微波与颗粒物质相互作用的机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了微波应用的现状,尤其是微波与物质相互作用的机理。根据Maxwell方程组和非Debye弛豫理论,首次导出了微波辐照下材料的吸波公式,并利用该理论公式成功解释了镍铁矿、氧化铝和橡胶的吸波特性;研发了测量工业物料水分的微波设备,并用该设备系统地研究了有色金属和黑色金属精矿水分的微波测量方法;提出了微波检测物质显微结构的方法,并申请了十项专利。本文导出的方程、研发的设备以及提出的方法对促进微波技术在材料和冶金领域的推广应用具有重要意义。本文研究的主要内容和结论归结如下:
     Ⅰ、对颗粒材料而言,其吸波机理是非Debye的,与材料的显微结构有关。吸波公式为:利用该公式可以从理论上解释了镍铁矿、氧化铝和橡胶的吸波特性,结果表明镍铁矿和氧化铝的弛豫时间与温度成反比,温度越高弛豫时间越小,镍铁矿和氧化铝的吸波性能越好;而橡胶的弛豫时间与温度的关系为τ_(T)=τ_0exp(-B/(T_0-T)),温度升高时其弛豫时间变化逐步减慢,硫化后的橡胶吸波性能差。
     Ⅱ、研究微波与物质相互作用机理时,微波场强大小是关键。在微波通信与传统微波检测领域中,微波照射下物质特性不变,微波与物质相互作用是线性时不变的;在微波加热与微波化学领域中,微波照射下物质特性发生了变化,微波与物质相互作用是非线性的和时变的。本文综述了该领域的研究及进展,并进行了初步的分析和计算。
     Ⅲ、成功研制了检测材料显微结构与吸波性能的微波设备,并用该设备测试了沥青石墨粉混合物及其它矿物的吸波特性,实验结果表明:虽然沥青不吸波,但加入导电的石墨粉后,其吸波性能良好;研究微波技术在材料与冶金领域中的应用时,测量材料吸波特性非常重要,与能耗有关,关系到微波技术在材料与冶金领域应用项目的成败。
     Ⅳ、在冶金工业中,为了控制颗粒物质的含水量、产品质量和减少能耗,必须测量颗粒物质的含水量。微波水分测量技术已应用于许多工业领域,然而在冶金工业中的应用几乎没有报道。已证明微波穿透深度比红外大,微波能测量体水分。同时,微波测量水分响应快,并且安全。因此本文研制了测量工业物料水分的微波设备,并用该设备系统地研究了有色金属和黑色金属精矿水分的微波测量方法,实验结果表明:微波可以快速测量精矿的水分;微波检测精度高,误差一般小于0.5%;微波快速测量水分时,被检测物粒度和比重等影响检测精度,一般而言,粒度大,精度低,比重小,精度高;微波检测水分受环境温度影响,必须进行温度补偿。
     Ⅴ、为了检验微波检测物质显微结构方法的普适性,本文系统研究了微波检测技术在其它领域的应用,实验结果表明:微波检测技术可用于精密诊断植物的水分、监测化学反应动态过程、检测烟箱缺条或烟条缺包、测量松散物料流量和检测物质结晶水。例如,微波传感器能用于热分析,与TG、DTG、DTA和DSC比较,微波传感器响应快、测量方便;与IR、Raman和NMR等方法比较,微波传感器价格低。
     总之,本文导出了微波辐照下材料的吸波公式,并从理论上成功解释了在高温下镍铁矿、氧化铝和橡胶的吸波特性,表明了微波高温技术在材料与冶金领域应用的优势。此外,还提出了微波检测物质显微结构的方法,并用微波方法测量了有色金属和黑色金属精矿水分。以上成果是微波与颗粒物质相互作用机理研究的突破,对促进微波技术在材料和冶金领域的推广应用具有重要的意义。
The state of the art of microwave applications, in particular, the mechanism of microwave interaction with matter, was reviewed in this Ph.D thesis. Based on Maxwell's equation and non-Debye relaxation theory, a new equation for the description of dielectric losses under microwave irradiation was developed for the first time. This equation can be applied to successively explain the microwave absorption properties of nickeliferous limonitic laterite ores, alumina, and rubber compounds, respectively. A microwave setup for measuring the moisture content of industrial materials was also invented. The moisture content of nonferrous and ferrous metals minerals concentrates can be measured accurately by using this microwave setup. In this thesis, the microwave techniques for detecting the microstructure of materials was developed and 10 patents was applied. The equation and the techniques developed in this thesis have been and will be found momentously significant to develop more microwave applications in materials sciences and metallurgical engineering. The main contents and conclusions obtained were as follows:
     Ⅰ、For granular materials, microwave absorption properties of the materials is a non-Debye relaxation processes which is relevant to the microstructure of materials. The microwave absorption equation of the materials as follows: Based on the above equation, the microwave absorption properties of nickeliferous limonitic laterite ores, alumina, and rubber compound were successively explained. It was found that the relaxation time of nickeliferous limonitic laterite ores and alumina are inversely proportional temperature. Namely, the higher temperature is, the smaller relaxation time of the materials attained and the more microwave power absorbed by nickeliferous limonitic laterite ores and alumina is. It was also found that the relationship between relaxation time r of rubber compound and temperature T as follows:τ(T)=t_0exp(-B/(T_0-T)). Namely, the higher temperature is, the slower relaxation time change of the rubber compound attained. Moreover, the vulcanized rubber absorbed less microwave power.
