进气组分气体分离系统气流特性实验分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空气通过膜分离富集氧气或氮气,形成富氧或富氮进气,为发动机完善燃烧和排放过程控制提供有效手段。富氧空气促进燃烧,有利于低质燃料、冷起动下的燃烧,对提升动力性、降低排放具有显著作用。富氮空气可以抑制燃烧,减轻NOx排放,被认为是一种替代废气再循环(EGR)的有效方法。
     本文根据发动机进气富集氧气或氮气的需要,设计了专用可变进气组分分离膜装置,建立正压和负压实验模拟系统。针对增压发动机采用正压法压力模式,以及针对自然吸气发动机采用负压法真空模式,系统研究了富氧气流和富氮气流的分离气流特性,以及分离过程的主要性能。在建立进气组分气体分离系统数学模型基础上,应用此模型对膜分离空气组分(富氧和富氮)过程进行模拟计算,从理论上分析了理想分离系数、氧的渗透系数以及进气量对富氧空气流的影响,并将负压真空模式的模拟结果与实验数据进行了比较。研究结果表明,压力模式具有明显的气体成分浓度与流量逆向反比关系,有利于富集氮气制备调节;真空模式具有明显的富氧气流浓度与流量同向正比关系,富氮空气流的流量和浓度基本不变,有利于富集氧气制备调节。指出供气压力、吸气真空度和分离膜两侧压力差起到决定性的作用,温度具有重要的影响。需要气流调节中多项因素融合,保证流量和浓度协同,满足发动机进气工况要求。
The development of engine combustion technology and the enhancement of the emission restriction need improve the combustion process control for higher power, better economics and lower emission. Application of engine is always a weakness in the tableland and the special air environment: low power performance, combustion deterioration, emission increase and engine overheating, even deflagrate, deteriorated stability of work and tempestuously circulation changing.
     Air could become oxygen-enriched air (OEA) and nitrogen-enriched air (NEA) selectively through organic polymer membrane. This feature has offered engine great potential. Using oxygen-enriched air to support combustion can decrease ignition point of the fuel accelerate combustion speed, facilitate complete combustion, enhance temperature of blaze, decrease exhaust, make much more heat, available and reduce superfluous air coefficient. Using nitrogen-enriched air will reduce the oxygen concentration, Combustion temperature and emissions of NOx combustion. Nitrogen was considered to be an effective method stead of gas recirculation (EGR).Many emissions problem could be effectively solved by variable intake-air composition.
     Early oxygen-enriched air combustion tests for engine affected by larger sizes of separation membrane device and higher power consumption. The sizes and power consumption of separation membrane device have reduced with the appearance of new membrane materials and the development of membrane separation technology. Now using the membrane separation technology on engine is feasible and attractive.
     But looking at the progress of research work, to a certain extent, the research of engine performance and the process of membrane separation were independent of each other in the application and research area of variable composition intake-air in engines. The study on variable composition intake-air in engines is to be undertaken, especially the study on characteristics of airflow separated in a variable system. So this paper in allusion to variable composition intake-air system has carried out research and exploration, study on the characteristics of airflow and separation performance in different modes and control debug methods by designing device and simulating the operation system experiment. Lay the foundation for ulterior engine application matching.
     Meeting the requirement of intake-air in engines, we have designed membrane-based separating variable composition intake-air device and set up respectively experimental simulation systems in the pressure mode and the vacuum mode. Study on compact membrane-based air separating technology and separator, carried out research in membrane-based separating variable composition intake-air device. The pressure mode is in allusion to turbocharged engine and the vacuum mode is in allusion to naturally aspirated engine. This paper studied on characteristics of airflow of oxygen-enriched air and nitrogen-enriched air, indicated that membrane-based separating performance were affected by operating conditions (pressure and operating temperature), also stated the existing problems in practical applications. The conclusions of the experiment are follows:
     (1) The composition density of both streams is in inverse proportion to the flow mass on the adjustment of pressure mode, but in direct proportion as to the NEA stream and both parameters (composition density and flow mass) of the stream of NEA hardly changed on the adjustment of vacuum mode. Furthermore, it is clear that the pressure mode is fit for the operation of NEA stream and the vacuum mode is fit for the OEA stream.
