小燃料的可燃范围,10%氧浓度是恰当的数值。
     本文设计了一个针对富氢合成气采用无焰燃烧技术的原型燃烧室,引入了参数化设计方法至本文所提出的模型燃烧室中,大大缩短了设计周期,避免了重复劳动。通过对回流量等参数的确定,得到了燃烧室具体的结构形式。并且本文采用了考虑详细化学反应机理,湍流-化学反应交互作用的涡团耗散概念模型对燃烧室进行三维CFD计算,得到燃烧室详细的速度分布、温度分布与组分分布等参数。
     分别采用天然气、稀释后天然气(模拟合成气热值)、富氢合成气以及焦炉煤气在常压与中压下对该燃烧室进行性能考核,结果证明该燃烧室的压力损失、燃烧热效率以及燃烧热强度均符合设计目标。在燃烧不同燃料时均能达到超低污染物排放,试验结果证明该燃烧室具有一定燃料适应性。燃烧室动态特性测试结果也说明了无焰燃烧是一种稳定的燃烧方式,不易发生热声振荡。通过激光诱导荧光技术对燃烧室火焰结构进行测量分析,说明无焰燃烧状态下火焰亮度低于常规燃烧方式。
With the development of gas turbine technology, the small gas turbine is more and more widely used as key equipment of distributed energy supply system. The traditional fuels for small gas turbines include light oil and natural gas. However, natural gas resources becoming increasingly strained, so hydrogen-rich fuels can be an effective supplement/replacement of natural gas. The representative hydrogen-rich fuels contain synthesis gas, coke oven/blast furnace gas, chemical exhaust gas, biomass gasification gas and city gas and so on. Common grounds of these fuels are high flame propagation speed, low calorific value and instability combustion. The mainstream low-polluting combustion technologies currently encounter difficulties when hydrogen-rich fuels is applied:The diluted combustion, which is the most current used, can control the NOx emission under 25ppm@15%02.But in small gas turbines the diluents are difficult to obtain, and excessive dilution will also lead to the decline in combustion efficiency and combustion instability; the other mature technology is lean premixed combustion, whose biggest problems are flashback and acoustic oscillations. In particular, the oscillation contains a nondeterministic factor, which is difficult to obtain diagnosis and control. To meet this challenge, several new low emission technologies, including catalytic combustion(CA), Rich-quench-lean(RQL), and flameless combustion, as well as flameless combustion in this paper, have become research hotspots.
     It is great believed that flameless combustion is the most promising applications to solve the problem in distributed energy supply system with hydrogen-rich fuels. Flameless combustion can be obtained by mixing a large amount of high-temperature burnt gas with fresh air so as to decrease the O2 concentration in oxidants while reaching the temperature of the self-ignition point of the fuel-oxidants mixture.. When fuel is injected into this kind of oxidant with high speed, combustion proceeds spatial homogeneously without a clear flame brush. Flameless combustion is particularly suitable for small gas turbine combustor with hydrogen-rich fuel, because small gas turbine usually has a recuperator which can just match the high inlet temperature in flameless combustion, and flameless combustion can reduce the NOx and CO emissions at the same time. At present, there is no systematically studies focus on flameless combustion with hydrogen-rich fuels in public literatures.
     In this paper, studies for flameless combustion with hydrogen-rich fuels were mainly focused, which contains theoretical analysis, mechanism experimental, mode combustor design and performance tests at atmospheric and higher pressure.
     First of all, though path analysis and sensitivity analysis, the author found that in flameless combustion a lot of characteristics changed including path and rate of elementary reactions, laminar flame thickness, laminar flame propagation velocity and ignition delay time. Flameless combustion has a correlation length scale close to the flame thickness, and the correlation volume is much larger.. Combustion can be understood as a continuous process of deflagration and extinguished.
     This paper concentrates on the characteristics of syngas'flameless combustion. The autor took different C/H ratios in a unique heat value, oxidant temperatures, O2 concentration and equivalence ratios into consideration. The experimental results showed the key feature to approach low NOx emission is the reduced O2 content in oxidation. However, this will narrow the flammable range and cause combustion instability. In this paper,10% O2 content in oxidation is a suitable percentage, in which the pollution can be controlled efficiently and less O2 content is not necessary to avoid extra flame instability.