     Ⅱ、In order to study mechanism of microwave interaction with materials, microwave field intensity is a key parameter. In the fields of microwave communication and microwave detection, the properties of materials under microwave irradiation are invariant. The microwave interaction with materials is linear. By contrast, in the fields of microwave heating and microwave chemistry, the properties of materials under microwave irradiation are variable and the microwave interaction with materials is non-linear. Development and advance concerning the fields of microwave interaction with materials were reviewed. Preliminary results are obtained by computation and analysis.
     Ⅲ、A microwave setup for detecting the microstructure and the microwave absorption properties of materials was developed. The microwave absorption properties of graphite powder-pitch mixture and other ore materials were successful studied by this microwave setup. Interestingly, good absorption properties of the graphite powder-pitch mixture could be obtained by adding graphite powder which is a conductor although the pitch do not absorb microwave. To study microwave applications in the fields of material and metallurgical engineering. the properties of materials under microwave irradiation is a key parameter relevant to the efficiency of microwave power which will decide whether microwave power can be applied successfully or not in the fields of materials and metallurgical engineering.
     Ⅳ、In the metallurgical industry, the exact moisture content of the granular materials has to be determined in order to allow control of the water dosage, of the quality of the product,and of the reduction of applied energy. Moisture determination by microwave is applied in many branches of industry. However, few applications have been reported in the metallurgical industry. It has been shown that the penetration depth of microwaves is much greater than that of infrared radiation, and microwave methods can measure the volume moisture content of the materials. In addition, microwave methods are much safer and faster than ionizing radiation methods. Hence a microwave setup for measuring the moisture content of industrial materials was developed in this Ph.D thesis. And the moisture contents of nonferrous and ferrous metals minerals concentrates were measured by this microwave setup. It was shown that this microwave setup is a practical and accurate technique to measure the moisture content of mineral concentrate with the standard deviation of less than 0.5%. It was also shown that the sizes and the specific gravity of granular materials have influence on the precision of moisture measurement by microwave. Generally speaking, the larger the size of granular matter is. the lower precision of moisture measurement attained, and the lower specific gravity of granular materials is, the higher precision of moisture measurement attained. The environmental temperature has also influence on determination of the water content of granular matter by microwave, thus the value of the moisture content of the materials was compensated for.
     Ⅴ、In order to explore other applications of the method for detecting the microstructure of materials by microwave, the microwave detecting techniques developed here were also used in other fields. It is clearly shown that the microwave sensor technique can be used to detect plant water status accurately, to monitor the chemical reaction kinetics, to detect a shortage in tobacco box or bar, to measure flux of granular materials and even to acquire the information of various hydration states of salt hydrates. For example, the microwave sensor could be used in thermal analysis accurately and efficiently, which is a key technique in chemistry, metallurgy, mineralogy and geology. Comparing with the method of thermal analysis using TG, DTG, DTA, and DSC, the microwave sensor has the advantages of high accuracy, fast measurement and more convenience. While comparing with the IR spectroscopy, Raman spectroscopy and NMR spectroscopy et al., the microwave sensor has the advantages of low price, low power and more convenience also.
