生物质水蒸气催化重整制富氢合成气的催化剂制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在日趋严重的能源危机与环境污染的背景下,清洁能源氢的开发和研究受到了广泛关注。生物质气化制富氢合成气是一项富有前景的制氢技术。我国城市中的落叶等生物质废弃物数量巨大。最大程度的利用这部分生物质资源,在气化介质的氛围下,利用催化剂将这部分废弃生物质转化制氢气,不仅可以缓解环境压力,还能创造能源效益。在一般的生物质气化中,产物中氢气含量较低,并且含有较多的焦油导致生物质气化率较低,限制了气化产物的进一步利用。采用水蒸气作为气化介质和使用催化剂是提高氢气含量并降低产焦量的有效方法。Ni基催化剂是对生物质水蒸气重整具有优良催化性能的催化体系之一。
     本文以介孔分子筛SBA-15为载体,采用浸渍法制备了Ni质量含量为5%-20(wt)%的Ni/SBA-15系列催化剂以及碱土金属(Mg、Ca、Sr、Ba)和稀土金属(La、Ce)、过渡金属(Co)等不同助剂改性后的Ni/SBA-15催化剂。以城市比较普遍的杨树落叶作为目标生物质,将其破碎成粉末,在常压固定床反应器上考察了温度、水蒸气的添加量、Ni含量、生物质与催化剂添加比,以及助剂等因素对杨树叶生物质水蒸气催化重整制富氢合成气反应性能的影响,采用X射线衍射、N2吸脱附和高分辨透射电镜对催化剂的结构进行了表征。
     结果表明:Ni/SBA-15系列催化剂中,Ni在载体SBA-15上分散良好,比表面积、孔径分布保持较好。Ni含量为12.5wt%时,催化剂性能最好,产氢最多,在反应温度800℃、水蒸气流量为60 ml.h-1、生物质与催化剂质量比为5:1的条件下,12.5wt%Ni/SB-15催化剂的氢气收率为158.50 mlH2/g生物质,氢气体积含量达到31.08%。
     对于M/Ni/SBA-15系列催化剂体系,添加Ca助剂的CaO-Ni/SBA-15催化剂显示了优异的催化性能。CaO含量为7.0 wt%时,相同反应条件下1g生物质更是产生了273.30 ml氢气,产物中氢气体积含量达到54.5%。MgO-Ni/SBA-15催化剂在杨树叶制氢上同样表现出了不俗的性能,MgO含量为5.0 wt%时,相同反应条件下1g生物质更是产生了272.85 ml氢气,氢气体积含量达到57.05%。而CaO、MgO的同时加入,使得催化剂表现出了更好的产氢性能。MgO含量为5.0 wt%, CaO含量为4.2 wt%时,1g生物质更是产生了321.16 ml氢气,氢气体积含量超过了60%。
     CaO、MgO的添加改变了杨树叶产物分配,CO含量明显降低。深入研究表明,CaO在镍基催化剂上呈高度分散状态,保持了介孔分子筛孔道大小。CaO在杨树叶重整制氢反应中起到吸收CO2的作用,在水蒸气过量的条件下,使得水汽变化反应吉布斯自由能降低,反应朝着CO降低、H2增加的方向进行。CaO对CO2的吸收是有限的,本实验CaO添加量为7%的催化剂吸收了30%的C02气体。CaO除了起到C02吸收剂的作用,还充当着提高产氢量的助催化剂的作用。
Hydrogen is regarded as the energy for future with its cleanness and high calorific value and has become a focus of renewed interest in many parts of the world. As the fossil energy resource reduces sharply and the pollution of the environment becomes more serious, biomass has been considered as one of the most probable source for hydrogen production. The number of disused biomass proved to be enormous in our national city. Coversion from this part of biomass to hydrogen-rich syngas using an effective catalyst and gasifying agent is thought to be a feasible option. This production pathway is an environmentally clean and economically viable solution which results in scarcely any CO2 emissions with greenhouse effect. Gasfication of biomass often results in heavy tar and low hydrogen yield in gas product. These two notable problems confine the varity use of gas production to application. Stream has been recognized as a effective gasifying agent for tar removal and higher hydrogen yield. It is investigated that Ni-based catalyst has been recognized as an effective catalyst with high activity for catalytic steam reforming from biomass to hydrogen.
