硅基分子筛富氧膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜法富氧技术被发达国家称为“资源的创造性技术”。该技术系指利用空气中各组分透
    过膜的渗透速率不同,在压力差驱动下,将空气中的氧气富集起来的技术。它与深冷法、变压
    吸附法相比,具有设备简单,操作方便,节能显著,用途广泛等优点。然而将富氧膜投入较苛刻
    的工业环境中使用时,除了要求其具有较大的分离率和较高的透气率外还应具备较强的化学
    稳定性和热稳定性等。考虑到无机膜的特点和优势,我们认为研究和开发具有高选择性的微
    孔无机膜是解决富氧膜现存问题的一个重要途径。
     目前通过常规方法制备而得的无机多孔膜孔径偏大,气体透过膜的机理受Knudsen扩散
    控制,因而这类多孔膜的分离率较低。理论和实验都已证明,只有将气体分离以Knudsen
    扩散控制为主的多孔膜改变为以分子筛分机理控制为主的分子筛膜,膜的分离率才能有较大
    幅度的提高。聚合物裂解法就是制备分子筛膜的一种新型方法,由这种方法所制膜的最可几
    孔径在1nm以下,其分离率比常规方法所制的无机膜有较大幅度的提高。
     当前所研究的聚合物裂解膜主要有碳基裂解膜和硅基裂解膜。这两种膜的选择透过性
    能比较接近,但硅膜的抗氧化性远优于碳膜,所以硅分子筛膜更引起人们的重视。常规裂解
    膜的制备是将具有体型结构的硅树脂在高温含氧气氛下裂解,脱氢,脱碳,最后形成以SiOx
    为主要成分的骨架结构,骨架结构的间隙就构成膜孔。由于裂解用的常规甲基硅树脂膜,其
    大分子链是无规排列的,这就导致骨架结构间隙大小的不均一性,表现为膜孔的多分散性和
    分离气体时的低分离率。因此,选用立体规整结构的体型硅树脂膜作为先体进行控制裂解制
    膜,将使裂解膜孔径趋向均一,因而也就达到了提高分离率的目的。
     本次实验就是由立体规整的硅树脂膜出发,经控制裂解从而获得孔径分布较窄,分离率
    较高的硅基裂解膜。考虑到一种新技术可推广实用的标志之一是其是否具有可重现性,所以
    我们通过大量条件实验,找到了影响膜制备的控制因素,使膜的制备方法已经基本成熟,膜
    制备具有很高的重现率。进而,我们将制备好的管式膜组装成一个小型膜装置将其应用于对
    实际气体的分离,考察单管膜组成膜装置后性能的衰减情况,从而为该技术的实用化提供实
    验依据。在此基础上,探讨了膜制备过程的反应机理,并将装置对实际气体分离后所得到的
    实验结果用适当的理论和模型加以诠释,从而为该技术的实用化提供理论参考。
     实验表明这种制膜技术已经基本成熟,制备成品率可达80—90%。把成品膜组装成小
    型膜装置后对空气进行实际分离,经检测发现其富氧效果显著。例如在0.3MPa的压力下,
    富氧空气中氧含量可达41%,即将空气中的氧浓缩了2倍左右,而且通量达到了18.621/m~2d。
     尽管从对单根管式膜与将其组装而得的小型膜装置在透气量和分离效果等方面的比较
    以及对膜装置的操作条件与工作效果关系的探讨来看,真正将该技术实用化还有一些亟待解
    决的问题。但该膜的制备工艺技成熟,制备膜所需的原料来源广泛且价格低廉,制备过程对
    设备无任何特殊要求且制作工艺简单易行,所以有理由认为它有广泛的工业化前景。
Microporous inorganic membranes (rp0~~<1nm) have great potential for gas
     separation because of not only its good stability towards higher temperature and
     corrosive atmosphere but also its molecular sieve property. Typical molecular sieve
     microporous membranes are carbon-based (CMS) and silica-based structure (Si-MS).
     Because of the carbon-based structure, the CMS membranes are not suitable for hot
     oxygen environment, but Silica-based molecular sieve membranes can overcome
     the drawback and show an even higher selectivity and permeability. So, the
     investigators have paid more attention to the Si-MS . There are three typical methods
     to produce silicon-based membranes. They are sol-gel process ,CVD method and
     pyrolysis method .Comparing with the conventional membranes prepared by sol-gel
     and CVD methods, separation factors of pyrolysis membranes are much higher. In
     most cases, permeability of pyrolysis membranes are 10 times higher than the
     sol-gel and CVD membranes while the separation factors 1-3 times of the
     conventional membranes.
    
     Commonly, if you want to fabricate a pyrolysis Si-MS membrane, the precursor
     with stereo structure is made first, then the precursor is pyrolyzed, dehydrogenated
     and decarbonized in an activate atmosphere at high temperature, and finally the
     skeleton structure which main composition is S1Ox in final product is formed The
     gaps of the skeleton structure which constitute the pores of the resultant membranes
     are restricted to a rather lower level. An important reason is that the precursors of
     these membranes are polymerized by defunctional monomer. It means that the
     skeletons are composed of irregular arranged macromolecular chains and thus the
     gaps of the skeletons have random sizes, or, in other words, the pore sizes have a
     wilder distribution.
    