     In a word, a new equation for the description of dielectric losses under microwave irradiation was developed. This equation can be applied to successively explain the microwave absorption properties of nickeliferous limonitic laterite ores, alumina and rubber compounds at elevated temperature, respectively. The equation implies that the high temperature application of microwave in the fields of materials and metallurgical engineering is preferable. In addition, the microwave techniques for detecting the microstructure of materials were presented. The moisture content of nonferrous and ferrous metals minerals concentrates were measured by the microwave technique. It is a breakthrough in studying mechanism for microwave interaction with materials and it is of momentous significance in studying and developing microwave applications in the fields of materials and metallurgical engineering.
引文
[1]Elliott R S. The history of electromagnetics as Hertz would have known it. IEEE Transaction on Microwave Theory and Techniques. 1988,36:830-858
    [2]Sobol H, Tomiyasu K. Milestones of Microwave. IEEE Transaction on Microwave Theory and Techniques, 2002,50:594-611
    [3]Paulraj A, Nabar R, Gore D. Introduction to Space-time Wireless Communications. England: Cambridge University Press, 2003
    [4]Gabriella M, Benedetto D, Giancola G. Understanding Ultra Wide Band Radio Fundamentals. Rome: Pearson Education Inc. 2004
    [5]孙利民,李建中,陈渝著,无线传感器网络.北京:清华大学出版社,2005
    [6]Reed J H, Neel J, Phillips K A. et al. Software Radio: A Modern Approach to Radio Engineering. New York: Prentice Hall PTR, 2002
    [7]Grant E H. Microwave: Industrial, Scientific, and Medical Applications. Boston: Artech House Inc, 1992
    [8]Barton D K. A half century of radar. IEEE Transaction on Microwave Theory and Techniques, 1984,32:1161-1169
    [9]Ulaby F T. Microwave Remote Sensing Fundamentals and Radiometry. Norwood MA: Artech House Inc, 1981
    [10]Nyfors E, Vainikainen P. Industrial Microwave Sensors. Norwood MA: Artech House Inc,1989
    [11]Von Hippel A. Dielectric Materials and Applications. New York: Technology Press of MIT and Wiley, 1954
    [12]Kraszewski A. Microwave Aquametry. New York: IEEE Inc. 1996
    [13]Kupfer K, Knochel R. Sensor Update. Weinheim: WILEY-VGH Verlag GmbH, 2000
    [14]Kupfer K. Electromagnetic Aquametry. Heideberg: Springer-Verlag, 2005
    [15]Osepchuk J M. A History of Microwave Heating Applications. IEEE Transaction on Microwave Theory and Techniques, 1984, 32(9): 1200-1223
    [16]Guy A W. History of biological effects and medical applications of microwave energy. IEE, 1984, 32:1182-1984
    [17]金钦汉.微波化学的发展与展望.见:中国化学会全国微波化学学术讨论会论文摘 要集.湖北:2005,10,1-2
    [18]金钦汉,戴树珊,黄卡玛,微波化学.北京:科学出版社,2001
    [19]彭金辉,杨显万,微波能技术新应用.昆明:云南科技出版社,1997
    [20]Nüchter M, Ondruschka B, Bonrath W, et al. Microwave assisted synthesis-a critical technology overview. Green chem., 2004, 6:128-141
    [21]David A. Microwave Chemistry: Out of the Kitchen. Nature, 2003, 421:571-572
    [22]彭虎,李俊.高温加热技术进展.见:第十二届全国微波能应用学术会议论文集.成都:2005,10,22-30
    [23]Jahngen E G E, Lentz R R, Pesheck P S, Sackett P H. Hydrolysis of adenosine triphosphate by convenient and microwave heating. J. Org. Chem., 1990,55:3406-3409
