重结晶碳化硅浆料的流变性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重结晶碳化硅(R-SiC)陶瓷具有低密度、低热膨胀系数、高熔点、高热导率、高硬度、高强度、耐磨损、耐腐蚀以及优异的抗热震性能等,成为窑具、电热元件、锅炉燃烧器等首选陶瓷材料。R-SiC陶瓷制品的性能主要取决于陶瓷坯体的密度以及微观结构的均匀性,而坯体的密度以及微观结构又取决于碳化硅浆料的固相含量和流变性。为此,本文以制备高固相含量、低粘度且流变性良好的重结晶碳化硅浆料为出发点,重点研究了分散剂四甲基氢氧化铵(TMAH)对碳化硅浆料流变性的影响。
     从红外光谱、Zeta电位、物相分析、流变性、沉降行为等角度分别研究了分散剂TMAH对重结晶碳化硅细粉及其浆料的稳定分散效果。研究表明,与未添加TMAH的碳化硅粉体表面Zeta电位相比,添加TMAH后,在pH=3~11范围内Zeta电位绝对值明显提高。在重结晶碳化硅细粉浆料中添加0.3wt%TMAH,可以将其固相含量由33vol%提高到60vol%。
     研究还表明,在本实验条件下,碳化硅粗粉(中位径100μm)和细粉(中位径2.0μm)的最佳粒度级配为7:3。添加0.1wt%TMAH,控制pH在9.63,可以获得最大固含量为70.25vol%的重结晶碳化硅浆料。
     本文还研究了分散剂TMAH对粗细混合粉体浆料流变性的影响。结果表明,浆料流变曲线在高剪切速率范围内呈现高Newton区;在中低剪切速率范围内浆料呈现剪切变稀行为,粘度与剪切速率之间符合幂律方程。通过拟合得到固相含量为62.5vol%、65.0vol%、67.5vol%、69.0vol%的重结晶碳化硅浆料体系的幂律方程分别为:η=0.354γ-0.3743、η=1.232γ-0.4495、η=1.188γ-0.2867、η=1.513γ-0.2752。这也正是本文的创新之处。
     固相含量为70.25vol%的浆料经注浆成型后获得的重结晶碳化硅陶瓷坯体的密度为2.37g/cm3。
candidate material for kiln furniture, electric heating elements and boiler burners due to its low density and thermal expansion coefficient, high melting point, thermal conductivity, flexural strength and hardness, excellent resistance to thermal shock, abrasion and corrosion. The solid loading and rheological properties of SiC suspensions have considerable influence on the ceramic bulk density and homogeneous microstructure, then having effect on the comprehensive properties of SiC ceramic products. The aim of this investigation was, therefore, to research the influence of tetramethyl ammonium hydroxide (TMAH) used as a dispersant on the rheological properties of SiC suspensions used for recrystallized ceramics to prepare aqueous suspensions with high solid loading, low viscosity and good rheological properties.
     With TMAH addition, the stable dispersion in both fine SiC powders and suspensions was studied from different viewpoints such as infrared spectrum, zeta potential, phase analysis, rheological properties and sedimentation behavior. The results showed that, compared with zeta potentials of SiC powders without TMAH addition, the zeta potential absolute values with TMAH addition were considerably increased with a pH ranged from 3 to 11. Moreover, with an amount of 0.3wt% TMAH addition, the solid loading of fine SiC suspensions increased from 33vol% to 60vol%.
     The results in the present study also indicated that, the optimum particle size gradation of SiC was 7:3 in the weight ratio for coarse powders and fine powders with a median particle size of 100μm and 2.0μm, respectively. With a pH of 9.63 and a TMAH concentration of 0.1wt%, the SiC suspensions mixed with coarse and fine powders used for recrystallized ceramics could be prepared with the highest solid loading of 70.25vol%.
     The influence of TMAH used as the dispersant on the rheological properties of SiC suspensions used for recrystallized ceramics was also investigated. The results showed that the Newtonian fluid behavior appeared in high shear rate range in the flow curve of SiC suspensions, while in low and middle shear rate range, shear thinning behavior presented and the variation of viscosity with the increasing shear rate could be fitted by power law, which was an innovative idea in this study. As power law, the fitting equations wereη=0.354γ-0.3743,η=1.232γ-0.4495,η=1.188γ-0.2867 andη=1.513γ-0.2752 for SiC suspensions with a solid loading of 62.5vol% 65.0vol%, 67.5vol% and 69.0vol%, respectively.
     Additionally, the recrystallized SiC ceramic bodies with a bulk density of 2.37g/cm3 had been successfully obtained by slip casting using SiC suspensions with a solid loading of 70.25vol%.