     In this paper, the poplar leaves biomass materials as the feedstock for the steam reforming were collected and ground to powder. The proximate analysis and ultimate analysis of biomass sample were made as well as TGA. A series of Ni-based SBA-15 catalysts with Ni content from 5wt% to 20wt% and the modifications with alkaline earth metal (Mg, Ca, Sr, Ba), rare earth metal (La, Ce) and transition metal(Co) were prepared by impregnation method. A great many factors affected the performance of catalytic steam reforming of the poplar leaves to the hydrogen-rich syngas was investgated in fixed-bed reactor under atmospheric pressure, such as temperature, steam flow, Ni content, mass ratio of biomass and catalyst. The structure of catalysts was characterized by X-ray diffraction (XRD), N2-adsorption/desorption, transmission electron microscopy (TEM).
     The results indicated that the 12.5wt%Ni/SBA-15 catalyst exhibited the best performance for the catalytic steam reforming of poplar leaves to hydrogen-rich syngas. A maximum hydrogen yield and hydrogen volume fraction among gas products was observed to 158.50 ml H2/g biomass and 31.08% under the optimal reaction conditions that reaction temperature was 800℃, steam flow was 60ml.h-1, biomass/catalyst mass ratio was 5. It could be acquainted with the fact that the prepared molecular sieves SBA-15 maintained a good meso-porous structure and the structure of SBA-15 modified by Ni kept in good condition. The interaction force between active component and carrier was moderate, which promoted the catalystic reforming.
     Noteworthily, CaO-12.5%Ni/SBA-15 catalysts exhibited the highest performance among the series of M/Ni/SBA-15 catalysts. It was indicated that the CaO content of 7wt% favored the maximum hydrogen production which increased to 273.30 ml H2/g biomass and 54.5% in volume under the same condition. The addition of MgO also largely improved the product distribution and gas quality of poplar leaves. Hydrogen yield reached 272.85ml H2/g biomass and hydrogen volume fraction to 57.05%. Both addition of CaO and MgO promoted the reaction to a finer performance.1 g biomass generated 321.16ml H2. In the meantime, hydrogen volume fraction reached over 60%.
     The addition of CaO and MgO improved the product distribution and gas quality of poplar leaves, resulting in the decrease of CO. Future investigation suggested that the addition of CaO increased the dispersity of NiO and CaO was in a high degree of disparity. Meanwhile, molecular sieves SBA-15 maintained a good meso-porous structure with the modification of CaO. CO2 was absorbed by CaO and largely lowered in the gas system. In the presence of excessive steam, the free energy of Gibbs of system declined substantially, which played a promotive role in pushing water-gas shift reaction. It changed the original equilibrium of gas phase and pushed water-gas shift reaction to take place on the direction of hydrogen production to produce the additional H2.30% CO2 was absorbed while CaO content increased to 7wt%, which attributed to the limited capability of CaO for CO2 absorption under high temperature. CaO played the role not only of a CO2 sorbent but also that of a catalyst for biomass gasification.