    [24]Bose A K, Manias M S. Highly accelerated reactions in microwave oven: synthesis of heterocycles. Hetrocycles., 1990, 30(2): 741-744
    [25]无线电教程编写委员会,黄铭等参编,无线电教程(上,中,下册).北京:红旗出版社,2005
    [26]黄铭,宗荣,申东娅等编著,现代信息通信网络基础.昆明:云南大学出版社,2002
    [27]Oliner A A. Historical perspectives on microwave field theory. IEEE Transaction on Microwave Theory and Techniques, 1984, 32:991-996
    [28]Rappaport T S著,蔡涛等译,无线通信原理与应用.北京:电子工业出版社,1999
    [29]Ojanpera T,Prasad R著,朱旭红等译,宽带CDMA:第三代移动通信技术.北京:人民邮电出版社,2000
    [30]Puschner H. Heating with microwaves. Phillips Technical Library, 1966
    [31]Okress E C. Microwave power engineering. New York: Academic Press, 1968
    [32]Osepchuk J M, Microwave Power Applications. IEEE Transaction on Microwave Theory and Techniques, 2002, 50(3): 1200-1223
    [33]Roy R, Agrawai D, Cheng J, et al. Full Sintering of Powder-Metal Bodies in a Microwave Field. Nature, 1999, 399:668-670
    [34]Agrawal D. High Temperature Microwave and Multi-energy Processing Technology:What is New?见:第十二届全国微波能应用学术会议论文集.成都:2005,10,1-9
    [35]彭虎,李俊,一种用工业微波炉生产氮化钒的方法,中国发明专利,专利号 200410023104.0
    [36]彭金辉等,固体废弃物(烟杆、甘蔗渣)制造活性炭工艺技术研究,云南省重点攻关项目,项目编号2002NG19
    [37]彭金辉等,高钙镁钛铁矿制取高品质富钛料新工艺中试,攀枝花市科技局项目中期评估报告,2005,3
    [38]许多丰等,利用尾矿生产超细活性氧化锌研究,白银市2002年科技进步一等奖
    [39]崔礼生等,微波技术在硫化矿中的应用.见:第十二届全国微波能应用学术会议论文集.成都:2005,10,209-212
    [40]黄铭,彭金辉,王家强等,微波与物质相互作用加热机理的理论研究,昆明理工大学学报,2005,30(6):15—17
    [41]Ming Huang, Jinhui Peng, Jingjing Yang, et al. A New Equation for the Description of the Dielectric Losses Under Microwave Irradiation. J.Phys.D: Appl.Phys, 2006,39:2255-2258
    [42]黄铭,彭金辉,王家强等,正弦电磁场作用下介质吸波特性研究,四川大学学报(增刊),2005,42(2):66-68
    [43]Senise J T, Jermolovicius L A, Microwave Chemistry—A Fertile Field for Scientific Research and Industrial Applications, Proceedings SBMO/IEEE MTT-S, 2003
    [44]Baghurst D R and Mingos D M. 1992 J. Superheating effects associated with microwave dielectric heating. J Chem. Soc., Chem. Commun. 674-677
    [45]Rybakov K I and Semenov V E. Proc. 7th Int.Conf. on Microwave and High Freq. Heating (Valencia), 1999, 217-219
    [46]Senise J T and Jermolovicius L A. Proc. of the 2003 SBMO/IEEE-S IMOC Vol. 3, PD01-PD06
    [47]Isaacs N. Physical Organic Chemistry. Belfast: Longman, 1987,96-100
    [48]Cherradi A, Desgardin G, Provost J and Raveau B. Electroceramics Ⅳ, Vol 2, ed Wasner R., Hoffmann S, Bonnenberg D and Hoffmann C, Aachen: RWTN, 1994,1219-1224
    [49]Rybakov K I, Semenov V E. Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field. Physical Review B, 1995.52(5):3030-3033
    [50]Torres F and Jecko B. Complete FDTD analysis of microwave heating processes in frequency-dependent media. IEEE Transaction on Microwave Theory and Techniques, 1997, 45(1): 108-117
    [51]Greengard L. The rapid evaluation of potential fields in three dimensions. Boston, MA: MIT Press, 1988
    [52]Harrington R F. Field computation by moment methods. Melbourne, FL: Krieger,1982
    [53]Hughes T J R. The finite element method. Englewood Cliffs, N J: Prentice Hall, 1987
    [54]Taflove A, Hagness S C. Computational electrodynamics: The finite-difference time domain method. 2nd edn. Boston, MA: Artech, 2000
