新型改性硅橡胶气体分离膜的富氧性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在通用高分子气体分离膜材料中,硅橡胶(PDMS)因其具有最高的透氧系数Po_2(600Barrer)而备受关注;但其氧氮分离系数(ao_2/N_2=2)较低、成膜性较差,在很大程度上限制了它的应用。
     本文采用高乙烯基含量的PDMS,经室温硫化成膜。初步探索了成膜条件(交联剂含量,成膜温度,测试温度等)对膜透气性能和分离性能的影响;此外,又分别将十一烯酸和十一烯酸钴引入PDMS膜的交联网络结构中,详细研究了不同用量、膜两侧压力差、实验温度等因素对膜Po_2和ao_2/N_2的影响。
     研究结果表明,本文采用成膜与反应同时进行的简单方法,得到了具有测试强度的柔韧交联膜。对于高乙烯基含量的硅橡胶基质膜,在一定范围内提高交联剂用量、降低硫化温度和测试温度均有助于提高ao_2/N_2(最高为2.33),但Po_2有所降低。十一烯酸的加入在一定程度上提高了膜的ao_2/N_2(加入量为5wt%时,ao_2/N_2为2.4),但Po_2也有降低。与Po_2和ao_2/N_2总是不能同时提高的情况相比,膜中二价钴离子的引入则在膜两侧压差较低时,可同时提高Po_2和ao_2/N_2。随钴离子含量的增加,ao_2/N-2达到最高值3.44。这种优异性能的获得是由于二价钴离子形成的大分子络合物结构具有对氧气的促进输送作用所致。电子顺磁共振(ESR)谱提供了钴氧结合的证据。
Among the universal polymer materials of gas separation membrane, silicone rubber (PDMS) has always been focused just because of its highest oxygen permeability PO2 (600 barrer). However, its separation coefficient ( =2) and membrane formability are bad, which limited its practical value.
    The PDMS membrane with high vinyl content was formed by vulcanization at room temperature in this research. Firstly, the influences of membrane forming conditions (for example, the contents of crosslinking regent, membrane-forming and testing temperature) on PO2 and O2/N2 were tested. Secondly, 11-alkene acid and 11-alkene acid cobalt were introduced into the crosslinking net structure of PDMS membranes. And the effects of additives quantities, pressure difference and testing temperature on Po2 and O2 / N2 were investigated detailedly.
    The research results showed that, the soft crosslinking membrane with good testing property was gained by the simple method of simultaneous membrane formation and crosslinking reaction. For silicone membrane with high vinyl content, in some range, higher crosslinking regent content and lower vulcanization and testing temperature leaded to higher o2/N2 (the highest value is 2.33) but lower PO2. The addition of 11-alkene acid into membranes improved O2/N2 to some extent (O2/N2 is 2.4 when 11-alkene acid content is 5wt%), but PO2 also decreased. Compared to above contradiction of Po2 and o2 / N2, the introduction of 11-alkene acid cobalt (II) improved both Po2 and O2:/N2 at the same time under the condition of low pressure difference. With the increase of 11-alkene acid cobalt quantities, the highest O2/N2 added up to 3.44. The good results came from the facilitated transport of 02 by the formation of cobalt ion macro complex, which was testified by ESR chart.
