磁爆加载作用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁流体动力爆炸加载技术(简称磁爆加载技术)是高效毁伤领域未来发展的一种新概念技术。它创新性地采用了爆轰到强磁场过程易于控制的磁场聚焦方法,利用爆磁压缩发生器供能强磁体,产生脉冲磁动力,进而加载磁场内部的作用介质直接形成毁伤元或对传统爆炸形成的毁伤元进行加速。该技术利用了非毁伤元驱动方向的炸药能量,将其转化为电磁能,可提高装药的能量利用率,同时,理论上只要能量足够,磁动力几乎没有上限,可超过传统炸药爆炸的驱动力幅值,这将显著提升毁伤元的打击效能。未来,该技术的成果在攻坚弹药、反装甲弹药、反导弹药等多种类型的高效毁伤弹药中有着广阔的应用前景。当前进行该技术的机理研究,对于未来进行新概念高效毁伤元的技术开发,具有重要的理论价值和指导意义。
     本文研究的内容主要包括:
     (1)磁爆加载过程的理论模型研究
     在各物理场分别作用的假设下,将磁爆加载过程离散为实际同时作用的“电路”、“磁场”和“力场”三个物理场。顺序利用等效电路模型、磁场计算模型和磁动力加载模型,从而建立了描述该过程的“电-磁-力”多物理场顺序耦合理论模型。
     (2)爆磁压缩发生器与强磁体的耦合研究
     基于(1)中的理论模型,研究了爆磁压缩发生器与强磁体的匹配关系,以及在爆磁压缩发生器驱动下,不同结构强磁体的磁场分布特性,还按照作用介质形成毁伤元的要求,进行了强磁体的结构优化。
     (3)强磁体对介质的加载成形研究
     在分析介质成形的影响因素基础上,按照理论模型,结合数值方法,获得了以脉冲电容器为能源时多层并联型强磁体加载介质成形的初步规律,还进行了介质成形的效率分析。这为后续开展磁爆加载过程的系统仿真和相关试验研究提供了指导。
     (4)磁爆加载过程的系统仿真研究
     利用编制的电路参数计算程序,以及Maxwell和AUTODYN软件,分析了爆磁压缩发生器的装药和固有磁通损耗系数对其性能的影响,并优化了初始输入电流,最终预测了爆磁压缩发生器实爆加载时,不同结构介质的成形特点和规律。这为实弹试验研究提供了结果估计和设计指导。
     (5)磁爆加载的相关试验研究
     分别进行了磁爆加载的原理和模拟试验研究,以及在爆磁压缩发生器实爆加载时的实弹试验研究。原理试验主要验证了技术概念,确定可行性,并认识可能出现的宏观现象。模拟试验主要分析了在不同作用磁场条件下,两种材料和结构介质的冲击变形特性,为实弹试验进行基础条件准备。实弹试验首先进行了量测系统的标定,各关键元件的工艺设计及加工,然后进行了磁爆加载介质成形的实弹试验,最终系统验证了理论和仿真模型。
Magneto-hydrodynamic explosive loading technology is a new concept technology for the future development in the field of high-efficiency damage, in which media are directly formed into damage elements or the traditional damage elements are acceletrated by pulse magnetic dynamic load which is generated by a high field magnet powered by a flux compression generator (FCG). The magnetic field focusing methods are innovatively applied in this technology so that the explosive energy in the non-driven direction is converted into electromagnetic energy, and higher total energy conversion efficiency of explosive is acquired. According to theoretical analysis, as long as the energy supply is sufficient, the peak value of the magnetic load has no limits. The peak value of the magnetic load could exceed the explosive load, so the damage elements are formed by the magnetic load would be more efficient.In the future, the achievements of this technology would be widely used in a variety of ammunition design, such as anti-hard structure munitions, anti-armor munitions, anti-missile ammunitions, etc. It is of important theoretical value and guiding significance to carry out mechanism research on this technology at the present time, and this work would also promote the development of other new concept high-efficiency damage technologies.