     (2) The supply air pressure and inspiration vacuum degree, being equivalent to the pressure difference, play a crucial role in the air separation with membrane and the temperature take an important part. And the temperature also takes an important part.
     (3) Considering the influence of concentration polarization of membrane, regulate methods played an important role in membrane-based separating process.
     (4) The correspondence and match of both composition density and flow mass in the certain pressure and temperature must be kept to meet the requirement of intake-air in engines.
     In this paper, according to variable membrane-based separating air composition intake-air system, we have set up a mathematical model. Using this mathematical model, the process of membrane-based separating air composition (OEA/NEA) was simulated. This paper analyzed the influences of ideal separation factor, permeability coefficient of oxygen and flow of feed air to OEA. The conclusions of the simulated calculation are follows:
     (1) The concentration of OEA has reduced with permeability coefficient of oxygen’s increasing, the recovery (θ) has increased in evidence.
     (2) The concentration of OEA has increased with the increasing of the ideal separation factor (αo), the impact is very obvious Compared to the other factors, the recovery (θ) has reduced.
     (3) The concentration of OEA has a little increase with flow of feed air (Ff) increasing. the recovery (θ) with the flow of feed air (Ff) increasing has decreased in proportion. Maintain the constant OEA flow.
     (4) Simulation results slightly higher than the experimental data because of neglecting the concentration polarization of membrane in simulation. Error within 5%, meet the requirement.
引文
[1] C.D.Rakopoulos,D.T.Hountalas, T.C.Zannis and Y.A.Levendis. Operational and Environmental Evaluation of Diesel Engines Burning Oxygen-Enriched Intake Air or Oxygen-Enriched Fuels:A Review[C].SAE Paper 2004-01-2924
    [2] 李树德,水冷发动机工程机械的高原低温起动改造,铁道工程学报,Vol.4,No.4,2003,P43-46
    [3] 李文祥,王彦岩.CA6110/125Z1A2增压柴油机对青藏高原适应性的研究,汽车技术, No.7,2001,P5-12
    [4] 朱序和.富氧燃烧技术在内燃机中的应用[J].能源研究与信息,2000(Vol.16)No.2
    [5] Ramesh B.Poola,Kevin C.Stork,Raj Sekar,Kevin Callaghan and Stuart Nemser. Variable Air Composition with Polymer Membrane-A New Low Emissions Tool[C].SAE Paper 980178
    [6] Kevin Callaghan,Stuart Nemser,Ramesh Poola,Raj Sekar,Kevin Stork,William Johanson. Nitrogen Enriched Intake Air Supplied by High Flux Membranes for The Reduction of Diesel NOx Emissions[C].SAE Paper 980177,1998
    [7] Koros WJ,Mahajan R.Pushing. The Limits on Possibilities for Large Scale Gas Separation: Which Strategies[J].Journal of Membrane Science,2000,175:181-196
    [8] 黄美荣,李新贵,董志清.大规模膜法空气分离技术应用进展,现代化工,第22卷第9期, 2002,9
    [9] E.P.Hawthorne. Oxygen Injection as a Means of Increasing Aero-Engine Performance.Aircraft Engineering,1946
    [10] W.J.Wartinbee, Jr. Emissions Study of Oxygen Enriched Air. Society of Automotive Engineers[C].SAE Paper 710606,1971