     This paper designed a model combustor using flameless technology, and the author introduced parametric design approach into the design procedure, so the design cycle was reduced greatly and duplication of effort was avoided. By determination of parameters such as recirculation amount, the structure was specified. And in this paper, Eddy Dissipation Concept model, which took detailed chemical reaction mechanism and turbulence-chemistry interaction into account, was taken to three-dimensional CFD calculation, so detailed velocity distribution, temperature distribution, species distribution were obtained.
     The author took natural gas, diluted natural gas (to simulate heat value of synthesis gas), hydrogen-rich synthesis gas and coke oven gas in the test. The results demonstrated that the pressure loss, combustion efficiency and heat of combustion intensity of heat were in line with design goals. Different fuels could all reach ultra-low pollutant emissions, so the combustor had certain fuel flexibility. Dynamic characteristics of the combustion chamber test results illustrated the flameless combustion is a stable combustion, less prone to thermoacoustic oscillation. Laser-induced fluorescence measurements of the combustion flame structure analysis shows that a state of flameless combustion flame brightness is lower than the conventional combustion mode.
引文
[1]. International energy agency.世界能源展望2007,2008
    [2]. Bjorn H. Bakken, Hans I. Skjelbred, Ove Wolfgang.eTransport:Investment planning in energy supply systems with multiple energy carriers. Energy, Volume 32, Issue 9, September 2007, Pages 1676-1689
    [3].张楚莹,王书肖,邢佳,等.2008.中国能源相关的氮氧化物排放现状与发展趋势分析.环境科学学报,28 (12):2470-2479
    [4].《中华人民共和国国家标准》,GB13223-2003.
    [5]. Manfred Klein.. Gas Turbine Emission Standards. IGTI Industrial Cogen& Environmental Affairs Committees.2005
    [6]. Y.Levy, V. Sherbaum, V.Erenburg. Fundamatals Of Low-NOx Gas Turbine Adiabatic Combuster. Israel Insitute of Technology, Faculty of Aerospace Engineering ASME Turbo Expo2005
    [7]. MILANI. J. G. WUNNING. FLAMELESS OXIDATION TECHNOLOGY. Combustion and Aerothermal Technologies,343-352.
    [8]. M. De Joannon, G..LanGella, F.Beretta, A. Cavaliere, C.Noviello. Mild Combustion:Process Features and Technological Constrains. Combust. Sci. and Tech.2000. Vol 153, pp33-50
    [9]. Cavaliere, A., Joannon, M.D., Mild Combustion. Progress in Energy and Combustion Science, Vol.30, 2004, pp.329-366.
    [10]. Wunning, J. A.,1991, Flamelelose Oxidation von Brenstoff (German), Thesis, Aachen
    [11]. Wunning, J.A., Wunning, J.G., Flameless Oxidation to Reduce Thermal NO-Formation. Prog. Energy Combust. Sci.,1997, Vol.23, pp.81-94
    [12]. Gupta A.K., Proceedings of 2nd International Seminar on High Temperature Combustion in Industrial Furnaces, Jernkontoret-KTH, Stockholm, Sweden, January 17-18,2000, p.1
    [13]. Yasuda T., Proc. of 2nd Int. High Temperature Air Combustion Symposium, Taiwan (1999), B3
    [14]. Katsuki, M., and Hasegawa, T.,1998, "The Science and Technology of Combustion in Highly Preheated Air," Proceeding of the Combustion Institute,27, pp.3135-3146.
    [15]. Oberlack M, Arlitt R, Peters N. On stocastic Damkohlernumber variations in a homogeneous flow reactor. Combust Theory Modell 2000;4:495-509
    [16]. Peters N. Principles and potential of HiCOT combustion.Proceedings of the Forum on High-Temperature AirCombustion Technology; 2001. Josui Kaikan, p.109s
    [17]. Gupta, A. K:Flame Characteristics with High Temperature Air Combustion AIAA-2000-0593 38TH Aerospace Sciences Meeting & Exhibit 10-10 January 2000, Reno, NV
    [18]. Plessing T., Peters N., Wunning J.G.:Laser Optical Investigation of Highly Preheated Combustion With Strong Exhaust Gas Recirculation, Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute,1998, pp.3197-3204
    [19]. Kumar S, Paul PJ, Mukunda HS. Studies on a new high intensity-low emission burner. Proc Combust Inst 2002;29:1131-7
    [20]. Hasegawa, T., Tanaka, R., and Niioka, T., Combustion with high temperature low oxygen air in regenerative burners, The First Asia-Pacific Conference on Combustion, May 12-15, Osaka, Japan.1997, p. 290-293.