引文
[1]梁斌,张宁,崔行宇等. SiC/YAG复合陶瓷材料的研究进展[J].材料导报, 2010, 24 (2): 511-514.
    [2] X. J. Zhao, D. L. Chen, H. Q. Ru et al. Oxidation behavior of Nano-Sized SiC Particulate Reinforced AlON composites. Journal of the European Ceramic Society, 2011, 31 (13): 2255-2265.
    [3] Wei Li, Ping Chen, Mingyuan Gu et al. Effect of TMAH on Rheological Behavior of SiC Aqueous Suspension [J]. Journal of the European Ceramic Society, 2004, 24: 3679~3684.
    [4] Bin Liang, Ning Zhang. Applications of Porous SiC Ceramics in Automobile Exhaust Purification Field. Electric Information and Control Engineering, 2011, 3: 2022-2025.
    [5]王零森编著.黄培云审定.特种陶瓷[M].湖南:中南工业大学出版社,1994
    [6] Zhong-Zhou Yi, Zhi-Peng Xie, Yong Huang et al. Study on Gelcasting and Properties of Recrystallized Silicon Carbide [J]. Ceramics International, 2002, 28: 369~376.
    [7]任云,任东琦,李娅洁等.粗颗粒对重结晶碳化硅窑具料浆性能的影响[J].辽宁建材,2009(11):44~46.
    [8]张勇,彭达岩,文洪杰.碳化硅质窑具材料的研究现状[J].耐火材料,2002,36(6):363~365.
    [9]朱海马.重结晶碳化硅电热元件的一次烧结工艺及结晶性能研究[D].西安:西安科技大学,2007
    [10]方现银,杨继彬,苏建林等.新型工程陶瓷材料在锅炉燃烧器上的应用[J].中国电力,2011,44(1):70~72.
    [11]马晓红. Starlight (R)重结晶碳化硅窑具的开发与应用[J].中国陶瓷工业,1996,6(2):28~30.
    [12]梅心涛.挤出成型制备重结晶碳化硅热端材料的研究[D].武汉:武汉理工大学,2007
    [13]易中周,谢志鹏,黄勇等.重结晶碳化硅凝胶注模成型及其性能研究[J].硅酸盐通报,2002,(4):3~7.
    [14]王浚,高濂.高固含量Y-TZP悬浮体的流变学特性[J].无机材料学报,1999,14(4):652~656.
    [15]司文捷,苗赫濯.高固相含量Si3N4浆料的研究(Ⅱ)——浆料的流变特性[J].硅酸盐学报,1996,24(5):531~536.
    [16] Xiaoli Wang, Lucun Guo. Effect of Preparation Methods on Rheological Properties of Al2O3/ZrO2 Suspensions [J]. Colloids Surfaces A: Physicochem. Eng. Aspects, 2006, 281: 171~176.
    [17] W. H. Shih, D. Kisailus, W.Y. Shih et al. Rheology and Consolidation of Colloidal Alumina-coated Silicon Nitride Suspensions [J]. Journal of the American Ceramic Society, 1996,79: 1155~1162.
    [18]聂福德,李凤生,宋洪昌等.超细粉体在液相中的分散性研究进展[J].化工进展,1996(4):24~28.
    [19]李世普主编.特征陶瓷工艺学[M].武汉:武汉理工大学出版社,2009
    [20]曾令可,李秀艳编著.纳米陶瓷技术[M].广州:华南理工大学出版社,2006
    [21]唐学原,茹红强. SiC陶瓷浆料流变性能的研究[J].厦门大学学报(自然科学版),2004,43(4):527~530.
    [22] A. Pettersson, G. Marino, A. Pursiheimo et al. Electrosteric Stabilization of Al2O3, ZrO2, and 3Y-ZrO2 Suspensions: Effect of Dissociation and Type of Polyelectrolyte [J]. Journal of Colloid and Interface Science, 2000, 228: 73~81.
    [23]李玮,顾明元,金燕萍.分散剂含量对碳化硅浆料流变性能的影响[J].硅酸盐学报,2004,32(11):1356~360.
    [24]孙静,高濂,郭景坤. SiC粉体表面性质及其浆料流变性质研究[J].无机材料学报,2000,15(3):426~430.
    [25] Qiang Huang, Ping Chen, Mingyuan Gu et al. Effect of Surface Modification on the Rheological Behavior of Concentrated, Aqueous SiC Suspensions[J]. Materials Letters, 2002,56(4): 546~553.