    [11] A.A.Quader. Exhaust Emissions and Performance of a Spark Ignition Engine Using Oxygen Enriched Intake Air. Combustion Science and Technology,vol.19,81–86,1978
    [12] B.Detuncq, J. Williams, C.Guernier, M.Gou and Y. Fraser. Performance of a Spark Ignition Engine Fueled by Natural Gas Using Oxygen Enriched Air[C].SAE Paper 881658,1988
    [13] S.Kajitani, N.Sawa, T.McComiskey and K.T.Rhee. A Spark Ignition Engine Operated by Oxygen Enriched Air[C]. SAE Paper 922174,1992
    [14] S.Kajitani,E.Clasen,S.Campbell and K.T.Rhee,Partial-Load and Start-Up Operations of a Spark-Ignition Engine with Oxygen Enriched Air[C].SAE Paper 932802,1993
    [15] H.K.Ng,R.R.Sekar,S.W.Kraft and K. R.Stamper. The Potential benefits of Intake Air Oxygen Enrichment in Spark Ignition Engine Powered Vehicle[C].SAE Paper 932803,1993
    [16] T.T.Maxwell, V.Setty, J.C.Jones and R.Narayan. The Effect of Oxygen Enriched Air on the Performance and Emissions of an Internal Combustion Engine[C].SAE Paper 932804,1993
    [17] R.B.Poola,R. R. Sekar,H. K. Ng,J. H. Baudino and C. P. Colucci. The Effects of Oxygen-Enriched Intake Air on FFV Exhaust Emissions Using M85[C].SAE Paper 961171,1996
    [18] Ramesh B.Poola, Henry K.Ng, Raj R.Sekar, John H.Baudino and Christopher P. Colucci. Utilizing Intake-Air Oxygen-Enrichment Technology to Reduce Cold-Phase Emissions[C].SAE Paper 952420,1995
    [19] D.N.Assanis,R.B.Poola,R.Sekar and G.R. Cataldi. Study of Using Oxygen-Enriched Combustion Air for A Diesel Engines.ASME Journal of Engineering for Gas Turbines and Power.JANUARY,Vol.123,2001
    [20] D.E.Longman and Roger L.Cole.In-Cylinder Injection of Air/Oxygen-Enriched Air to Reduce Diesel Exhaust Emissions. 2005 Joint Meeting of the U.S.Sections of the Combustion Institute,March,2005
    [21] Steve Mc Connell and Raj Sekar. Nitrogen-Enriched Air for the Reduction of NOx Emissions in Heavy-Duty Diesel Engines,II.A.8, Advanced Combustion Engine R& D,2004 Annual Progress Report, Energy Efficiency and Renewable Energy, Office of Freedom CAR and Vehicle Technologies,December,2004
    [22] Stork K.,Poola R.B. Membrane-Based Air Composition Control for Light-Duty Diesel Vehicles:A Benefit and Cost Assessment[C].ANL/ESD/TM-144,1998
    [23] Kevin Callaghan,Stuart Nemser, William Johnson. Oxygen Enriching Membranes for Reduced Cold-Start Emissions[C].SAE Paper 1999-10-1232
    [24] Sekar R R.,Poola R B. Demonstration of Oxygen-enriched Combustion System on A Light-Duty Vehicle to Reduce Cold-Start Emission[C].ANL/ES/CP 92916, CONF-970639-2
    [25] 沈光林.膜法富氧技术用于节能研究[J].节能技术,1996,(5)
    [26] 左承基,李海海,徐天玉,路苏君. 富氧燃烧对柴油机排放特性的影响[J].小型内燃机与摩托车,2003(Vol.32)No.5
    [27] 沈光林.膜法富氧的应用研究[J].低温与特气,2000,No.3
    [28] 肖广飞,乔信起,栗工,黄震,李理光,陈宗蓬.膜法富氧进气降低点燃式发动机冷起动排放[J].上海交通大学学报,2006(Vol.40)No.6
    [29] 唐强、张黎立、张力,富氧助燃提高天然气发动机动力性能实验,重庆大学学报,2006.11
    [30] 姚春德,刘增勇,何邦全,高昌卿,孙家峰.进气氮气含量对柴油机混合气形成与燃烧过程的影响[J].燃烧科学与技术,2002,3(8)
    [31] 金英爱,崔淑琴,苏俊林.基于氧氮环境的发动机燃烧及其发展.吉林大学学报, 2006
    [32] 张纪鹏,高青,郝利君.空气加氢改善发动机性能的试验研究.燃烧科学与技术,Vol.4,No.4,1998