    [21]. Hasegawa, T., Mochida, S., and Gupta, A.K., Development of advanced industrial furnace using highly preheated air combustion, AIAA Journal of Propulsion and Power.
    [22]. Maruta, K., Muso, K., Takeda, K., Niioka, T.,2000, Reaction Zone Structures in Flameless Combustion, Proceeding of the Combustion Institute,28, pp.2117-2123.
    [23]. Choi, G., and Katsuki, M.,2001, "Advanced Low NOX Combustion Using Highly Preheated Air," Energy Conversion & Management,42, pp.639-652.
    [24]. Kitagawa, K., Konishi, N., Arai, N., and Gupta, A.K., "Two-dimensional distribution of flame fluctuation during highly preheated air combustion," International Joint Power Generation Conference, FACT-vol.22, vol.1. ASME;1998,p.239-242
    [25]. Lefebvre A. Atomization and sprays. New York:Hemisphere Publishing Corp; 1989.
    [26]. O" zdemir IB, Peters N. Characteristics of the reaction zone in a combustor operating at Mild Combustion. Exp Fluids 2001;30(6):683-95.
    [27]. Yasuda T. Development of super advanced regenerative furnace with HITAC. Crest—Fifth International Symposium on High Temperature Air Combustion and Gasification, Japan:Tokyo Institute of Technology; 2002.
    [28]. Akinyemi O, Toqan MA, Bee'r JM, Syska A, Thijsson J, Benson Ch, Moreland D. Development of a high air preheated low NOx burner; experimental studies aided by computational modeling. Proceedings of the Second Inter-national High Temperature Air Combustion Symposium, Taiwan; 1999. p. C1.
    [29]. Rφrtveit J, Zepter K, Skreiberg 0, Fossum M, Hustad JE. A comparison of low-NOx burners for combustion of methane and hydrogen mixtures. Proc Combust Inst
    [30]. Fujimori, T., Riechelmann, D., Sato, J., "Effect of lift-off on NOx emission of turbulent jet flame in high temperature co-flowing air," 27th International Symposium on Combustion, Boulder, Colorado.1998.
    [31]. Blasiak, W., Szewczyk, D., Dobski, T., "Influence of N2 addition on combustion of single jet of methane in highly preheated air," Proceedings of IJPGC'01, June 4-7, New Orleans, USA, FACT-19048. ASME,2001.
    [32]. Prasad, A., Gundavelli, S., Gollahali, SR., "Characteristics of diluent-caused lifted gas jet flames," Journal of Propulsion 1991; 7(5):659-67.
    [33]. Sabia, P., de Joannon M., Fierro, S., et al., "Hydrogen-enriched Methane Mild Combustion in a Well Stirred Reactor," Experimental Thermal and Fluid Science. Accepted 30 April 2006.
    [34]. Gupta, A.K., Li, Z., "Effect of fuel property on the structure of highly preheated air flames," International Joint Power Generation Conference, EC-vol.5, vol.1. ASME; 1998, p.247-58.
    [35]. Gupta, A.K., "Flame characteristics and challenges with high temperature air combustion," 2nd International Seminar on High Temperature Combustion in Industrial Furnaces, January 17-18, Stockholm, Sweden.2000.
    [36]. Dally, B.B., Riesmeier, E., and Peters, N., "Effect of Fuel Mixture on Moderate and Intense Low Oxygen Dilution Combustion," Combustion and Flame,2004, vol.137, p.418-431.
    [37]. Medwell, P.R., Kalt, P., and Dally, B.B.,2007, "Simultaneous Imaging of OH, Formaldehyde, and Temperature of Turbulent Nonpremixed Jet Flames in a Heated and Diluted Coflow," Combustion and Flame, vol.148, p.48-61.
    [38]. Dally, B.B., Karpetis, A.N., and Barlow, R.S., Proc. Combust. Inst.29 (2002) 1147-1154.
    [39]. Dally, B.B., Karpetis, A.N., and Barlow, R.S., in:2002 Australian Symposium on Combustion and The Seventh Australian Flame Days, Adelaide, Australia,2002.