     The following aspects are included in this paper:
     (1) Research on theoretical model of the magneto-hydrodynamic explosive loading process
     Under the hypothesis of physical fields acting respectively, the magneto-hydrodynamic explosive loading process is divided into three physical fields of "circuit","magnetic field" and "field of force" which act simultaneously in effect.The equivalent circuit model, magnetic field calculation model and magnetic dynamic loading model are used in succession, so the theoretical model of multiple physical fields coupling for deccribing this process is established.
     (2) Research on coupling of FCG with high field magnets
     In view of the theoretical model in (1), the matching relationship of FCGs and high field magnets, and the magnetic field distribution characteristics of high field magnets of different structures driven by FCGs are studied. Further more, according to the requirements of damage elements formed by action media, the structures of high field magnets are optimized.
     (3) Research on media forming loaded by high field magnets
     Basing on an analysis of the influential factors on media forming, according to theoretical model, also with numerical methods, the preliminary law of media forming loaded by conventional multi-layer parallel high field magnets which are powered by pulse capacitors is acquired, and the forming efficiency is analyzed in the meanwhile. This work provides guidance for a follow-up research about system simulation and relevent experiments of the magneto-hydrodynamic explosive loading process.
     (4) Research on system simulation of the magneto-hydrodynamic explosive loading process
     Using the circuit parameters calculation program, Maxwell and AUTODYN software, charge and intrinsic flux loss coefficient of FCGs the influence on its performance is analyzed, the initial input current value of FCGs is also optimized. Finally, on the condition that high field magnets are powered by FCGs, the law of the magnetic field distribution and the forming characteristics of media of different structures are forecasted. This work provides estimated results and design guidance for experimental research of live ammunition.
     (5) Related experimental research of magneto-hydrodynamic explosive loading
     Principle experiments, simulation experiments and live ammunition experiments are carried out respectively. In the principle experiments, technical concepts are identified, the feasibility is determined, and some macroscopic phenomena are recognized. In the simulation experiments, impact deformation of the media made of two types of materials and with different structures is studied; the results of the theoretical model and simulation are identified also.This work prepares basic conditions for the live ammunition experiments.In the live ammunition experiments, preparatory work such as calibration of measurement system, process design and machining of key devices is done at first, then the live ammunition experiments are carried out, the theoretical model and simulation model are systematically identified finally.
引文
[1]黄正祥.聚能杆式侵彻体成型机理研究[D].南京:南京理工大学,2003.
    [2]李如江.多孔药型罩聚能射流机理及应用研究[D].合肥:中国科学技术大学,2008.
    [3]谭多望.高速杆式弹丸的成型机理和设计技术[D].绵阳:中国工程物理研究院,2005.
    [4]吴义锋.点环起爆多模成型装药机理研究[D].南京:南京理工大学,2007.
    [5]郑宇.双层药型罩毁伤元形成机理研究[D].南京:南京理工大学,2008.
    [6]美国国防先进研究项目局.磁流体动力爆炸弹药[EB/OL].DARPA.http://www.darpa.mil/Our_Work/TTO/Programs/Magneto_Hydrodynamic_ExploSive_Munition_(MAHEM).
    [7]戴玲.提高脉冲电容器储能密度的新方法的研究[D].武汉:华中科技大学,2005.
    [8]张天洋.金属化聚丙烯膜脉冲电容器过载特性研究[D].长沙:国防科技大学,2011.
    [9]Ennis J B, Cooper R A, Bates J, et al. High energy density pulsed power capacitors[C]. 14th Pulsed Power Conference,2003.
    [10]Spahn E, Buderer G, Brommer V, et al. Novel 13.5 kV Multichip Thyristor with an Enhanced DI/DT for Various Pulsed Power Applications[C].15th Pulsed Power Conference,2005.
    [11]彭波.金属化膜电容器自愈关键参数研究[D].武汉:华中科技大学,2010.
    [12]白国强,刘金亮,程新兵,等.结构紧凑陶瓷电容器型脉冲调制器[J].强激光与粒子束,2010(03):503-506.
    [13]戴咏喜,徐冲,刘以建.应用于脉冲负载的蓄电池和超级电容器混合储能的研究[J].通信电源技术,2011,28(04):12-14.
    [14]韩克华,任西,周密,等.高压脉冲电容器性能参数优选实验方法研究[J].爆破器材,2011,40(03):22-25.