    [33] 金英爱,高青,玄哲浩.发动机燃烧过程模拟分析及临界爆震预测.燃烧科学与技术,VOL.9,No.6,2003
    [34] Sulpizio. Oxygen Enrichment-Markets and ProcessEeconomics.1985 Membrane Technology/Planning Conference.Cambridge,assachusetts,Oct,1985
    [35] 黄飞.膜法富氧试验与富氧燃烧.锅炉技术,2000.3:21-23
    [36] 天津欧达科技设备有限公司.中国能源,2000.4:42
    [37] Weber W.F,BowmanW.Chem.Eng.prog.1986,11:23-28
    [38] P.Tocu etal.Metalurgia.Feb,1980.2:61-65
    [39] F.A.Vonesh JR,C,W.Watts. Industrial Heating Dec.1984:35
    [40] 王学松.膜分离技术及其应用[M].科学出版社.1994
    [41] 沈光林.膜法富氧在国内应用新进展[J].深冷技术,2006.2,No.1
    [42] Till Marc.Numerical Simulation of Oxygen-Enriched Combustion in Industrial Processes. Computational Fluid Dynamics,2003.3:42-52
    [43] 刘毅.富氧助燃技术及其应用.节能与环保,2005.2:28
    [44] 徐纪平.高分子富氧膜的进展.应用化学,1(5),1-9(1985)
    [45] 王学松.膜法空气富氧化及其应用.石油化工,14(11),688-693(1985)
    [46] 徐仁贤等.气体膜分离的十年.第一届全国膜和膜过程学术报告文集,8-13,1991 10(大连)
    [47] Dianne E Wiley, David F Fletcher. Computational Fluid Dynamics Modeling of Flow and Permeation for Pressure-driven Membrane Processes.Desalination,2002,145: 183-186
    [48] Dianne E Wiley, David F Fletcher. Techniques for Computational Fluid Dynamics Modeling of Flow in Membrane channels[J].Journal of Membrane Science,2003,211:127- 137
    [49] Pellerin E, Michelitsch E, et al. Turbulent Transport in Membrane Modules by CFD Simulation in Two Dimensions[J].Journal of Membrane Science,1995,100:139-15
    [50] Koutsou C P, Yiantsios S G, Karabelas A J. Numerical Simulation of The Flow in a Plane-channel Containing a Periodic Array of Cylindrical Turbulence Promoters[J].Journal of Membrane Science, 2004,231:81-90
    [51] Cao Z, Wiley D E, Fane A G. CFD imulations of Net-type Turbulence Promoters in a Narrow Channel[J].Journal of Membrane Science,2001,185:157-176
    [52] Schwinge J , Wiley D E, Fletcher D F. A CFD Study of Unsteady Flow in Narrow Spacer-filled Channels for Spiral-wound Membrane Modules. Desalination, 2002, 146: 195-201
    [53] Bing Cao,Michael A.Henson. Modeling of Spiral Wound Pervaporation Modules with Application to the Separation of Styrene/Ethyl Benzene Mixtures[J].Journal of Membrane Science,197(2002)117-146
    [54] Hiromitsu Takaba, Shin-IchiNakao. Computational Fluid Dynamics Study onConcentrations Polarization in H2/CO Separation Membranes[J].Journal of Membrane Science,2005,249: 83-88
    [55] Staudacher M , Harasek M , Brinkmann T, et al. CFD Simulation of Mass Transfer Effects in Gas and Vapour Permeation Modules. Desalination, 2002, 146: 237-241
    [56] Sean X Liu, Ming Peng, Leland Vane. CFD Modeling of Pervaporative mass transfer in the Boundary Layer[J]. Chemical Engineering Science,2004, 59: 5853-585
    [57] Gert2Jan S, Vander Gulik, Johan G Wijers, et al. Measurement of 2D-temperature Distributions in a Pervaporation Membrane Module Using Ultrasonic Computer Tomography and Comparison with Computational Fluid Dynamics Calculations[J]. Journal of Membrane Science, 2002, 204: 111-124
    [58] 王鹏宇,贺高红,窦红,李祥村.平板膜分离器富氧过程的数学模拟 [J].大连理工大学生物医药工程学术论文集,2005(Vol.2).
