基膜对硅橡胶复合膜富氧性能的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保是当今世界能源领域的两大主题,合理利用大气中丰富的氧资源是开发新能源的热点之一。与传统的深冷法和变压吸附法相比,膜法富氧具有流程简单,操作方便,能耗低,操作弹性大等优点,广泛应用于化工、医疗、冶金等行业。富氧膜材料有很多,其中硅橡胶由于透气性高而被广泛使用。但因其机械强度不高,一般将其复合在微孔基膜上制备成复合膜使用。复合膜的性能不仅取决于有选择性的表面皮层,而且受基膜材料、孔结构等因素的影响,因此合理选用与硅橡胶匹配的基膜是制备高性能富氧膜的关键。本文以聚碳酸酯(PC)、聚醚酰亚胺(PEI)、聚砜(PSF)作为基膜材料制备了硅橡胶复合膜,研究了不同铸膜液体系的相分离行为,考察了基膜材料及结构对复合膜性能的影响。
     论文首先考察了在25℃下沉淀剂水对PC、PEI和PSF三种铸膜液体系的相分离行为,并用线性浊点关系式(LCP关系)对铸膜液体系的浊点数据进行线性回归。由回归结果可知:线性回归曲线的斜率b相同时,截距数值|a|越大,沉淀剂对聚合物溶液的沉淀能力越强。实验中水对三种聚合物溶液的沉淀能力顺序为:PC>PEI>PSF。实验进一步考察了不同温度下非溶剂γ-丁内酯(γ-GBL)对PC铸膜体系相分离的影响,并依据LCP线性回归结果外推计算三元体系的双节线,由此得到了铸膜液体系中非溶剂添加剂的上限含量,为铸膜液体系的构建提供了可靠的依据。
     其次研究了制膜条件对基膜结构与性能的影响。分别选用PC、PEI和PSF为膜材料,以N-甲基吡咯烷酮(NMP)为溶剂,γ-GBL为添加剂,水为凝胶液,系统地研究了聚合物浓度和添加剂用量对膜结构和性能的影响。实验所制备的基膜均为指状孔结构,分离系数在0.9左右,其中PSF基膜的氧气渗透速率最大,为25700 GPU。
     以硅橡胶为选择层材料,采用浸渍涂敷法制备硅橡胶复合膜,系统地研究了聚合物浓度、添加剂用量及硅橡胶浓度对复合膜性能的影响。在具有稳定分离系数的前提下,以PC、PEI、PSF三种膜材料所制备的复合膜的最大氧气渗透速率分别为233、224和266 GPU。最后利用气体渗透阻力模型分析了基膜结构对硅橡胶复合膜性能的影响。随基膜孔径和孔隙率的增加,复合膜的氧气渗透速率增加;随着硅橡胶渗入率的增加,氧气渗透速率减小。
Energy-saving and environmental protection are the main topics in current energy field worldwide.It has become an attracting problem to develop the oxygen resource in atmosphere as a new power properly.Compared with traditional cryogenic condensation and PSA method, membrane technology on oxygen enrichment is generally applied in chemical engineering, medicine,and metallurgy owing to the advantages of its simple process,easy operation,low energy consumption,and so on.Many polymeric materials have been reported to be good candidates of the membranes for oxygen enrichment.Polydimethylsiloxane(PDMS)is of special interest owing to its high intrinsic permeation rate and acceptable selectivity.But for its poor mechanical and film forming abilities,PDMS composite membrane is commonly utilized,in which PDMS as the active skin layer is coated on a porous polymeric support.The performance of composite membrane are determined by the selective layer,support membrane materials,and membrane morphology.It plays a crucial role to choose the suitable materials as support membranes for preparing high performance oxygen-enriched composite membranes.The objective of this work is to prepare PDMS composite membranes with polycarbonate(PC),polyetherimide(PEI)and polysulfone(PSF)as support layer respectively and investigate the gas permeation performance affected by support layer materials and membrane morphology.