引文
[1]王庆一.中国可再生能源现状、障碍与对策[J].中国能源,2002,6(4):42-43
    [2]张无敌,宋洪川,韦小岿,熊志刚,陶朴良.21世纪发展生物质能前景广阔[J].中国能源,2001,35(5):35-38
    [3]陈曦,韩志群,孔繁华,胡徐腾.生物质能源的开发与利用[J].化工进展,2007,19(7):1090-1097
    [4]黄金煌.农业生物质能源发展现状及建议[J].能源与环境,2008,4:76-77
    [5]马振英,王英,王健.秸秆处理技术的发展与启示[J].中国资源综合利用,2007,125(7):33-37
    [6]肖军,段菁春,王华.生物质利用现状[J].安全与环境工程,2003,10(1):11-14
    [7]朱起明,魏俊梅,徐柏庆.中国氢气的生产和应用、现状与前景[C].全国清洁能源技术研讨会,北京,1999,5:7
    [8]王伟,程玉春.国内外蒸汽转化制氢催化剂及工艺进展[J].工业催化,2002,10(3):42-48
    [9]褚洪岭,王桂芝,龚凡.制氢工艺技术经济与新技[J].化工技术经济,2005,23(9):36-40
    [10]Wang L G, Weller L, Jones D. Hanna M. Contemporary issues in thermal gasification of biomass and its application to electricity and fuel production[J]. Biomass and Bioenergy, 2008,32(7):573-581
    [11]Caputo A C, Palumbo M, Pelagagge P M. Economics of biomass energy utilization in combustion and gasification plants:effects of logistic variables[J]. Biomass and Bioenergy,2005,28(1):35-51
    [12]雷学军,罗梅健.生物质能转化技术及资源综合开发利用研究[J].中国能源,2010,32(1):22-28
    [13]孙艳,苏伟,周理.氢燃料[M].北京:化学工业出版社,2005,15-17
    [14]Holladay J D, Hu J, King D L, Wang Y. An overview of hydrogen production technologies[J]. Catalysis Today,2009,139(4):244-260
    [15]Hulteberg P C, Karlsson H T. A study of combined biomass gasification and electrolysis for hydrogen production [J]. International Journal of Hydrogen Energy,2009,34(2): 772-782
    [16]Kalinci Y, Hepbasli A, Dincer I. Biomass-based hydrogen production:A review and analysis[J]. International Journal of Hydrogen Energy,2009,34(21):8799-8817
    [17]Chen G, Andries J, Spliethoff H. Catalytic pyrolysis of biomass for hydrogen rich fuel gas production[J]. Energy Conversion and Management,2003,44(14):2289-2296
    [18]吕鹏梅,常杰,熊祖鸿.生物质废弃物催化气化制取富氢燃料气[J].煤炭转化,2002,25(3):32-36
    [19]吕鹏梅,常杰,付严.生物质流化床催化气化制取富氢燃气[J].太阳能学报,2004,25(6):54-57
    [20]Behdad M. Effects of controlling parameters on production of hydrogen by catalytic steam gasification of biomass at low temperatures[J]. Fuel,2007,86(15):2422-2430
    [21]Sheth P N, Babu B V. Production of hydrogen energy through biomass (waste wood) gasification[J]. International Journal of Hydrogen Energy,2010,35(19):10803-10810
    [22]郑安桥,张先中,苏亚欣.生物质气化制氢研究现状[J].能源与环境,2007,2:72-75
    [23]Abuadala A, Dincer I, Naterer G F. Exergy analysis of hydrogen production from biomass gasification[J]. International Journal of Hydrogen Energy,2010,35(10): 4981-4990
    [24]Agus H, Sandun F, Sushil A. Ultrahigh temperature water gas shift catalysts to increase hydrogen yield from biomass gasification[J]. Catalysis Today,2007,129(3-4):269-274
    [25]马隆龙,吴创之.生物质气化技术及其应用[M].北京:化学工业出版社,2003:156-204
    [26]Arlishada. Simulate for Impact Reducing of Particle[J]. Powder echnology,1994,81(3): 207-216
    [27]Chen J W, Lu Y J, Guo L J. Hydrogen production by biomass gasification in supercritical water using concentrated solar energy:System development and proof of concept[J]. International Journal of Hydrogen Energy,2010,35(13):7134-7141
    [28]方文沐,杜惠敏,李天荣.燃料分析技术问答[M].北京:中国电力出版社,2000,146-257
    [29]Yan Q H,Guo L J,Lu Y J. Thermodynamic analysis of hydrogen production from biomass gasification in supercritical water[J]. Energy Conversion and Management, 2006,47(11-12):1515-1528
    [30]Kentaro U, Kouichi Y, Tomoaki N, Kunio Y. Analysis of an updraft biomass gasifier with high temperature steam using a numerical model[J]. Applied Energy,2011,13(2): 101-109