    [40]. Hasegawa, T., Tanaka, R., and Niioka, T., "Combustion with high temperature low oxygen air in regenerative burners," The First Asia-Pacific Conference on Combustion, May 12-15, Osaka, Japan.1997, p. 290-293.
    [41]. Lille, S., Blasiak, W., Jewartowski, M.,2005, "Experimental Study of the Fuel Jet Combustion in High Temperature and Low Oxygen Content Exhaust Gases," Energy,30, pp.373-384.
    [42]. Kishimoto, K., Watanabe, Y., Kasahara, M., Hasegawa, T., Tanaka, R., "Observational study of chemiluminescence from flames with preheated and low oxygen air," The First Asia-Pacific Conference on Combustion, May 12-15, Osaka, Japan.1997, p.468-471.
    [43]. M.DE Joannon, G. Langella, F.Beretta,A.Cavaliere, C.Noviello. Mild combustion:Process Features and technological constrains. Combust. Sci and Tech,2000. Vlo.153, pp.33-50
    [44]. Andre'Nicolle, Philippe Dagaut.Occurrence of NO-reburning in MILD combustion evidenced via chemical kinetic modeling.Fuel 85 (2006) 2469-2478
    [45]. Cavaliere A, de Joannon M. In:Proc European combust meeting,Louvain La Neuve; 2005.
    [46]. Sabia, P., de Joannon M., Fierro, S., et al., "Hydrogen-enriched Methane Mild Combustion in a Well Stirred Reactor," Experimental Thermal and Fluid Science. Accepted 30 April 2006.
    [47]. Dally, B.B., Riesmeier, E., and Peters, N., "Effect of Fuel Mixture on Moderate and Intense Low Oxygen Dilution Combustion," Combustion and Flame,2004, vol.137, p.418-431.
    [48]. Orsino,S., Weber,R., Bollettini,U., Combust. Sci. Technol.168 (2002) 1-34
    [49]. Coelho PJ, Peters N. Numerical simulation of a Mild Combustion burner. Combustion and Flame 2001; 124:503-18.
    [50]. Bobba, M. K., Gopalakrishnan, P., Seitzman, J.M., Zinn, B.T.,2006, "Characteristics of Combustion Processes in a Stagnation Point Reverse Flow Combustor," Proceedings of GT2006, ASME Turbo Expo 2006: Power for Land, Sea and Air, paper no. GT2006-91217, May 8-11,2006, Barcelona, Spain.
    [51]. John Crane, Yedidia Neumeier, Jeff Jagoda, Jerry Seitzman, and Ben T. Zinn. STAGNATION POINT REVERSE FLOW COMBUSTOR PERFORMANCE WITH LIQUID FUEL INJECTION ASME Turbo Expo 2006:GT2006-91338
    [52]. Mohan K. Bobba, Priya Gopalakrishnan, Karthik Periagaram and Jerry M. Seitzman. Flame Structure and Stabilization Mechanisms in a Stagnation Point Reverse Flow Combustor. ASME:GT2007-28231
    [53]. Yufeng Cui, Xuan Lu, Gang Xu,Jianli Chen, Chaoqun Nie, Weiguang Huang.NUMERICAL INVESTIGATION OF A STAGNATION POINT REVERSE FLOW COMBUSTOR.ASME Turbo Expo 2008:GT2008-50729.
    [54]. Chiara Galletti, Alessandro Parente, Leonardo Tognotti." Numerical and experimental investigation of a mild combustion burner". Combustion and Flame 151 (2007) 649-664
    [55]. Li, G., Gutmark, E.J., Overman, N., and Cornwell, M., "Experimental Study of a Flameless Gas Turbine Combustor," Proceedings of GT2006, ASME Turbo Expo 2006:Power for Land, Sea and Air, paper no. GT2006-91051, May 8-11,2006, Barcelona, Spain.
    [56]. Rainer Luckerath, Wolfgang Meier and Manfred Aigner." FLOX(?) COMBUSTION AT HIGH PRESSURE WITH DIFFERENT FUEL COMPOSITIONS" Proceedings of GT2007, ASME Turbo Expo 2007.