    [55]Brebbia J C. The boundary element method of engineers. London: Pentech, 1980
    [56]Bossavit A. Computational electromagnetism, variational formulations, edge elements, complementarity. New York: Academic, 1998
    [57]Adam S F. Microwave instrumentation: An historical perspective. IEEE Transaction on Microwave Theory and Techniques, 1984, 32:1157-1160
    [58]Kroemer H. Theory of a wide gap emitter for transistors. Proc.IRE, 1957, 45:1535-1537
    [59]Watts G B, Alford A. An automatic impedance plotter based on a hybrid-like network with a very wide dynamic range. IRE con.Rec., 1957, 5:146-150
    [60]Anderson R W, Dennison O T, An advanced new network analyzer for sweep measuring amplitude and phase froom 0.1-12.4Ghz. Hewlett-Packard J., 1967, 18(6):2~10
    [61]Okwit S. An historical view of the evolution of low-noise concepts and techniques.IEEE Transaction on Microwave Theory and Techniques, 1984, 32:1068-1082
    [62]Greiling P. The historical development of GaAs FET digital IC technology. IEEE Transaction on Microwave Theory and Techniques, 1984, 32:1144-1156
    [63]黄卡玛、赵翔编著,电磁场中的逆问题及应用.北京:科学出版社,2005
    [64]Oliver D and Dominique L. Level set methods for inverse scattering. Inverse problems,2006, 22:R67-R131
    [65]李家伟、陈积懋主编,无损检测技术手册.北京:机械工业出版社,2002,523—582
    [66]黄铭、彭金辉、张世敏等,材料介电常数的测量方法及应用.见:第十二届全国微波能应用学术会议论文集.成都:2005,17-19
    [67]Krupka J. Frequency domain complex permittivity measurements at microwave frequencies. Measurement Science and Technology, 2006, 17:R55-R70
    [68]Alenkowicz H, Levitas B. Time Domain Measurement of Complex Permittivity and Complex of Materials. Microwave, Radar and Wireless Communications,MIKON-2002,14th International Conference. 20-22 May 2002:302-305
    [69]Saxena S. Measurement of Permittivity and Dielectric Loss in 2,4-Dimethl Substituted Pyridine Using Microwave Cavity Spectrometer and Time Domain Reflectometer.Dielectrics and Electrical Insulation, IEEE Trans. 2004, 11 (2): 174-178
    [70]Matko V. Sensor for the Measurement of Liquid Permittivity Using One Measurement Cell, Precision Electromagnetic Measurements. Conference of Digest,14-19 May 2000:461-462
    [71]Carter R G. Accuracy of Microwave Cavity Perturbation Measurements. Microwave Theory and Techniques, IEEE Trans. 2001, 49(5): 918-923
    [72]Li Daiqing. A Simple Method for Accurate Loss Tangent Measurement of Dielectrics Using A Microwave Resonant Cavity. Microwave and Wireless Components Letters,IEEE2001, 11(3): 118-120
    [73]黄铭,余江,宗容,杨晶品等.电磁波共振腔快速测量喷吹煤粉水分的方法.公开号:CN1789991
    [74]黄铭,王威廉,杨明华,宗容,施继红,蔡光卉,杨晶晶,李俊杰,电磁波共振腔无损检测鸡蛋新鲜度的方法.公开号:CN1789992
    [75]黄铭,王家强,杨明华,宗容,施继红,蔡光卉,杨晶晶,李俊杰,一种监测化学反应动态过程的微波波谱法.申请号:200510048785.0
    [76]黄铭,赵东风,宗容,杨明华,蔡光卉,施继红,杨晶晶,一种精密诊断植物水分的电磁波共振腔法.申请号:200510048786.5
    [77]黄铭,王家强,杨晶晶,宗容,施继红,蔡光卉,常俊,一种检测物质结晶水的方法:申请号:200610048604.9
    [78]黄铭,王树兴,李攀,罗清敏,徐信荣.陈玉林,超高频谐振腔连续测量松散物粒流量的方法.公开号:CN1391087
    [79]黄铭,王树兴,李攀,罗清敏,徐信荣,陈玉林,邓宇斌,陈秋水,王保平,马应红,金云英,松散物流流量的测量装置.公开号:CN2525511
    [80]黄铭,王威廉,金云英,徐信荣,王帆.邱光普,陈秋水,左国松,李艳林,烟箱缺条、烟条缺包微波检测方法.公开号:CN1704755
    [81]黄铭,王威廉,金云英,徐信荣,王帆,邱光普,陈秋水,左国松,李艳林,烟箱缺条、烟条缺包微波检测装置.公开号:CN2700241