    [31]Gordillo E D, Belghit A. A bubbling fluidized bed solar reactor model of biomass char high temperature steam-only gasification[J]. Fuel Processing Technology,2011,92(3): 314-321
    [32]Yan F, Luo S Y, Hu Z Q, Xiao B, Cheng G. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor:Influence of temperature and steam on hydrogen yield and syngas composition[J]. Bioresource Technology,2010,101(14):5633-5637
    [33]Gordillo E D, Belghit A. A downdraft high temperature steam-only solar gasifier of biomass char:A modelling study[J]. Biomass and Bioenergy,2008,32(1):1-10
    [34]Skoulou V, Kantarelis E, Arvelakis S, Yang W. Effect of biomass leaching on H2 production, ash and tar behavior during high temperature steam gasification (HTSG) process[J]. International Journal of Hydrogen Energy,2009,34(14):5666-5673
    [35]Corella J, Orio A, Aznar P. Biomass Gasification with Air in Fluidized Bed:Reforming of the Gas Composition with Commercial Steam Reforming Catalysts[J]. Industrial & Engineering Chemistry Research,1998,37(12):4617-4624
    [36]Kentaro U, Kouichi Y, Tomoaki N, Kunio Y. High temperature steam-only gasification of woody biomass[J]. Applied Energy,2010,87(3):791-798
    [37]Delgado J, Aznar M P, Corella J. Biomass Gasification with Steam in Fluidized Bed: Effectiveness of CaO, MgO, and CaO-MgO for Hot Raw Gas Cleaning[J]. Industrial & Engineering Chemistry Research,1997,36(5):1535-1543
    [38]吕鹏梅,常杰,王铁军.生物质气化过程催化剂应用研究进展[J].环境污染治理技术与设备,2005,6(5):53-56
    [39]李建芬.生物质催化热解和气化的应用基础研究[D].武汉:华中科技大学,2007,83-101
    [40]于洁,肖宏.生物质制氢技术研究进展[J].中国生物工程杂志,2006,26(5):107-112
    [41]Lv P M, Yuan Z H, Wu CZ. Bio-syngas production from biomass catalytic gasification[J]. Energy Conversion and Management,2007,48(4):1132-1139
    [42]Azad F S, Salehi E, Abedi J, Harding T. Biomass to hydrogen via catalytic steam reforming of bio-oil over Ni-supported alumina catalysts[J]. Fuel Processing Technology,2011,92(3):563-569
    [43]Tanksale A, Beltramini J N, Lu GQ. A review of catalytic hydrogen production processes from biomass[J]. Renewable and Sustainable Energy Reviews,2010,14(1): 166-182
    [44]王荣杰,陈虹微,郭艳.生物质汽化中焦油生成机理及消除[J].中国科教创新导报,2009,26:109-111
    [45]Anis S, Zainal Z A. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods:A review[J]. Renewable and Sustainable Energy Reviews,2011,15(5): 2355-2377
    [46]吴家桦,沈来宏,王雷.串行流化床生物质气化制氢试验研究[J].太阳能学报,2010,31(2):242-247
    [47]谢玉荣,沈来宏,肖军,谢大幸.生物质催化气化重整制取富氢气体的实验研究[J].西安交通大学学报,2008,42(5):634-638
    [48]Miccio F, Pirioua B, Ruoppolo R. Biomass gasification in a catalytic fluidized reactor with beds of different materials[J]. Chemical Engineering Journal,2009,154(1-3): 369-374
    [49]冯剑,舒新前.生物质废弃物制氢技术研究[J].环境与可持续发展,2007,4:24-26
    [50]雷学军,罗梅健.生物质转化技术及资源综合开发利用研究[J].中国能源,2010,32:22-28
    [51]Rapagna S, Jand N, Fosco P U. Catalytic gasification of biomass to produce hydrogen rich gas[J]. International Journal of Hydrogen Energy,1998,23(7):551-557
    [52]Luo S Y, Xiao B, Hu Z Q, Liu S M. Hydrogen-rich gas from catalytic steam gasification of biomass in a fixed bed reactor:Influence of temperature and steam on gasification performance[J]. International Journal of Hydrogen Energy,2009,34(5):2191-2194
    [53]Kirtay E. Recent advances in production of hydrogen from biomass[J]. Energy Conversion and Management,2011,52(4):1778-1789
    [54]胡冠.生物质气化制氢催化剂研究[D].大连:大连理工大学,2005,53-57
    [55]杨小芹.用于生物质焦油水蒸气重整的橄榄石载镍催化剂的研究[D].大连:大连理工大学,2010,40-46