     The effects of H_2O on the behavior of phase separation of PC,PEI,and PSF three kinds of casting solution at 25℃were studied according to the linerized cloud point(LCP)correlation respectly.It could be seen that NSA coagulation ability was stronger when the intercept |a| was larger for the condition of the same slope of the simulated LCP line.The sequence of H_2O coagulation ability for the three polymers was as follows:PC>PEI>PSF.The effects of nonsolventγ-butyrolactone(γ-GBL)on the behavior of phase separation of PC casting solution were studied at different operating temperature according to the LCP correlation.It was found that the phase separation behavior of PC/NMP/γ-GBL also exhibited well agreement with the LCP correlation.Therefore,the maximum content ofγ-GBL in casting solution could be obtained according to the binodal line of the system,which provided scientific basis for the composition of casting solution.
     Support membranes were prepared by the dry/wet phase inversion method with PC,PEI, and PSF as membrane materials respectively.The effects of polymer concentration and the γ-GBL content of casting solution were studied.The membrane morphology was characterized with SEM and the gas permeation performance was carried out with pure O_2,N_2. The separation factor of the support membranes prepared showed were about 0.9,and the highest oxygen permeation rate was 25700 GPU under the operating parameters of 0.5MPa and 25℃.
     The composite membrane were prepared using PDMS as coating material with the dip-coating method.The influences of polymer concentration,additive content,and PDMS contents were systemically studied.The oxygen permeation rates of PDMS composite membranes with PC,PEI,and PSF as support membranes were 233,224 and 266 GPU respectly.Finally,the resistance model of composite membrane was employed to reserch the influences of support membrane on PDMS composite.The oxygen permeation rate of composite membrane increased as the pore size and porosity of support membrane increasing, and decreased as the filter ratio increasing.
引文
[1]Porter M.C.Microfiltration,Handbook of Industrial Membrane Technology.Noyes Publications,1990:61-135.
    [2]Marcel M 著.李琳译.膜技术基本原理(第二版).北京:清华大学出版社,1999.
    [3]时均,袁权,高从楷等.膜技术手册.北京:化学工业出版社,2001.
    [4]王湛.膜分离技术基础.北京:化学工业出版社,2000.
    [5]Strathman H.Proceeding of international congress on membrane and membrane process.ICOM90,Chicago USA,1990:1167-1168.
    [6]汪锰,王湛,李政雄.膜材料及其制备.北京:化学工业出版社,2003.
    [7]Loeb S,Sourirajan S.Sea water demineralization by means of an osmotic membrane.Advances in Chemistry Series,1962,38:117-132.
    [8]Kang Y S,Kim H J,Kim U Y.Asymmetric membrane formation via immersion precipitation method Ⅰ.Kinetic effect.Journal of Membrane Science,1991,60:219.
    [9]Cohen C,Tanny G B,Prager S.Diffusion-controlled formation of porous structure in ternary polymer system.Journal of Polymer Science,1979,17:477.
    [10]Mitchell J K.On a new practice in acute and chronic rheumatism.Journal of Medical Science.1831,13:36.
    [11]Graham T.On the Absorption and Dialytic Separation of Gases by Colloid Septa.Part Ⅰ.—Action of a Septum of Caoutchouc.The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science.1866,32:401-420.
    [12]Weller S,Steiner.W.A.Enginering gaspects of separation gases:fractional permeation through membranes.Chemical Engineering Progress.1950,46(11):585-590.
    [13]Henis J M S,Tripodi M K.Composite hollow fiber membranes for gas separation:the resistance model approach.Journal of Membrane Science,1981,8:233-246.
    [14]Henis J M S,Tripodi M K.US,4230463.1980.
    [15]肖通虎,施孝通,葛俊豪等.多孔支撑复合气体分离膜的涂层模型及工艺探讨.膜科学与技术,2001,10:36-41.
    [16]Kesting R E,Fritzsche A,Murphy M,Cruse C,Handermann A,Malon R.US,4871494.1989.
    [17]Fritzsche A K,Murphy M K,Cruse C A,Malon R F,Kesting R E.Characterization of asymmetric hollow fibre membranes with graded-density skins.Gas Separation and Purification,1989,3:106-116.
    [18]Kesting R E,Fritzsche A K,Cruse C A,Moore M D.The second-generation polysulfone gas-separation membrane.Ⅰ.The use of lewis acid:Base complexes as transient templates to increase free volume.Journal of Applied Polymer Science,1990,40:1557-1574.
    [19]Gardner R G,Crane R A,Hannah J F.Hollow fiber per-meator for separating gases.Chemical Engineering Progress,1977,73(10):76-78.