    [82]Ming Huang, Jinhui Peng, Jingjing Yang, Jiaqiang Wang. Microwave Cavity Perturbation Technique for Measuring the Moisture Content of Minerals Sulphide Concentrate, Minerals Engineering. available online 19 June 2006
    [83]Weilian Wang, Ming Huang, Zhengrao Bai, Liting Yao. Microwave-Based Sensor for Detection of a Shortage in Tobacco Box. In: The proceedings of IEEE ICIA 2005,HongKong & Macaco, China, 413:416
    [84]Ming Huang, Jingjing Yang,Weilian Wang and Jiaqiang Wang. Acquisition of various hydration states of FeSO_4.7H_2O and KAl(SO_4)_2.12H_2O by microwave sensor. In:2006China-Japan Joint Microwave Conference proceedings, Chengdu, Sichuan, China vol.2,768:770
    [85]Ming Huang, Weilian Wang, Jingjing Yang, Jiaqiang Wang and PingZhang. Acquisition of hydration states of Zn(CH_3COO)_3·2H_2O and KAl(SO_4)_2·12H_2O by microwave sensor. In: The proceedings of IEEE ICIA 2006, Weihai, Shandong, China,234:238
    [86]Ming Huang, Jiaqiang Wang, Weilian Wang. Jing.jing Yang and Junjie Li. Detection of the Catalytic Processes by Time-resolved Microwave Sensor. In: The proceedings of IEEE ICIA 2006, Weihai, Shandong, China, 229:233
    [87]Weilian Wang, Ming Huang, Jingjing Yang, Rong Zong. Precise Diagnosis of Water Stress in Plants Based onMicrowave Sensor. In: The proceedings of IEEE ICIA 2006, Weihai, Shandong, China, 1163:1167
    [88]黄铭,彭金辉,杨晶晶,微波快速测量氧化铝水分新方法的研究,矿冶工程,2006,26(4):32.34(EI刊源)
    [89]黄铭,彭金辉,王威廉,杨晶晶,微波快速测量硫化镍精矿水分新方法的研究,金属矿山,2006,5:39-41(EI刊源)
    [90]黄铭,彭金辉,杨晶晶,常俊,微波快速测量铜精矿水分新方法的研究,铜业工程,2006,1:72-74
    [91]黄铭,彭金辉,宗容,杨晶晶,微波测量氢氧化铝水分新方法的研究,轻金属,2006.4:17-19
    [92]黄铭,彭金辉,杨晶晶,常俊,微波测量硫化锌精矿水分新方法的研究,有色金属(冶炼部分),2006.12(已录用)
    [93]黄铭,彭金辉,杨晶晶,微波快速测量球团铁精矿混合原料水分新方法,物理测试,2006,24(4):32-35
    [94]黄铭,彭金辉,杨晶晶,微波快速测量制团预配矿水分新方法,钢铁研究,2006.10(已录用)
    [95]黄铭,彭金辉,杨晶晶等,一种与密度无关的微波快速测量氧化铝水分方法的研究,铝镁通信,2006,1:25-27
    [96]Lubomir G, Henric B and Bengt L, et al., In situ monitoring and control of moisture content in pharmaceutical power processes using an open-ended coaxial probe, Meas.Sci.Technol.2006, 17:1847-1853
    [97]Wylie S R, Shaw A and Al-shamma a A I. RF sensor for multiphase flow measurement through an oil pipeline, Meas.Sci.Technol.2006, 17:2141-2149
    [98]李景德,沈韩,陈敏著.电介质理论.北京:科学出版社,2003.p90,p68,p265
    [99]南策文著,非均质材料物理—显微结构-性能关联.北京:科学出版社,2005
    [100]Hamley T W. Introduction to Soft Matter. Chichester: John Wiley&Sons, 2000
    [101]Gennes P G de. Granular matter: a tentative view. Reviews of Modern Physics,71(2):S374-S382
    [102]Kadanoff L P. Built upon sand: Theoretical ideas inspired by granular flows, Reviews of Modern Physics, 71(1):435-444
    [103]刘文魁、庞东编著,电磁辐射的污染及防护与治理.北京:科学出版社,2003
    [104]赵春晖,杨苹元,微波测量与实验教程.哈尔滨:哈尔滨工程大学出版社,2002
    [105]殷之文主编,电介质物理学.北京:科学出版社,2003(第二版)
    [106]倪尔瑚著,材料科学中的介电谱技术.北京:科学出版社,1999
    [107]倪尔瑚著,介质谐振器的微波测量.北京:科学出版社,2006
    [108]常庆瑞,蒋平安,周勇等,遥感技术导论,北京:科学出版社,2004
    [109]Gabriel S, Gabriel C, Ccorthout E. The dielectric properties of biological tissues Ⅰ:Literature survey, Phys.Med.Biol., 1996, 41 (11):2231-2249
    [110]Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues Ⅱ: Measurements on the frequency range 10Hz to 20GHz, Phys.Med.Biol.,1996, 41 (11):2251-2269