    [26] Zhang Ning, Cai Qingkui, Ru Hongqiang et al. Coating of SiC Powder with YAG Phase[J]. Journal of rare earths, 2005, 23(3): 299~303.
    [27]武七德,王浩,王萍.表面包覆改性技术在陶瓷技术中的应用[J].现代技术陶瓷,2000,4:18~21.
    [28]张苏,钱家盛,章于川.纳米粉体的表面改性研究[J].中国粉体工业,2008,6:12~16.
    [29]张立德,牟季美编.纳米材料和纳米结构[M].北京:科学出版社,2001
    [30]张宁,茹红强,才庆魁著. SiC粉体制备及陶瓷材料液相烧结[M].沈阳:东北大学出版社,2008
    [31]李懋强.超细粉体的化学合成[J].中国粉体技术,2000,6:21~31.
    [32]龙石红,邓斌.不同分散剂对二氧化钛颗粒稳定分散性的影响[J].渝西学院学报(自然科学版),2003,2(4):12~14.
    [33] Jan J. Spitzer. Colloidal Interactions: Contact Limiting Laws, Double-layer Dissociation, and“Non-DLVO”(Derjaguin-Landau-Verwey-Overbeek) Forces [J]. Colloid & Polymer Science, 2003, 281(6): 589~592.
    [34]李葵英著.界面与胶体的物理化学[M].哈尔滨:哈尔滨工业大学出版社,1998
    [35]天津大学物理化学教研室编.王正烈,周亚平,李松林等修订.物理化学(下册,第四版)[M].北京:高等教育出版社,2001
    [36]王浚,高濂,孙静. Y-TZP悬浮体的界面吸附特性[J].无机材料学报,1999,14(5):757~762.
    [37] Karin Lindqvist, Elis Carlstr?m, Michael Persson et al. Organic Silanes and Titanates as Processing Additives for Injection Molding of Ceramics[J]. Journal of the American Ceramic Society, 1988, 72 (1): 99~103.
    [38] Zhang N., Wang L. Y., Liu H.et al. Nitric Acid Oxidation on Carbon Dispersion and Suspension Stability [J]. Surface and Interface Analysis, 2008, 40: 1190~1194.
    [39]韦群燕,潘云昆.超细银粉在有机介质中的分散及其稳定性[J].电子元件与材料,2000,19(1):22~23.
    [40] Prabhakaran K., Ananthakumar S., Pavithran C. et al. Effect of Hydrolysed Aluminium Treatment on Rheological Characteristics ofα-alumina Slurries[J]. Journal of Materials Science, 2001, 36: 4827~4831.
    [41]陈宗淇,戴闽光.胶体化学[M].北京:高等教育出版社,1984
    [42] Sen Mei, Juan Yang, JoséM.F. Ferreira. Effect of Dispersant Concentration on Slip Casting of Cordierite-Based Glass Ceramics[J]. Journal of Colloid and Interface Science, 2001, 241 (2): 417~421.
    [43] XL Wang, T Tsuru, S Nakao et al. The Electrostatic and Steric-hindrance Model for the Transport of Charged Solutes through Nanofiltration Membranes[J]. Journal of membrane science, 1997, 13 (1): 19~32.
    [44]才庆魁,刘昊,张宁等.湿化学法合成纳米陶瓷粉体的分散性研究进展[J].中国非金属矿业导刊,2006,(6):7~11.
    [45]张云龙,张宇民,赵晓静等.湿法成型陶瓷料浆研究进展[J].兵器材料科学与工程,2007,30(1):66~70.
    [46]张芳,胡志强,蔡英骥.聚乙二醇加入量对锆钛酸铅粉体细度的影响[J].大连轻工业学院学报,2002,21(3):164~167.
    [47]马文有,田秋,曹茂盛等.纳米颗粒分散技术研究进展——分散方法与机理(1)[J].中国粉体技术,2002,(3):28~31.
    [48]周祖康,顾惕人,马季铭编著.胶体化学基础[M].北京:北京大学出版社,1987
    [49]胡志强主编.无机材料科学基础教程[M].北京:化学工业出版社,2003
    [50]孙国梁,夏光华,李培健.SiC电热陶瓷的组成与导电性能[J].陶瓷研究,1999,14(4):9~14.
    [51]徐栋,白加海,杨东亮等.陶瓷电热材料的研究与应用[J].山东陶瓷,2007,30(3):28~31.
    [52]吕振林,高积强,王红洁等.添加元素对反应烧结碳化硅导电特性的影响[J].西安交通大学学报,2000,34(2):92~94.