    [57]. Briickner-Kalb, J.R., Hirsch, C., Scattelmayer, T.,2006, "Operation Characteristics of a Premixed Sub-ppm NOX Burner with Periodical Recirculation of Combustion Products," Proceedings of GT2006
    [58]. Kalb, J.R., Sattelmayer, T.,2004, "Lean Blowout Limit and NOx-Production of a Premixed Sub-ppm-NOx Burner with Periodic Flue Gas Recirculation," ASME Paper GT2004-53410, Proceedings of the ASME IGTI TurboExpo 2004,Vienna
    [59]. Levy, Y. Sherbaum, V., and Erenburg, V.,2005, "Fundamentals of Low-NOX Gas Turbine Adiabatic Combustor," Proceedings of GT2005, ASME Turbo Expo 2005:Power for Land, Sea and Air, GT2005-68321, June 6-9,2005, Reno-Tahoe, Nevada, USA.
    [60]. Masato Hiramatsu, Yoshifumi Nakashima, Sadamasa Adachi,COMBUSTION CHARACTERISTICS OF SMALL SIZE GAS TURBINE COMBUSTOR FUELED BY BIOMASS GAS EMPLOYING FLAMELESS COMBUSTION.ASME Turbo Expo 2007-27636
    [61]. Bee'r JM. Combustion technology developments in power generation in response to environmental challenges. Prog Energy Combust Sci 2000;26:301-27.
    [62]. www.power.alstom.com
    [63]. www.floxcom.ippt.gov.pl/.
    [64]. Stephen R,Turns著.姚强,李水清,王宇译.《燃烧学导论:概念与应用》(第二版).2009
    [65]. Peters, N.Turbulent Combustion.2000
    [66]. Phillips H. Flame in a buoyant methane layer. In:Tenth symposium (international) on combustion. The Combustion Institute, Pittsburgh,1965. p.1277-83.
    [67]. Kioni PN, Rogg B, Bray KNC, Linan A. Flame spread in laminar mixing layers:the triple flame. Combust Flame 1993;98:276-90.
    [68]. Kioni PN, Bray KNC, Greenhalgh DA, Rogg B. Experimental and numerical studies of a triple flame. Combust Flame 1999,116:192-206.
    [69]. Lee BJ, Chung SH. Stabilization of lifted tribrachial flames in a laminar nonpremixed jet. Combust Flame 1997;109:163-72.ARTICLE IN PRESS 228 K.M. Lyons/Progress in Energy and Combustion Science 33 (2007) 211-231
    [70]. Vanquickenborne L, Van Tiggelen A. The stabilization mechanism of lifted diffusion flames.Combust Flame 1966;10:59-69.
    [71]. Wohl K, Kapp NM, Gazley G. The stability of open flames. In:Third symposium (international) on combustion. The Combustion Institute, Pittsburgh,1949. p.3-21.
    [72]. Eickhoff H, Lenze B, Leuckel W. Experimental investigationson the stabilization mechanism of jet diffusion flames. In:Twentieth symposium (international) on combustion,The Combustion Institute, Pittsburgh, 1984.p.311-318.
    [73]. Peters N, Williams FA. Liftoff Characteristics of turbulent jet diffusion flames. AIAA J 1983;21:423-9.
    [74]. Kalghatgi GT. Lift-off heights and visible lengths ofvertical turbulent jet diffusion flames in still air. Combust Sci Technol 1984;41:17-29.
    [75]. Miake-Lye RC, Hammer JA. Lifted turbulent jet flames:a stability criterion based on the jet large-scale structure.In:Twenty-second symposium (international) on combustion.The Combustion Institute, Pittsburgh, 1988.p.817-824.
    [76]. Buckmaster JD, Weber RO. Edge flame holding. Proc Combust Inst 1996;26:1143-9.
    [77]. B.C. Choi, K.N. Kim, S.H. Chung.Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion.Combustion and Flame 156 (2009) 396-404
    [78]. J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee, in Proceedingsof the Twentieth Symposium (International) on Combustion, The Combustion Institute,Pittsburgh, Pennsylvania,1985, p.673
    [79]. P. Glarborg, R. J. Kee, and J. A. Miller, Combustion and Flame 65:177 (1986).