    [15]贾占强,蔡金燕,梁玉英,等.金属化膜脉冲电容器的可靠性评估[J].强激光与粒子束,2011,23(01):272-276.
    [16]李化,吕霏,林福昌,等.应用于脉冲功率系统的高储能密度电容器[J].强激光与粒子束,2012,24(03):554-558.
    [17]李维维,金玲,许继业,等.脉冲磁体供电用高储能自愈式脉冲电容器的研制[J].电力电容器与无功补偿,2010,31(01):38-43.
    [18]李智威,林福昌,李化,等.真空脉冲电容器[J].强激光与粒子束,2012,24(05):1229-1233.
    [19]钟思正,王问斯.高压脉冲装置中储能电容器数量之讨论[J].高电压技术,2004,30(06):49-50.
    [20]王洪杰.PLZT反铁电材料[D].天津:天津大学,2012.
    [21]王强,王文斗,谢龙,等.多层铁电陶瓷击穿分析及优化[J].强激光与粒子束,2012,24(03):567-570.
    [22]王瑶,邓元.钙钛矿型Pb基反铁电储能材料研究进展[J].中国材料进展,2011,30(09):51-55.
    [23]顾林,张合,马少杰,等.铁电体换能器机械装置设计及其放电特性研究[J].制造业自动化,2011,33(9):80-81.
    [24]刘高曼.高密度PZT95/5陶瓷的冲击相变及放电性能研究[D].绵阳:中国工程物理研究院,2009.
    [25]张晓帅.反铁电储能材料[D].天津大学,2008.
    [26]贺元吉,张亚洲,李传胪.PZT95/5铁电陶瓷脉冲源用于nF电容器充电[J].高电压技术,2004,30(04):34-35.
    [27]张恩官.铁电体在当代高技术中的应用[J].爆轰波与冲击波,2002(4):172-176.
    [28]冯玉军,徐卓,陈富涛,等.爆电换能用反铁电材料[J].压电与声光,2005,27(02):145-159.
    [29]冯玉军,徐卓,郑曙光,等.反铁电爆电换能电源研究[J].西安交通大学学报,2002,36(06):584-587.
    [30]Haertling G H. Ferroelectric Ceramics:History and Technology[J]. Journal of the American Ceramic Society,1999,82(4):797-818.
    [31]Altgilbers L L. Recent Advances in Explosive Pulsed Power[J]. Electromagnetic Phenomena,2003,3(4):497-516.
    [32]林其文,袁万宗,王维钧.铁电体爆电换能器的匹配研究[J].高压物理学报,1988,2(02):137-145.
    [33]林其文,袁万宗.柱型爆电换能器的理论研究[J].爆炸与冲击,1988,8(1):53-59.
    [34]杜金梅,张福平,张毅,等.爆电换能脉冲大电流输出研究[J].高压物理学报,2006,20(04):403-407.
    [35]温殿英,林其文.冲击波压缩PVDF膜的电响应研究[J].高压物理学报,2000,14(04):291-297.
    [36]Wang Y, Chen D, Zhang J, et al. Investigation of a high power electromagnetic pulse source[J]. Review of Scientific Instruments,2012,83(9):94702.
    [37]Shkuratov S I, Talantsev E F, Baird J, et al. Completely Explosive Autonomous High-Voltage Pulsed-Power System Based on Shockwave Ferromagnetic Primary Power Source and Spiral Vector Inversion Generator [J]. IEEE Transactions On Plasma Science,2006,34(5):1866-1872.
    [38]Shkuratov S I, Talantsev E F, Dickens J C, et al. Longitudinal-shock-wave compression of Nd2Fe14B high-energy hard ferromagnet:The pressure-induced magnetic phase transition[J].Applied Physics Letters,2003,82(8):1248-1250.
    [39]Talantsev E F, Shkuratov S I, Dickens J C, et al. Completely explosive pulsed power minisystem[J]. Review of Scientific Instruments,2003,74(1):225-230.
    [40]Shkuratov S I, Talantsev E F, Dickens J C, et al. Compact explosive-driven generator of primary power based on a longitudinal shock wave demagnetization of hard ferri-and ferromagnets[J]. IEEE Transactions On Plasma Science,2002,30(5):1681-1691.