    [20]Zolandz R R,Fliming G K.Gas permeation applications.New York,Chapman and Hall,1992:78-94.
    [21]陈桂娥,韩玉峰,阎剑,许振良,房鼎业.气体膜分离技术的进展及其应用.化工生产与技术,2005,12,5:23.
    [22]S Majumdar,D.Bhaumik,Sirkar K K.Performance of commercial-size lasmapolymerized PDMS-coated hollow fiber modules in removing VOCs from N2/air.Journal of Membrane Science,2003,214:323-330.
    [23]施得志,董声雄.气体膜分离技术的应用及发展前景.河南化工,2003,3:4-7
    [24]Baker R W,Wijmans J G.Membrane separation of organic vapors from gas streams.Boca Ra-ton:CRC Press,1994:301-324.
    [25]马杰.膜法富氧技术在锅炉节能方面的应用探讨.中国科技信息.2005,15.
    [26]Robeson L M,Burgoyne W F,Langsam M etal.High performance poly-mers for membrane separation.Polymer,1994,35(23):4970-4978.
    [27]Stern S.A.,Shan V.M.,Hardy B.Structure-permeability relationships in silicone polymers.Journal of Polymer Science Part B:Polymer Physics,1987,25:1263-1298.
    [28]Stern S A,Shah V M.Structure-permeability relationships in silicone polymers.Journal of Polymer Science,1987,25:1263-1298.
    [29]Teijin Ltd.Permselective membranes.JPPat:209608,1984:11-28.
    [30]Yang J.S.,Hsiue G.H.Synthesis of acrylic acid grafted silicone rubber via preirradiation graft copolymerization and its physical and dielectric properties.Journal of Applied Polymer Science,1996,61:221-229.
    [31]Sasaki Y M.Manufacture of polyethylene-silicone rubber blend membranes.JPPat:72932.
    [32]Chris C,Chris H,Eva M.Hybrid organic-inorganic membranes.Separation and Purification Technology,2001,25:181-193.
    [33]Jae H K,Yong M L.Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes.Journal of Membrane Science,2001,193:209-225.
    [34]Ho B P,Jang K K,Sang Y N.Imide-siloxane block copolymer/silica hybrid membranes:preparation,characterization and gas separation properties.Journal of Membrane Science,2003,220:59-73.
    [35]张阳,王湛,纪树兰等.聚砜基膜成膜条件与富氧膜性能之间的关系.化学研究与应用,2006,18,653-658.
    [36]刘桂香,李晖,曾理等.用于有机蒸汽分离的PAN-SR复合膜的研究.膜科学与技术,1997,17:21-27.
    [37]张子勇,刘宗华.高乙烯基含量硅橡胶室温硫化膜的富氧性能.膜科学与技术,2001,21:29-32.
    [38]Tsurumakis,Shimomura M.Gas-separation membranes for oxygen enrichment.JPPat:218423.
    [39]Yang J S,Hsiue G H.Synthesis of acrylic acid grafted silicone rubber via preirradiation graft copolymerization and its physical and dielectric properties.Journal of Applied Polymer Science,1996,61:221-229.
    [40]杨继萍,朱鹤孙,黄鹏程.钴卟啉络合物第五配位对富氧膜性能的影响.高分子材料科学与工程,1998,14(6):42-43.
    [41]张子勇.新型含钴硅橡胶离聚体膜的富氧性能.高等学校化学学报,2003,3:562-564.
    [42]许少波,饶华新,张子勇.硅橡胶/正硅酸乙酯杂化膜的制备及其富氧性能.应用化学,23(6):617-621.
    [43]黄美荣,李新贵,董志清.大规模膜法空气分离技术应用进展.现代化工,2002,9:10-14.
    [44]潘小江.浅谈膜法富氧的技术及其应用.江西化工,2005,9:43-45.
    [45]张元琴.中空纤维富氧复合膜的研究.膜科学与技术,1998,18(1):40-45.
    [46]陈光文,袁权,吴迪镛等.高聚物/陶瓷复合膜的制备及性能表征.化工学报,2000,51(6):725-733.
    [47]Zeman L J,Zydney A L.Microfiltration and ultrafiltration Principles and applications.New York:Marcel Dekker Inc,1996:51-117.