     In this work, we find a feasible way to meet our requirements. Firstly, a silicon
     resin material with regular molecular arrangement is polymerized by stereospecific
     polymerization process. Then a silicon molecular sieve membrane with much better
     permeability and permselectivity is made by pyrolyzing the polymeric resin. The high
     rate of terminal product which is as high as 80 90% is achieved by adopting the
     preparation technology that have been developed completely. At last an apparatus
     used for enriching oxygen is made from the membrane. Its working effect is
     remarkable, for example, the content of oxygen is 41% and the flux is 18.62l1m2d
     under the pressure of 0.3 Mpa. Furthermore, the preparation process of the membrane
     is simple, inexpensive and highly reproducible.
引文
1. Bhave P R. Inorganic Membranes , synthesis ,characteristics and applications.Van Nostrsnd Reinhold.New York.1991.
    2. Fain D E. Inorgan in Membranes:The new industry revolution,in: Ma Y H(ED) ,Proceedings of the Third International Conference on Inorganic Membranes .10--14 July 1994. Worcester, Ma, USA, pp365--380.
    3. 陈翠仙,余立新,戴猷元,新膜及膜过程的研究现状及发展动向, 第二届全国膜和膜过程学术报告会论文集,1996,11
    4. A.J.Burggaaf,L.Cot.Gereal overview,Trands and Prospects,in A. J. Burggraaf.L Xot(Eds) Fundamentals of Inorganic membranes Science and Technology ,Membrane Science and Technology Series,Vol,4. 1996,pp1--19
    5. H.Strathman, Membrane separation process ,J. Membrane Science.9(1981) 121--189
    6. 徐仁贤.气体分离膜的研究方向和应用近况.第二届全国膜和膜过程 学术报告会论文集.杭州.1996,11. pp7--11.
    7. Smith ,A.w. Porous anodic alumiilym oxide membrane J.Electrochem.Soc 1973,120(8) 1068--1069
    8. Keller F,Hunter M S, Robinson D L. J, Wlectro, Separation of anodic alumintim oxide membrane.Chem.Soc(1953) 100m--141
    9. Itaya K S, Sugawara K Araai, Synthesis of anodic aluminum oxide membrane,Chem Soc,(1984) ,5114--5117
    10. A.F.M.Leenars,The preparation and Characterization of alumina membranes with ultra-fines Pores, J, Materials Science 19(1984) .345--353
    11. 赵修仁,溶胶--凝胶发制备三氧化二铝分离膜的条件控制,硅酸 盐通报,1,(1989) 23--31
    
    
    12. Y.Ha,S.W.Nam, Chemical Vapor desposition of hidrogen-permselective silica films on porous glass supports from tetraethylorthosilicate.J.Membrane Sci 85(1993) 279--290
    13. George Xomeritax and Yue-sheng Lin, CVD of solid Oxidizes in Porous media,J.Membranes Sci.84(1992) 132--143
    14. 汪锰,王树森, 热裂解法(pyrolysis)在气体分离用无机膜制备 中的研究进展,膜科学与技术,2000,20(4)
    15. Neely J W. Iscoff E G. Carbonaceous Absorbents for the Treatment of Ground and Surface Waters, Marcel Dekker, New York. 1982.
    16. Koresh J E, Soffer A. Mechanism of permeation through molecular sieve carbon. J C S Faraday.1986,82: 2057--63.
    17. Koresh J E. Soffer A.The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Sep Sci & Technol.1987 22(2) :972--82.
    18. Damle A S, Gangwal S K, Venkataraman V K. Carbon membranes for gas separation:deve1opmental studies. Gas Separation and Purification.1994,8(3) :137--147.
    19. Hsieh H P. Inorganic membranes for separation and reaction.New York.1996:123--125.
    20. Lee L H. Khang S J.A new silicon-based material formed by pyrolysis of silicon rubber and its Properties as a membrane. Chem Eng Commun.1986,44(1-6) :121--32.
    21. Li Dong.Preparation and characterization of silicon base inorganic membrane for gas separation.Ph.D.thesis, University of Cincinnati. 1991. Order 9205494.
    22. 李永生,江志东,王金渠。ZSM-5 佛石膜的合成与表征,膜科学与
    