    [111]Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissuesⅢ:Parametric models for the dielectric spectrum of tissues. Phys.Med.Biol.,1996,41(11):2271-2293
    [112]Elise C F, Hagness S C, Meaney P M, et al. Enhancing breast tumor detection with near-field imaging, IEEE microwave magazine, 2002, 3:48-56
    [113]Kraszewski A. Microwave Aquametry. New York: IEEE, Inc., 1996
    [114]Kupfer K, Kraszewski A, Knochel R. Sensor Update. Weinheim: WILEY-VCH Verlag GmbH, 2000
    [115]Kupfer K, Electromagnetic Aquametry. Heideberg: Springer-Verlag, 2005
    [116]蔡卫权,李会泉,张懿,微波技术在冶金中的应用,过程工程学报,2005,5(2):228-232
    [117]Guru B S, Hiziroglu H R. Electromagnetic Field Theory Fundamentals, second edition. Beijing: China Machine Press, 2005
    [118]洪伟等著,电磁场边值问题的区域分解算法,北京:科学出版社,2005
    [119]余亚秋主编,复杂系统中的电磁波.上海:复旦大学出版社,1995,250-254
    [120]Veselago V G. The electrodynamics of substances with simultaneously negative of ε and μ, Soviet Physics USPEKI, 1968, 10(4): 509-514
    [121]Pendry J B et al., Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans on MTT, 1999, 47(11): 2075-2084
    [122]Pendry J B et al., Extremely low frequency plasmons in metallic mesostructures.Physical Review Letter, 1996, 76(25): 4773-4776
    [123]Shelly R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction. Science, 2001,292:77-79
    [124]Kong J A, Wu B I, Zhang Y. Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and negative permeability. Applied Physics Letter,2002, 80(12): 2083-2086
    [125]周济,“超材料(metamaterials)”:超越材料性能的自然极限,四川大学学报(增 刊),2005,42(2):15-16
    [126]V.I.Gaiduk. Dielectric Relaxation and Dynamics of Polar Molecules. Singapore:World Scientific, 1999
    [127]Gabriel S, Lau R W, Gabriel C. The dielectric properties of biological tissues Ⅲ:Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol., 1996, 41 (11):2271-2293.
    [128]孙目珍编著,电介质物理基础.广州:华南理工大学出版社,2002,135-140
    [129]Torres F, Jecko B. Complete FDTD analysis of microwave heating processes infrequency-dependent and temperature. IEEE Trans. On MTT, 1997,45(1): 108-114
    [130]Brosseau C. Modelling and simulation of dielectrics heterostructures: a physical survey from an historical perspective. J.Phys.D: Appl.Phys. 2006, 39:1277-1294
    [131]王秉中编著,计算电磁学.北京:科学出版社,2002
    [132]王长清编著,现代计算电磁学基础.北京:北京大学出版社
    [133]葛德彪,闫玉波,电磁波时域有限差分方法.西安:西安电子科技大学出版社,第二版,2005
    [134]Maxwell JC. Electricity and Magnetism. Clarendon: Oxford, 1892
    [135]Debye P, Phys. Z, 1912, 3:97-100
    [136]Schroder T B. Hopping in Disordered Media: A Model Glass Former and a Hopping Model: [dissertation]. Denmark: Roskilde University, 2005
    [137]石顺祥,陈国夫,赵卫.刘继芳编著,非线性光学.西安:西安电子科技大学出版社,2003
    [138]堀江一之,牛木秀治(日),F M威尼克(加)著,张镇西等译,将大宗校,分子光子学—原理及应用.北京:科学出版社,2004
    [139]丁富荣,班勇,夏宗璜编著,辐射物理.北京:北京大学出版社,2004
    [140]张建奇,方小平编著,红外物理.西安:西安电子科技大学出版社,2004
    [141]Jonscher AK. Physical basis of dielectric loss. Nature,1975, 253:717-19
    [142]Jonscher AK. Universal Relaxation Law.London: Chelsea Dielectrics, 1996
    [143]Jonscher A K. Dielectric relaxation in solids. J.Phys.D: Appl.Phys., 1999,32:R57-R70
    [144]Havriliak S Jr, Havriliak S J. Dielectric and mechanical relaxation in materials. New York: Hanser, 1997