    [41]Tkach Y, Shkuratov S I, Talantsev E F, et al. Theoretical treatment of explosive-driven ferroelectric generators[J]. IEEE Transactions On Plasma Science,2002,30(5):1665-1673.
    [42]Shkuratov S I, Talantsev E F, Dickens J C, et al. Transverse shock wave demagnetiza-tion of Nd2Fe14B high-energy hard ferromagnetics [J]. Journal of Applied Physics,2002, 92(1):159-162.
    [43]伍俊英,陈朗,冯长根.爆炸去磁脉冲功率发生器的实验和理论计算[J].爆炸与冲击,2007(5):398-404.
    [44]陈朗,伍俊英,冯长根.涡流损耗对爆炸去磁脉冲发生器输出性能的影响[J].高压物理学报,2007(4).
    [45]李鹤,吕庆敖,李治源,等.静态下P-MFCG的不同形状电枢受力的仿真[J].微电机,2011(3):37-41.
    [46]李鹤,吕庆敖,李治源,等.活塞式磁通压缩发电机电枢涡流的有限元分析[J].军械工程学院学报,2010,22(2):23-26.
    [47]吕庆敖,高敏,雷彬,等.活塞式螺旋绕组MFCG的关键技术[J].高电压技术,2008(2):397-400.
    [48]吕庆敖,李治源,杨秋学,等.活塞式螺旋绕组磁通压缩发电机技术及进展[J].高电压技术,2007(10).
    [49]段效军,张朝伟,李治源,等.一种新的脉冲磁流体发电机[J].电气应用,2005(8):79-81.
    [50]龚兴根,孙奇志,刘正芬,等.爆磁压缩技术综述[J].爆轰波与冲击波,2003(3):130-138.
    [51]Novac B M, Smith I R. Brief History and Classification of Magnetic Flux Compression Generators[J]. Electromagnetic Phenomena,2003,3(3):358-362.
    [52]Fowler C M, Altgilbers L L. Magnetic Flux Compression Generators:a Tutorial and Survey[J]. Electromagnetic Phenomena,2003,3(3):306-350.
    [53]Goforth J H. A Review of U.S. High Explosive Pulsed Power Systems[R]. LA-UR-98-4567,1998.
    [54]孙奇志,刘伟,刘正芬,等.MA量级螺线圈型爆磁压缩发生器[J].强激光与粒子束,2009(10):1571-1574.
    [55]Goforth J H, Fowler C M, Herrera D H, et al. Performance of the MK-IX Explosive-Driven Flux-Compression Generator[C].15th Pulsed Power Conference,2005.
    [56]Goforth J H, Fowler C M, Herrera D H, et al. The ranchito helical magnetic flux compression generator[C].16th Pulsed Power Conference,2007.
    [57]Fowler C M, Caird R S. The mark IX generator[C].7th Pulsed Power Conference, 1989.
    [58]杨汉武.爆炸磁压缩发生器及其脉冲功率调制研究[D].长沙:国防科学技术大学,2002.
    [59]Jones M. Modelling of compressed magnetic field generators by equivalent circuit approach [R].AD91933,1980.
    [60]Fouler C M, Erickson D J, Peterson D R. Explosive flux-compression strip generator [R].LA-UR-83-1011,1983.
    [61]Fouler C M, Caird R S, Freeman B L. Design of the Mark 101 magnetic flux-compres-sion generator [R].LA-UR-86-1975,1986.
    [62]Fortgang C M. A Field Theory Approach to Modeling Helical FCG's [R].LA-UR-98-4555,1998.
    [63]Novac B M, Smith I R. A zero-dimensional computer code for helical flux- compres-sion generators[J]. Electromagnetic Phenomena,2003,3(4):444-450.
    [64]Novac B M, Smith I R. Fast numerical modelling and design issues of helical flux compression generators [C].14th Pulsed Power Conference,2003.
    [65]Novac B M, Smith I R. Practical considerations in helical flux-compression generator design [J]. Electromagnetic Phenomena,2003,3(4):490-496.
    [66]Neuber A A. Explosively driven pulsed power-helical magnetic fulx compression generators[M]. New York:Springer,2005.