     技术。1999,19(4) :29--33。
    23. Grosgogeat E J, Fried J R, Jenkins R G et al. A method for the determination of the pore size distribution of molecular sieve materials and its application to the characterization of partially pyrolyzed polysilastyrene/porous glass composite membranes. J Membr Sci. 1991,57:237--255.
    24. Wang Shusen, Zeng Meiyun, Wang Zhizhong. Asymmetric molecular sieve carbon membranes, J Membr Sci. 1996, 109 ( 2) :267
    25:Wang Shusen. The carbon membranes for gas separation. Sep Sci & Technol. 1996, 31(16) :2299-2306.
    26. 王树森,曾美云,王志忠。硅基裂解膜的制备及其孔径的控制,第 三届全国膜和膜过程学术报告会,北京,1999
    27. Wang Shusen, Fang Ming. A selective silicon-based membrane formed by pyrolysis of silicon resin. Sep Sci & Technol. 1997, 32(9) : 1603-1613.
    28. Fleming H L. Carbon composites: a new family of inorganic membranes .In: Paper read at 6th Annual Membrane Planning Conference.Cambridge, MA. 1 November 1998. pp124-131.
    29. Present,R.D and A.J de Bethune. 1949. Seperation of a gas mixture flowing through a long tube at low pressure .Phys.rev.75:1050-57
    30. Gunn,R.D and C. J. King 1969 Mass transport in porous materials under combined gradients of composition and pressure A.I.Ch.E.J.15:507-14
    31. Shindo.Y.T.Hakuta.H.Yoshitone and H.Inoune. 1983. Gas diffusion in microporous media in Knudsen regime. J.Chem.Eng. Japanl 6(2) : 120-26
    32. Uhlhorn,R.J.R,K.Keizer and Burggraaf. 1989. Gas and surface diffusion in (modified) alumina system. J. Membrane Sci.46:225-46
    33. Ponzi.M,J.Papa.J,B.Rivarola and G.Zgrablich. 1977. On the surface
    
     diffusion of absorbable gase s through microporeus media.A.I.Ch E.J.23:347--52.
    34. Okazaki.M,H.Tamon and R.Toei.1981. Interpretation of surface flow phenomenon of absorbed gases by hopping model.A.I.Ch.E.J.27(2) :271-77
    35. Lee.K.H.and S.T.Hwang 1986,The transport of condensible vapors through a microporous Vycor glass membrane. Chem. Eng. Commum.44:121-32
    36. Koresh.J.E and A.Soffer.1980 Study of melecular sieve carbons. Part I.Pore structure,gradual pore opening and mechanism of molecular sieving.J.Chem.Soc.Faraday.Trans.76(2) :2457-71
    37. 黄培,邢卫红,徐南平,时钧,气体泡压法测定无机微滤膜孔径分 布的研究,水处理技术,1996,22(2)
    38. 邢其毅,基础有机化学(第一版),有机硅,北京大学出版社,1981
    39. 晨光化工研究院,有机硅单体及其应用,1985
    40. 李光亮,有机硅高分子化学,科学出版社,1998
    41. 施良和,苯梯有机硅的结构 Chinese J.Polym.Sci.,1987(4)
    42. 杜作栋,有机硅化学,山东大学出版社,1990
    43. N.Grassie.Chemistry of high Polymer degradation Process, Butter worths scientific punlication,London,1956
    44. G.R.Gavavalas,C.E.Megiris and S. W. Nam,Deposition of H2 Permselective Sio2 films,Chem.Eng.Sci,44(1989) 1828
    45. Koresh,J.E.and A. Soffer,The carbon molecular sieve membranes ,General Properties and the permeability of CH4/H2 mixture.Sep.Sci.Technol.22(2) 973--82
    46. R.S.A de Lange,J H.A.Heklink,K.KEIZER,A.J.Burggraaf. Sorption of microporous sol-gel modified ceramic membranes,J. Porous Mat2(1995) 141-149
    
    
    47. L. V. C Rees , P. Bruckner, J. Hampson ,Sorption of N2, CH4 and CO2 in silicate-1,Gas sep. Purif. 5(1991) 67-75
    48. T.C GOLDEN . S. Sircar, Gas adsorption on silicate , J. Colloid Interface Sci, 162 (1994) 183-188
    49. V.R.Choudhary ,S Maydevi, Adsorption of methane ,ethane , ethylene and carbon dioxide on silicate ,zeolites 17 (1996) 501-507
    50. J. Dunne, R. Mariwala, M.Rao , Heats of adsorbtion of polar and non polar gases in homogeneous and heterogeneous adsorbents , in M. D. LeVan (ED),Fundament of adsorption Kluweracademic publishers ,Bostons, 1996,pp.277-284
    51. L. Riekert. Sorption, diffusion, and catalic reaction in zeolites. In D. D. Eley, H. Pines, P. B. Weisz (EDs), Advances in Catelysis Vol21,1970
    52. Renate M. de Vos, Henk Verweij, Improved performance of silica membranes for gas seperation, J. Memb. Sci. 2(1987) 425
    53. D.Li and Sun-Tak Hwang, Separation and characterization of silicon based inorganic membrane for gas separation ,J.Mem. Sci, 59(1991) 331-352
    54. S.T.Hwang and K. Kammermeyer, Evidence of surface diffuse of helium.Sep. Sci. 2(1967) 555

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700