    [56]Liu H B, Chen T H, Zhang X L. Effect of additives on catalytic cracking of biomass gasification tar over a nickel-based catalyst[J]. Chinese Journal of Catalysis,2010, 31(4):409-414
    [57]Nacken M, Ma L N, Heidenreich S. Performance of a catalytically activated ceramic hot gas filter for catalytic tar removal from biomass gasification gas[J]. Applied Catalysis B: Environmental,2009,88(3-4):292-298
    [58]吕鹏梅,熊祖鸿,常杰.生物质催化气化制取富氢燃气的研究[J].环境污染治理技术与设备,2003,4(11):53-56
    [59]Bru K, Blin J, Julbe A. Pyrolysis of metal impregnated biomass:An innovative catalytic way to produce gas fuel[J]. Journal of Analytical and Applied Pyrolysis,2007,78(2): 291-300
    [60]方曹明,范浩杰,王杰.生物质热解过程气体产物释放特性的研究[J].锅炉技术,2010,2:37-41
    [61]Kinoshita C M, Wang Y, Zhou J. Effect of reformer conditions on catalytic reforming of biomass-gasification tars[J]. Industrial & Engineering Chemistry Research,2005,34(9): 2949-2954
    [62]Biswas P, Kunzru D. Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2 catalyst:Effect of support and metal loading[J]. International Journal of Hydrogen Energy,2007,32(8):969-980
    [63]Bimbela F, Oliva M, Rulz J, Garcia L. Hydrogen production by catalytic steam reforming of acetic acid, a model compound of biomass pyrolysis liquids[J]. Journal of Analytical and Applied Pyrolysis,2007,79(1-2):112-120
    [64]Detournay M, Hemati M, Andreux R. Biomass steam gasification in fluidized bed of inert or catalytic particles:Comparison between experimental results and thermodynamic equilibrium predictions[J]. Powder Technology,2011,208(2):558-567
    [65]Zhao B F, Zhang X D, Sun L. Hydrogen production from biomass combining pyrolysis and the secondary decomposition[J]. International Journal of Hydrogen Energy,2010, 35(7):2606-2611
    [66]Turn S, Kinoshita C, Zhang Z. An experimental investigation of hydrogen production from biomass gasification[J]. International Journal Hydrogen Energy,2004,23(8): 641-648
    [67]Samolada M C, Baldauf W, Vasalos I A. Production of a bio-gasoline by upgrading biomass flash pyrolysis liquids via hydrogen processing and catalytic cracking[J]. Fuel, 1998,77(14):1667-1675
    [68]Garcia L, Salvador M L, Arauzo J. Catalytic pyrolysis of biomass:influence of the catalyst pretreatment on gas yields[J]. Journal of Analytical and Applied Pyrolysis,2001, 58-59(2):419-501
    [69]Corella J, Aznar M P, Caballero M A.140 g H2/kg biomass d.a.f. by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer [J]. International Journal of Hydrogen Energy,2008,33(7):1820-1826
    [70]Corujo A, Yerman L, Arizaga B. Improved yield parameters in catalytic steam gasification of forestry residue; optimizing biomass feed rate and catalyst type[J]. Biomass and Bioenergy,2010,34(12):1695-1702
    [71]朱自强.超临界流体技术原理和应用[M].北京:化学工业出版社,2000,16
    [72]银建中,王伟彬,张传杰.超临界水处理生物质制氢技术[J].生物技术,2007,17(3):92-96
    [73]阎桂焕,孙立,许敏.几种生物质制氢方式的探讨[J].能源工程,2004,(4):38-41
    [74]Yamaguchi A, Hiyoshi N, Sato O. Hydrogen production from woody biomass over supported metal catalysts in supercritical water[J]. Catalysis Today,2009,146(1-2): 192-195
    [75]郝小红,郭烈锦.超临界水中湿生物质催化气化制富氢燃气研究评述[J].化工学报,2005,53(3):221-228
    [76]Antal M J, Allen S G, Schulman D. Biomass Gasification in Supercritical Water[J]. Industrial & Engineering Chemistry Research,2000,39(11):4040-4053