    [67]Kiuttu G F, Chase J B, Chato D M. Recent Advances in Modeling Helical FCG's[C]. Symposium of conference on Megagauss magnetic field generation and related topics, 2006.
    [68]Appelgren P. Experiments with and modelling of explosively driven magnetic flux compression generators[D]. Stockholm:Royal Institute of Technology School of electrical engineering space and plasma physics,2008.
    [69]孙奇志,孙承纬.轴线起爆式螺线管型爆磁压缩发生器理论模型[J].强激光与粒子束,2003(4):385-390.
    [70]陈冬群,钟辉煌,曹胜光,等.级联型爆磁压缩发生器的等效电路计算[J].强激光与粒子束,2005(5):729-732.
    [71]陈冬群.动态级联型螺线管爆磁压缩发生器研究[D].长沙:国防科学技术大学,2005.
    [72]杨显俊,赵强,董志伟.轴线起爆螺旋型爆磁压缩发生器2维简化模型[J].强激光与粒子束,2005(12):1857-1860.
    [73]苏建河,焦清介,陈曦.螺线型爆磁压缩发生器工程计算[J].火工品,2005(1):9-12.
    [74]刘伟,孙奇志.螺旋型爆磁压缩脉冲功率源模拟计算[J].强激光与粒子束,2007(12):2108-2113.
    [75]孔斌.非核爆磁通压缩发生器数值模拟与实验研究[D].南京:南京理工大学,2007.
    [76]张辉.爆磁压缩高功率脉冲形成及功率提升技术研究[D].南京:南京理工大学,2007.
    [77]张军.螺线型爆磁压缩发生器运行特性及参数优化研究[D].南京:南京理工大学,2007.
    [78]Zhiwei D, Yuzhi W, Guirong W.2D MHD description for a helical magnetic flux compression generator[C].32nd EPS Conference on Plasma Physics,2005.
    [79]王玉芝,王贵荣,董志伟,等.二维磁流体力学程序MFCGIII计算结果与测试结果的对比分析[J].强激光与粒子束,2004(10):1307-1312.
    [80]Jeffrey M P, Hebert J L. Computer Modeling and Experimental Validation of Losses in a Strip Geometry Explosive Magnetic Flux Compression Generator[D].Wright Patterson AirForce Base:US Air Force Institute of Technology,1983.
    [81]Gilev S D, Mikhailova T Y. Electromagnetic field and current waves in a conductor compressed by a shock wave in a magnetic field[J]. Combustion Explosion and Shock Waves,2000,36(6).
    [82]Bichenkov E I. Electrodynamic Effects Accompanying the Propagation of Current-Carrying Shock Waves in a Transverse Magnetic Field[J].2000,36(6):809-815.
    [83]XiaoBin L. Experimental and finite element study of armature dynamics in helical magnetic flux compression generators[D]. Lubbock:TTU,2002.
    [84]董志伟,王贵荣.螺旋型爆磁压缩发生器初始电性能的高频分析[J].强激光与粒子束,2004,16(03):342-349.
    [85]杨显俊,董志伟,赵强.螺线型爆磁压缩发生器的初始瞬态磁场分布[J].计算物理,2006(2):127-132.
    [86]周治伟,樊祥.对不同结构螺线管型爆磁压缩发生器跳匝问题的分析及跳匝比的计算(英文)[J].强激光与粒子束,2011(5):1407-1412.
    [87]周治伟,樊祥,邹继伟,等.螺旋型爆磁压缩发生器跳匝现象分析[J].强激光与粒子束,2007(2):343-347.
    [88]孙奇志,孙承纬,刘伟.同轴型爆磁压缩发生器1维磁扩散模型[J].强激光与粒子束,2007(10):1755-1760.
    [89]金兆鑫,焦清介,陈曦.螺线型爆磁压缩发生器非Ohmic损失分析与放大率计算[J].火工品,2008(5):6-9.
    [90]Altgilbers L L. Recent Advances in Explosive Pulsed Power[J]. Electromagnetic Phenomena,2003,3(4):497-520.
    [91]Freeman B L, Altgilbers L L. Development Of Small, Tapered Stator Helical Magnetic [J]. Electromagnetic Phenomena,2003,3(3):366-372.