引文
1. Berens,A.R. and Hopfenberg, H.B., J. Memb. Sci., 1982, 10, 283
    2.青木俊树,及川荣藏,高分子加工,1991,40(6):281
    3.浅川史朗,高分子,1985,34(11):902
    4.堤直人,高田耕一,清刚造,高分子加工,1987,36(3):115
    5.清水刚夫,齐藤省吾,仲川勤著,李福锦,陈双基译,新功能膜,北京:北京大学出版社,1990
    6.长濑裕,高分子加工,1987,36(6):268
    7. Msuda, T., Isobe, E. and Higashimura, T., J. Am. Chem. Soc., 1983, 105:7473
    8. Takada, K., Matsuga, H., Masuda, T. and Higashimura, T., J. Appl. Polym Sci., 1985, 30, 1605
    9.张可达,刘安南,徐纪平,应用化学,1987,4(2):82
    10. Higashimura,T., Polym. Bull.,1983,10:114
    11. Stern, S.A., Shah, V.M. and Hardy B.J.,J. Polym. Sci., Polym. Phys. Ed.,1987,25:1263
    12. JP, 82-105,203
    13. JP, 84-209,608
    14.山路祯三,高分子,1981,30(3):187
    15.仲川勤,中叶弘之,永井一清,桶口亚绀,高分子学会第25回高分子水关讨论,1987.11
    16. USP,4,657,564(1987)
    17. JP, 88-236,515
    18. JP, 90-59,031
    19.山田纯男,仲川勤,高分子论文集,1982,39:391
    20. Kita, H., Muraoka, M., Tanaka, K and Okamoto,K., Preprint ICOM' 87.9P 17:546
    21. DE 3,505,744(1986)
    22. JP, 86-115,910
    23.川上雄资,高分子加工,1985,34:574
    24. Lin Shangan, Pang Yong Xin, China-Japan Bilateral Symposium on polymer Science and Materials, Guangzhou, China, 1990
    25. Ward, W.J., Browall, R. and Salomme, R.M., J. Memb. Sci., 1976, 1. 99
    26. JP, 82—122, 907
    27. JP, 82—156, 004
    28. JP, 85—12, 10529
    29. JP, 84—58, 039
    
    
    30. JP, 86—43031.
    31. JP, 86—431
    32.川上雄姿,青木俊树,山下雄也,高分子论文集,1986,43(11:741
    33. S.A.STERN, V.M.SHAH, B.J.HARD, J Poly Sci: Part B: Polym Phys, 1987, 25,1263-1298
    34.方江邻,余学海;高分子材料科学与工程,1998,14(3):115—117
    35. Nagase Y, Ochiai J, et al.; Polymer, 1988, 29:740
    36. Kiyotukuri T, Tsutsumi M, J Polym Sci, 1986, A25:1591
    37. Aoki T, Yamamoto Y, et al., Macromol Chem Rapid Commun, 1992, 13:525
    38. Nakajina T, Kinoshita T, et al., Kobunshi Ronbunshu, 1990,47:415
    39. Asakawa, S.,Saito,Y., Kawahito, M., Ito,Y.,Tsuchiya, S. and Sugato,K., Natl. Tech. Rep., 1983, 29:93
    40.长濑裕,上田智子,松井清英,内苍昌树,高分子论文集,1986,43(11:733
    41. JP, 90—218, 423
    42. JP, 82—105, 203
    43. JP, 84—209, 608
    44. Kawakami Y, Aoki T, Hisada H, et al., Polym Commun, 1985, 26:133
    45. Kawakami Y, Karasawa H, et al., Polym J, 1986, 17:1159
    46. Kawakami Y, Kamiya H, et al., J Polym Sci: Polym Symp, 1986, 74:291
    47. Kawakami Y, Kamiya H, et al., J Polym Sci; 1987, A25:3191
    48. Kawakami Y, Hisada H, et al., J Polym Sci; 1988, A26:1307
    49. Kawakami Y, Aoki T, et al., Kobunshi Ronbunshu; 1986, 42:741
    50. Nagase Y, Naruse A, Matsui K; Polymer, 1990, 31:121
    51. Nagase Y, Mori S, et al.; Macromol Chem, 1990, 191:2413
    52. JP, 79—56, 985
    53. JP, 85—255, 104
    54.川上雄姿,高分子加工,1985,34,574
    55.林尚安,内部资料
    56.张亚梅,栾励雯等,膜科学与技术,1997,17(2):57—62
    57.华曼,师培伦等;膜科学与技术;1997,174(1):58—62
    58.何勇,杨继萍等;北京理工大学学报;1998,18(2):262—264
    59.杨继萍,朱鹤孙等;高分子材料科学与工程;1998,14(6):41—43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700