    [77]Xu X, Antal M J. Gasification of Sewage Sludge and Other Biomass for Hydrogen Production in Supercritical Water[J]. Environmental Progress,1998,17(4):78-81
    [78]郝小红,郭烈锦.超临界水生物质催化气化制氢实验系统与方法研究[J].工程热物理学报,2002,23(2):31-35
    [79]任辉,张荣,王锦凤.废弃生物质在超临界水中转化制氢过程的研究[J].燃料化学学报,2003,12(6):51-55
    [80]Guo Y, Wang S Z, Xu D H. Review of catalytic supercritical water gasification for hydrogen production from biomass[J]. Renewable and Sustainable Energy Reviews, 2010,14(1):334-343
    [81]Guo L J, Lu Y J, Zhang X M. Hydrogen production by biomass gasification in supercritical water:A systematic experimental and analytical study[J]. Catalysis Today, 2007,129(3-4):275-286
    [82]Sato T, Furusawa T, Ishiyama Y. Hydrogen production from lignin with supported nickel catalysts through supercritical water gasification[J]. Whec, 2006,16:13-16
    [83]田亚峻,陈宏刚,李凡.煤与等离子体的作用机理探讨[J].煤炭转化,1998,21(4):1-6
    [84]雷国元,王丹鸶,王建龙.有机固体废物生物法制氢的研究进展[J],化工环保,2007,27(6):525-532
    [85]师玉忠.光合细菌连续制氢工艺及相关机理研究[D].郑州:河南农业大学,2008,44-56
    [86]袁传敏,颜涌捷,曹建勤.生物质制富氢燃气的研究[J].煤炭转化,2005,25(1):18-22
    [87]Asadullah M, Miyazawa T, Ito S. Novel biomass gasification method with high efficiency:catalytic gasification at low temperature[J]. Green Chemistry,2002,4(4): 385-389
    [88]Rapagna S, Provendier H, Petit C. Development of catalysts suitable for hydrogen or syn·gas production from biomass gasification[J]. Biomass and Bioenergy,2002,22(5): 377-388
    [89]Akshat T, Jorge N, Gao Q. A review of catalytic hydrogen production processes from biomass[J]. Renewable and Sustainable Energy Reviews,2010,14(1):166-182
    [90]Zhao M, Nicholas H. Florin, Andrew T. Harris. The influence of supported Ni catalysts on the product gas distributionand H2 yield during cellulose pyrolysis[J]. Applied Catalysis B:Environmental,2009,92(1-2):185-193
    [91]Lu Y, Li S, Guo L, Zhang X. Hydrogen production by biomass gasification in supercritical water over Ni/γAl2O3 and Ni/CeO2-γAl2O3 catalysts[J]. International journal of hydrogen energy,2010,35(13):7161-7168
    [92]Yohan R, Blina C, Ghislaine V, Julius M. In situ generation of Ni metal nanoparticles as catalyst for H2-rich syngas production from biomass gasification[J]. Applied Catalysis A:General,2010,382(2):220-230
    [93]Li C S, Hirabayashi D, Suzuki K. Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas[J]. Fuel Processing Technology,2009, 90(6):790-796
    [94]Albertazzi S, Basile F, Brandin J, Einvall J, Fornasari G, Hulteberg C. Effect of fly ash and H2S on a Ni-based catalyst for the upgrading of a biomass-generated gas[J]. Biomass and Bioenergy,2008,32(4):345-353
    [95]WangT J, Chang J, Lv P. Synthesis gas production via biomass catalytic gasification with addition of biogas[J]. Energy and Fuels,2005,19(2):637-644
    [96]Hu G, Huang H. Hydrogen rich fuel gas production by gasification of wet biomass using a CO2 sorbent[J]. Biomass and Bioenergy,2009,33(5):899-906
    [97]Ishida Y, Kumabe K, Hata K. Selective hydrogen generation from real biomass through hydrothermal reaction at relatively low temperatures[J]. Biomass and Bioenergy,2009, 33(1):8-13
    [98]Florin N H, Harris A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents[J]. Chemical Engineering Science, 2008,63(2),287-316
    [99]Proll T, Hofbauer H. H2 rich syngas by selective CO2 removal from biomass gasification in a dual fluidized bed system-Process modelling approach[J]. Fuel Processing Technology,2008,89(11):1207-1217