    [53]魏磊.碳化硅电热材料的制备及其结构与性能的研究[D].武汉:武汉理工大学,2008
    [54]雷海波,肖汉宁,郭文明等.粗SiC颗粒对再结晶碳化硅陶瓷抗热震性能的影响[J].机械工程材料,2010,34(8):60~67.
    [55]陈宇红.高固含量SiC浆料流变性能的研究[J].佛山陶瓷,2007,(7):19~20.
    [56]赵雪菲,郭露村.水基SiC悬浮体的流变特性[J].中国陶瓷,2008,44(7):15~18.
    [57]唐学原,茹红强. SiC陶瓷浆料流变性能的研究[J].厦门大学学报(自然科学版),2004,43(4):527~530.
    [58]李欢欢,张志力,李建保.注浆成型碳化硅浆体的流变性能研究[J].人工晶体学报,2009,38:168~171.
    [59]张宇民,张云龙,赵晓静等.碳化硅料浆分散特性研究[J].兵器材料科学与工程,2007,30(5):4~8.
    [60]吉晓莉,郭兵健,李美娟等. pH值对包覆改性SiC料浆分散特性和流变性的影响[J].硅酸盐学报,2004,32(2):113~117.
    [61]王富耻主编.材料现代分析测试方法[M].北京:北京理工大学出版社,2006
    [62]黄文信.碳化硅粉体表面改性及浆料流变性研究[D].沈阳:沈阳大学,2010
    [63]谢晶曦编著.红外光谱在有机化学和药物化学中的应用[M].北京:北京科学出版社,1987
    [64]吉晓莉,郑彩华,魏磊等.氨基硅烷偶联剂表面改性SiC微粉的研究[J].化学与生物工程,2008,25(1):21~23.
    [65]刘艳,李英霞,李建伟等.以四乙基氢氧化铵-四甲基氯化铵为模板剂水热法合成UZM-5沸石[J].催化学报,2010,31(7):803~808.
    [66] Jennifer A. Lewis. Colloidal Processing of Ceramics [J]. Journal of the American Ceramic Society, 2000, 83 (10): 2341~2359.
    [67] Prabhakaran K., Ananthakumar S., Pavithran C et al. Effect of Hydrolysed Aluminium Treatment on Rheological Characteristics ofα-alumina Slurries [J]. Journal of Materials Science, 2001, 36: 4827~4831.
    [68] LIU X. J., HUANG L. P., SUN X. W.et al. Rheological Properties of Aqueous Silicon Nitride Suspensions [J]. Journal of Materials Science, 2001, 36:3379~3384.
    [69]巫俊斌.利用富硼渣制备α′-Sialon基复相陶瓷及其性能研究[D].沈阳:东北大学,2010
    [70] C. Kaya, E.G. Butler. Plastic Forming and Microstructural Development ofα-alumina Ceramics from Highly Compacted Green Bodies Using Extrusion [J]. Journal of the European Ceramic Society, 2002, 22 (12): 1917~1926.
    [71] S. Ananthakumar, A. R. R. Menon, K. Prabhakaran et al. Rheology andPacking Characteristics of Alumina Extrusion Using Boehmite Gel as a Binder [J]. CeramicsInternational, 2001, 27 (2): 231~237.
    [72]焦万丽,刘宜汉,姚广春等. NiFe2O4尖晶石粒度级配对振实效率的影响[J].东北大学学报(自然科学版),2004,25(5):445~447.
    [73]刘浩斌.颗粒尺寸分布与堆积理论[J].硅酸盐学报,1991,19(02):164~172.
    [74]单达文,饶平根,陈国安等. Al2O3料浆流变性能的研究[J].中国陶瓷,2009,45(3):50~52.
    [75]李纯成,丘泰.α-Al2O3/ZrO2(3Y)复相陶瓷浆料的流变性能[J].材料科学与工程学报,2008,26(1):68~71.
    [76] Xiang Jun-hui, Huang Yong, Xie Zhi-peng. Study of Gel-tape-casting Process of Ceramic Materials [J]. Materials Science and Engineering: A, 2002, 323 (1-2): 336~341.
    [77] A. A. Collyer, D. W. Clegg (Ed.). Rheological Measurement [M]. London and New York: Elsevier Applied Science, 1988.
    [78] Peizhi Lia, Yiding Shena, Xiaorui Lia. Preparation and Application of Amphoteric Polyacrylate Containing Long Hydrophobic Aliphatic Chain in the Presence of Poly(vinyl alcohol) [J]. Polymer-Plastics Technology and Engineering, 2011, 50 (1): 29~35.
    [79]李益民,曲选辉,黄伯云.金属注射成形喂料的流变学性能评价[J].材料工程,1999,(7):32~35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700