    [92]Cavazos T C, Gale D G, Roth C E, et al. Flux Compression Generator Development at the Air Force Research Laboratory[C].15th Pulsed Power Conference,2005.
    [93]Kristiansen M, Giesselmann M, Worsey P. Explosive-driven pulsed power generation for directed-energy munitions [R].AFRL-SR-AR-TR-04-0108,2004.
    [94]Altgilbers L L. Explosive pulsed power:an enabling technology [R].ADA504423,2004.
    [95]Chase J B. CAGEN:a modern PC based computer modeling tool for explosive MCG generators and attached loads [C].12th Pulsed Power Conference,1999.
    [96]Kiuttu G F, Chase J B. An armature-stator contact resistance model for explosively driven helical magnetic flux compression generators[C].15th Pulsed Power Conference, 2005.
    [97]Chato D M, Chase J B, Kiutu G F. High voltage flux compression generators [R].AFRL-RD-PS-TR-2008-1046,2008.
    [98]Knoepfel H. Pulsed High Magnetic Fields[M]. Amsterdam:North-Holland,1970.
    [99]Novac B M, Smith I R, Stewardson H R, et al. Experimental methods with flux-compression generators[J]. Engineering Science and Education Journal,1996,5(5): 211-222.
    [100]Altgilbers L L, Brown M D J, Grishnaev I, et al. Magnetocumulative Generators[M]. New York:Springer,2000.
    [101]陈冬群,曹胜光,刘永贵,等.爆磁压缩发生器试验技术[J].实验技术与管理,2002(3):11-14.
    [102]孙奇志.轴线起爆式螺线管型爆磁压缩发生器理论模型和原理性实验研究[D].北京:中国工程物理研究院北京研究生部,2002.
    [103]Herlach F, Rosseel K, Vanacken J. Frontiers of pulsed magnet design[J]. Applied Superconductivity, Ieee Transactions On,2004,14(2):1229-1232.
    [104]彭涛.脉冲强磁体分析设计的理论与实践[D].武汉:华中科技大学,2005.
    [105]彭涛,辜承林.放电过程中脉冲磁体的热传导[J].强激光与粒子束,2009(10):1579-1582.
    [106]彭涛,李亮.脉冲磁体中电磁与温度场耦合的有限元分析[J].原子能科学技术,2010(06):740-744.
    [107]彭涛,李亮.脉冲磁体中不锈钢简对磁场的影响研究[J].核技术,2011(06):477-480.
    [108]脉冲磁体磁场强度实现75T[J].华中科技大学学报(自然科学版),2010(12):104.
    [109]Manea T E, Verweij M D, Blok H. The Importance of the Velocity Term in the Electro-magnetic Forming Process[C].27th General Assembly of the International Union of Radio Science,2002.
    [110]Stuetzer O M. Theory of Small Compressed Magnetic Flux Current Amplifiers [R]. SAND-79-1075,1979.
    [111]卡兰塔罗夫,采伊特林.电感计算手册(陈汤铭,刘保安,罗应立等译)[M].北京:机械工业出版社,1992.
    [112]Novac B M, Smith I R. A zero-dimensional computer code for helical flux-compression generators [J]. Electromagnetic Phenomena,2003,3(4):444-450.
    [113]文盛乐.关于电感线圈的连接问题[J].大学物理,2005,24(7):12-15.
    [114]Tucker T J, Toth R P. A computer code for the prediction of the behavior of electrical circuits containing exploding wire elements [R].SAND-75-0041,1975.
    [115]Appelgren P, Brenning N, Hurtig T, et al. Modeling of a Small Helical Magnetic Flux-Compression Generator[J]. IEEE Transactions On Plasma Science,2008,36(5):2662-2672.
    [116]雷银照.轴对称线圈磁场计算[M].北京:中国计量出版社,1991.
    [117]Meyers M A. Dynamic Behavior of Materials[M]. New York:John Wiley and Sons, 1994.
    [118]孙承纬.电磁加载下的高能量密度物理问题研究[J].高能量密度物理,2007,3(1): 41-46.
    [119]刘国强,赵凌志,蒋继娅.Ansoft工程电磁场有限元分析软件[M].北京:电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700