    [100]Cohce M K, Dincer I, Rosen M A. Thermodynamic analysis of hydrogen production from biomass gasification[J]. International journal of hydrogen energy,2010,35(10): 4970-4980
    [101]Hanaoka T, Yoshida T, Fujimoto S. Hydrogen production from woody biomass by steam gasification using a CO2 sorbent[J]. Biomass and Bioenergy,2005,28(1):63-68
    [102]乔春珍,肖云汉.生物质一步制氢的热力学分析及实验研究[J].太阳能学报,2007,28(1):91-96
    [103]关键,王勤辉.生物质无氧气化制氢系统的热力学计算[J].太阳能学报,2007,28(10):1146-1151
    [104]舒新前,薛靖华.城市固体废弃物(MSW)的能源化利用.中国可再生能源发展现状与展望[J].中国工程院“可再生能源发展”工程科技论坛,2003,(5):268-273
    [105]Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks[J]. Energy Conversion and Management,2004,45(5):651-671
    [106]Zhao M, Tamara L, Andrew T. SBA-15 supported Ni-Co bimetallic catalysts for enhanced hydrogen production during cellulose decomposition[J]. Applied Catalysis B, 2010,10(24):1016-1025
    [107]Srinivas D, Ratnasamy P. Spectroscopic and catalytic properties of SBA-15 molecular sieves functionalized with acidic and basic moieties[J]. Microporous and Mesoporous Materials,2007,105(1-2):170-180
    [108]Huang B Y, Li X J, Ji S F. Effect of MgO promoter on Ni-based SBA-15 catalysts for combined steam and carbon dioxide reforming of methane[J]. Journal Natural Gas Chemistry,2008,17(3):225-231
    [109]Wan H J, Li X J, Ji S F. Effect of Ni Loading and CexZr1-xO2 Promoter on Ni-Based SBA-15 Catalysts for Steam Reforming of Methane[J]. Journal of Natural Gas Chemistry,2007,16(2):139-147
    [110]Sutton D, Kelleher D, Ross J. Review of literature on catalysts for biomass gasification[J]. Fuel Processing Technology,2001,73:155-173
    [111]Hao Q L, Wang C, Lu D Q. Production of hydrogen-rich gas from plant biomass by catalytic pyrolysis at low temperature[J]. International journal of hydrogen energy,2010, 35(17):8884-8890
    [112]Asadullah M, Miyazawa T, Ito S. Catalyst development for the gasification of biomass in the dual-bed gasifier[J]. Applied Catalysis A:General,2003,255(2):169-180
    [113]Acharya B, Dutta A, Basu P. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO[J]. International journal of hydrogen energy,2010,35(4):1582-1589
    [114]Sun D A, Li X J, Ji S F, Cao L Y. Effect of O2 and H2O on the tri-reforming of the simulated biogas to syngas over Ni-based SBA-15 catalysts[J]. Journal of Natural Gas Chemistry,2010,19(4):369-374
    [115]Demirbas A. Biomass resources for energy and chemical industry[J]. Energy Edu. Sci. Techno.,2000, (5):21-45
    [116]钱湘群.秸秆切碎及压缩成型特性与设备研究[D].浙江:浙江大学,2003:4-10
    [117]徐学耘.棉秆原料的初步分析[J].建筑人造板,2001,(3):24-30
    [118]Libin Wu, Shipeng Guo, Chao Wang, Zhengyu Yang. Production of alkanes (C7-C29) from different part of poplar tree via direct deoxy-liquefaction[J]. Bioresource Technology,2009,100(6):2069-2076
    [119]刘建禹,翟国勋,陈荣耀.生物质燃料直接燃烧过程特性的分析[J].东北农业大学学报,2001,32(3):290-294
    [120]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2004,29(4):319-322
    [121]Umeki K, Namioka T, Yoshikawa K. Analysis of an updraft biomass gasifier with high temperature steam using a numerical model[J]. Applied Energy,2011,37(3):563-574
    [122]Rapagna S, Latif A. Steam gasification of almond shells in a fluidized bed reactor.The influence of temperature and particle size on product yield and distribution[J]. Biomass and Bioenergy,2006,12(2):281-287
    [123]Arauzo J, Radlein D, Piskorz J. Catalytic pyrogasification of biomass, evaluation of nickel catalysts[J]. Industrial & Engineering Chemistry Research,1997,36(1):67-75