    [48]Bottino A,Camera R G.The formation of microporous polyvinylidene difluoride membranes by phase separation.Journal of Membrane Science,1991,57:1-20.
    [49]何涛,江成璋.聚醚砜微孔膜制备中非溶剂添加剂作用研究.膜科学与技术,1998,18(3):43-48.
    [50]Chuang W Y,Young T H.The effect of a ceticacid on the structure and filtration properties of poly(vinylalcohol)membranes.Journal of Membrane Science,2000,172(2):241-251.
    [51]Witte P,Dijkstra P J,Berg J W,etal.Phase separation processes in polymer solutions in relation to membrane formation.Journal of Membrane Science,1996,117:1-31.
    [52]Reuvers A J,Berg J W,Smolders C A.Formation of membranes by means of immersion precipitation.(Ⅰ)A model describe the mass transfer during immersion precipitation.Journal of Membrane Science,1987,34:45-65.
    [53]Lauw W Y,Guiver M D,Mats在uura.Phase separation in polysulfone/solvent/water and polyethersulfone/solvent/water systems.Journal of Membrane Science,1991,59(2):219-227
    [54]Swinyard B T,Barrie J A.Phase separation in non-solvent/ dimethylformamide/polyethersulphone and non-solvent/dimethylformamide/polysulfone systems.Journal of Polymer,1998,20(4):317-321.
    [55]Matsuyama H,Teramoto M,Nakatani R,etal.Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase.Ⅰ.phase diagram and mass transfer process.Journal of Applied Science,1999,74:159-170.
    [56]郝继华,王世昌.聚合物—溶剂—非溶剂三元相图的计算.高等化学学报,1995,12:1831-1836.
    [57]钟银屏,赵长生,欧阳庆等.聚醚砜四元制膜液体系的相图计算.膜科学与技术,1997,17:63-68.
    [58]秦建军,江成璋.聚砜制膜液体系的相图研究.膜科学与技术,1990,10:120-125.
    [59]Baner A L,Piringer O G.Prediction of solute partition coefficients between polyolefins and alcohols using the regular solution theory and group contribution methods.Industrial and Engineering Chemistey Research,1991,30(7):1506-1515.
    [60]Craubner H.Thermodynamic Perturbation Theory of Phase Separation in Macromolecular Multicomponent Systems 2.Concentration Dependence.Macromolecule,1978,11(6):1161-1167.
    [61]Wijman J G,Kant J,Mulder M H V,etal.Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nosolvent:relationship with membrane formation.Polymer,1985,26(10):1435-1592.
    [62]Boom R M,Boomgaard T V D,Berg J W A,etal.Linearized cloudpoint curve correlation for ternary systems consisting of one polymer,one solvent and one non-solvent.Polymer,1993,34(11):2348-2356.
    [63]Kools W F C,gonagurthu S,Boomgaard V D,etal.Use of ultrasonic time-domain reflectometry for real-time measurement of thickness changes during evaporative casting of polymeric films.Journal of Applied Polymer Science,1998,62:79-88.
    [64]Kim I C,Lee K H.Effect of various additives on pore size of polysulfone membrane by phase-inversion process.Journal of Applied Polymer Science,2003,89(9):2562-2566.
    [65]Manoj P A,Ulhas K K.Gas permeation in amine functionalized silicon rubber membranes.Separation and Purification Technology,2007,57(2):302-311.
    [66]Kim I C,Lee K H.Effect of various additives on pore size of polysulfone membrane by phase-inversion process.Journal of Applied Polymer Science,2003,89(9):2562-2566.
    [67]何曼君.高分子物理.上海:复旦大学出版社,1990,10.
    [68]张元琴.中空纤维富氧复合膜的研究.膜科学与技术,1998,2:40-45.
    [69]张阳,王湛,纪树兰.聚砜-硅橡胶富氧膜的制备.膜科学与技术,2007,27(3):52-56.
    [70]Kimmerle K,Hofmann T,Strathmann H.Analysis of gas permeation through composite membrane.Journal of Membrane Science,1991,61:1-17.
    [71]He G H,Huang X Y,Xu R X et al.An improved resistance model for gas permeation in composite membranes.Journal of Membrane Science,1996,118:1-7.
    [72]马艳勋,任吉中,李恕广.气体分离复合膜制备中材料匹配和孔渗现象的研究.膜科学与技术,2001,2:35-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700