    [59] 贺高红徐仁贤朱葆琳中空纤维膜气体分离器的数学模型化工学报第45卷第2期 1994 年 4 月 162 一 167
    [60] 刘丽英,沈美娟,杜洪梅.膜法富氧过程的分析与计算 [J].华北工学院学报,1996(Vol.17)No.3
    [61] 陈华、曹春、蒋国梁.边界层速率对气体膜分离器的分离性能的影响 化工学报 Vol.47 No.4,1996,8
    [62] 魏丕芳,贺高红.空气膜分离过程中非理想现象的研究[J].石油化工设计, 2003, 20(3): 54~58
    [63] 刘猛、王浚. 一种富氧中空纤维膜组件的温度特性[J]. 北京航空航天大学学报, 30(3),2004,3
    [64] 何灏彦.膜分离中的浓差极化现象及其减弱措施. 浙江化工, 36(5),2005
    [65] 陆文军、刘丽、王海、马庙江.气体膜分离高回收率流程的研究.膜科学与技术,14(4),1994,12
    [66] 刘庆林、李磊.膜厚度和流动状况对渗透蒸发过程的浓差极化影响.化学工程,33(6),2005,12
    [67] 周琪,张俐娜.气体分离膜研究进展.化学通报,2001(1),18-25
    [68] 甄寒菲,王志.用于分离 C02的高分子膜.高分子材料科学与工程,1999(6):29-31
    [69] Dhingra,Sukhtej.S.,Marand,Eva. Mixed Gas Transport Study Through Polymeric Membranes.Journal of Membrane Science,1998(4):45-63
    [70] Ludtke O. , Behling R.D. , Ohlrogge K. Concentration Polarization in Gas Permeation.Journal of Membrane Science,1998(8):145-157
    [71] 朱长乐.膜分离技术在气体分离中的研究和应用.浙江化工,1995,26(2):3-6
    [72] 蒋柏泉.钯-银合金膜分离氢气的研究.化学工程,1996(3):48-52
    [73] 王鹏宇.气体膜分离过程HYSYS模拟过程的研究.大连理工大学硕士学位论文,2005,12
    [74] P.N.Assanis 等(美).对机车柴油机采用富氧进气燃烧的研究[J].国外内燃机车,2001,5
    [75] Wang,B.G.,Yamaguchi,T.,Nakao,Si.,Journal of Polymer Science: Part B: Polymer Physics,2000(38):171-181
    [76] 张凌霄.空气中微量有机气体的膜分离.研究浙江大学硕士论文,2002,3
    [77] 时钧,袁权,高从堦.膜技术手册[M].化学工业出版社,2001 年
    [78] Marriott,J.I. The Optimal Design of Membrane Systems. Chemical Engineering Science 2003,7,011
    [79] Schock G.,Miquel A. Mass Transfer and Pressure Loss in Spiral-Wound Modules.Desalination,64(1987)339-352
    [80] Kulkarni S.S., Funk E.W.and Li N.N.(1992). Ultraltration.In W.S.W.Ho and K. K.Sirkar(Eds.).Membrane handbook. New York : Van Nostrand Reinhold
    [81] Runhong Qi,Michael A.Henson. Membrane System Design for Multi Component Gas Mixtures Via Mixed-Integer Nonlinear Programming. Computers and Chemical Engineering,24(2000)2719-2737
    [82] 日本膜协会.膜分离过程设计法[M].北京:科学技术出版社,1988,09

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700