    [124]Seo J G, Youn M H, Jung J.Effect of preparation method of mesoporous Ni-Al2O3 catalysts on their catalytic activity for hydrogen production by steam reforming of liquefied natural gas (LNG)[J]. International journal of hydrogen energy,2009,34: 5409-5416
    [125]Ayhan, Demirbas. Gaseous products from biomass by pyrolysis and gasification:Effects of catalyst on hydrogen yield[J]. Energy Conversion and Management,2002,43(7): 897-909
    [126]Jeong H, Kim K, Kim D S. Effect of promoters in the methane reforming with carbon dioxide to synthesis gas over Ni/HY catalysts[J]. Journal of Molecular Catalysis A: Chemical,2006,246(1-2):43-48
    [127]黎先财,陈娟荣Ni-Co双金属催化剂在二氧化碳重整甲烷反应中的催化活性研究[J].现代化工,2005,25(10):37-39
    [128]Dong X F, Cai X L, Song Y B. Effect of Transition Metals (Cu, Co and Fe) on the Autothermal Reforming of Methane over Ni/Ce0.2Zr0.1Al0.7OδCatalyst[J]. Journal of Natural Gas Chemistry,2007,16(1):31-36
    [129]张进平,蒋剑春,金淳.生物质流态化催化气化技术研究[J].林产化学与工业, 2005,21(3):16-20
    [130]Bouarab R, Cherifi O, Auroux A. Effect of the basicity created by La2O3 addition on the catalytic properties of Co(O)/SiO2 in CH4+CO2 reaction[J]. Thermochimica Acta,2005, 434(1-2):69-73
    [131]Tomishige K, Kimura T, Nishikawa J. Promoting effect of the interaction between Ni and CeO2 on steam gasification of biomass[J]. Catalysis Communications,2007,8(7): 1074-1079
    [132]Zhang LH, Xu CB, Pascale C. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energy Conversion and Management,2010,51(5):969-982
    [133]Gao NB, Li AM, Quan C. A novel reforming method for hydrogen production from biomass steam gasification[J]. Bioresource Technology,2009,100(18):4271-4277
    [134]Akshat T, Jorge N, Gao Q. A review of catalytic hydrogen production processes from biomass[J]. Renewable and Sustainable Energy Reviews,2010,14(1):166-182
    [135]Mohammed M, Salmiaton A, Azlina W. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia[J]. Renewable and Sustainable Energy Reviews,2011,15(2):1258-1270
    [136]Galdamez J R, Garcia L, Bilbao R. Hydrogen production by steam reforming of bio-oil using coprecipitated Ni-Al catalysts[J]. Energy Fuel,2005,19(3):1133-1142
    [137]Acharya B, Dutta A, Basu P. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO[J]. International journal of hydrogen energy,2010,35(4):1582-1589
    [138]Li C S, Hirabayashi D, Suzuki K. Steam reforming of biomass tar producing H2-rich gases over Ni/MgOx/CaO1-x catalyst[J]. Bioresource Technology,2010,101(1):97-100
    [139]Qiao C Z, Xiao Y H, Xu X. Comparative analysis of hydrogen production systems from biomass ased on different absorbent regeneration processes[J]. International journal of hydrogen energy,2007,32(1):80-85
    [140]Bahadur S, Gong D, Anderegg J. Investigation of the influence of CaS, CaO and CaF2 fillers on the transfer and wear of nylon by microscopy and XPS analysis. Wear 1996; 197:271-279
    [141]Black L, Stumm A, Garbev K. X-ray photoelectron spectroscopy of the cement clinker phases tricalcium silicate and β-dicalcium silicate. Cement and Concrete research 2003; 33(10):1561-1565
    [142]Nicholas H. Florin, John Blarney, Paul S. Fennell. Synthetic CaO-Based Sorbent for CO2 Capture from Large-Point Sources[J]. Energy Fuels,2010,24(8):4598-4604

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700