    [80]. Scott G. Davis, Ameya V. Joshi, Hai Wang, Fokion Egolfopoulos.An optimized kinetic model of H2/CO combustion.Proceedings of the Combustion Institute 30 (2005)1283-1292
    [81]. http://www.me.berkeley.edu/gri_mech/overview.html
    [82]. Curran, H. J., Pitz, W. J., and Westbrook, C. K.,2002, Review and release date:May 19,2004
    [83]. Naik, C. V., W. Pitz, et al. (2005) "Detailed Chemical Kinetic Modeling of Surrogate Fuels for Gasoline and Application to an HCCI Engine" SAE 2005-01-3741
    [84]. Rasmussen, C. L., A. E. Rasmussen, et al. (2008) "Sensitizing Effects of NOx on CH4 Oxidation at High Pressure" Comb. Flame 154(3):529-545
    [85]. Dagaut, P., P. Glarborg, et al. (2008) "The Oxidation of Hydrogen Cyanide and Related Chemistry" Progress in Energy and Combustion Science 34:1-46
    [86]. Westbrook CK, Dryer F. Chemical kinetic modeling of hydrocarbon combustion. Combust Sci Technol 1984;10(1):1-57.
    [87]. Faravelli T, Gaffuri P, Ranzi E, Griffiths JF. Detailed thermokinetic modeling of alkane autoignition as tool for the optimization of performance of internal combustion engines. Fuel 1998;77(3):147-55.
    [88]. J. A. Miller, M. C. Branch, W. J. McLean, D. W. Chandler, M. D. Smooke, and R. J. Kee, in Proceedings of the Twentieth Symposium (International) on Combustion, The Combustion Institute,Pittsburgh, Pennsylvania, 1985, p.673.
    [89]. Scott Davis, Ameya Joshi, and Hai Wang. Department of Mechanical Engineering, University of Delaware, Neark, DE 19716.January 2003
    [90]. Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T. Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixture. Prog Energy Combust Sci 2001;27(1):99-139.
    [91].草小玲,苏明,刘永文,王玲玲,王芳.高温空气发生器实验台研制太阳能学报,26卷第三期.2005
    [92].冯润棠,刘百宽,薛鸿雁,霍素珍,史绪波,高性能蓄热体的研制及应用.Vol.26 No.6 Nov.2004
    [93]. Haber, L. C., Vandsburger U., et al., "An Examination of the Relationship between Chemiluminescent Light Emissions and Heat Release Rate under non-Adiabatic Conditions",2000, ASME 2000-GT-0121
    [94]. Langhorne, P. J., "Reheat Buzz:an Acoustically Coupled Combustion Instability. Part 1. Experiment". J. Fluid Mech.,1988,193:417~443
    [95]. Clark, T. "Studies of OH, CO, CH, and C2 Radiation from Laminar and Turbulent Propane-air and Ethylene-ari Flames", NACA Technical Note 4266,1958
    [96].房爱兵,燃气轮机合成气燃烧室燃烧稳定性的实验研究,中国科学院研究生院博士论文,2007
    [97].胡广书.数字信号处理——理论、算法与实现[M].北京:清华大学出版社,2003
    [98]. A.M.MELLOR, design of modern turbine combustors,1990
    [99].余雄庆,姚卫星,薛飞,穆雪峰,刘克龙,黄爱凤..”关于多学科设计优化计算框架的探讨”,南京航空航天大学航空宇航学院 南京 210016
    [100]. Isight.9.0 refernce guide. Copyright (?) 2004 Engineous Software, Inc.
    [101]. Fluent Inc., FLUENT6.1 User's Guide. Centerra Resource Park,10 Cavendish Court, Lebanon, N.H., U.S.A.,2003.
    [102]. M. Rehm, P. Seifert, B. Meyer,Theoretical and numerical investigation on the EDC-model for turbulence-chemistry interaction at gasification conditions.Computers and Chemical Engineering 33 (2009) 402-407
    [103]. Abraham, J. Williams, F.A "a DISCUSSION OF Turbulent Flame Structure in Premixed Charges",1985 Society of Automotive Enginneers, Paper850345.
    [104]. Correa, S. M."A review of NOX formation Under Gas-turbine Combustion Conditions" combust. Sci. and Tech., Vol 87,1992
    [105]. Leonard, G., and Stegmaier, J.,1994,"Development of an Aeroderivative Gas Turbine Dry Low Emissions Combustion Systems," ASME Paper No.93-GT-288.
    [106]. Mongia, R. K., Tomita, Eiji, Hsu, F. K., Talbot, L.,Dibble, R. W.,26th Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, p.2749,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700