    [145]Gaiduk V I. Dielectric relaxation and dynamics of polar molecules, Singapore.New Jersey.London.Hongkong: World scientific, 1999, 12-14
    [146]Birnboim A, Calame J P, Carmel Y. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing. Journal of Applied Physics, 1999, 85(1):478-482
    [147]刘国强,赵凌志,蒋继娅编著,Ansoft工程电磁场有限元分析.北京:电子工业出版社,2005
    [148]Rybakov K I, Semenov V E. Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field. Physical Review B, 1995,52(5):3030-3033
    [149]Rybakov K I, Semenov V E, Freeman S A, Booske J H, Cooper R F. Dynamics of microwave-induced currents in ionic crystals. Phys.Rev. B, 1997, 55:3559-3563
    [150]Freeman S A, Booske J H, Cooper R F. Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field.Phys.Rev.Lett., 1995,74:2042-2046
    [151]Rybakov K I, Semenov V E. Possibility of plastic deformation of an ionic crystal due to the nonthermal influence of a high-frequency electric field. Phys.Rev. B, 1994,49:64-69
    [152]Freeman S A, Booske J H, Cooper R F. Modelling and numerical simulations of microwave-induced ionic transport. Journal of Applied Physics, 1998, 83(11):5761-5772
    [153]Whittaker A G. Diffusion in microwave-heated ceramics. Chem.Mater., 2005,17:3426-3443
    [154]辛勤主编,固体催化剂研究方法(下).北京:科学出版社,2004
    [155]Stuerga D, Gaillard P. Microwave heating as a new way to induce localized enhancements of reaction rate. Non-Isothermal and heterogeneous kinetics. Tetrahedron,1996, 52(15):5505-5510
    [156]Williams G, Watts D C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday. Soc. 1970, 66:80-85
    [157]Pickels C A. Microwave heating behaviour of nickeliferous limonitic laterite ores. Minerals Engineering, 2004, 17:775-784
    [158]Westphal W and Sils. Microwaves: Industrial, Scientific, and Medical Applications ed Grant E H. London: Artech House,1992
    [159]Mallorqui J J, Aguasca A, Cardama A. Permittivity and temperature characterization of rubber compounds under high power microwaves. Electronics letters, 2001, 37(13):840-841
    [160]Olson G B. Computational design of hierarchically structured materials. Science,1997, 277:1237-1242
    [161]南策文著,非均质材料物理—显微结构-性能关联.北京:科学出版社,2005
    [162]张立德,牟季美,纳米材料和纳米结构.北京:科学出版社,2000
    [163]南策文,从非常规复合效应产生新型材料.自然科学进展,2004,14(4):390-396
    [164]Dang Z M, Lin Y H, Nan C W. Novel Ferroelectric Polymer Composites with High Dielectric Constants.Adv. Mater., 2003, 15:1625-1629
    [165]Wu J B, Nan C W, Lin Y H, Deng Y. Giant Dielectric Permittivity Observed in Li and Ti Doped NiP. Phys. Rev. Lett., 2002, 89:217601-217604
    [166]Gubernatis J E, Krumhansl J A. Macroscopic engineering properties of polycrystalline materials: Elastic properties. J. Appl. Phys., 1975.46:1875-1879
    [167]Xindong Wang, Zhang X G, Qingliang Yu. et al., Multiple-scattering theory for electromagnetic waves. Physical Review B. 1993.47(8): 4161-4167
    [168]Starke T K H, Johnston C. Dobson P et al., The effect of inhomogeneities in particle distribution on the dielectric properties of composite films. J.Phy.D: Appl. Phys. 2006, 39:1305-1311
    [169]Karkkainen K K, Sihvola A H, Nikoskinen K J. Effective permittivity of mixtures:Numerical validation by the FDTD method. IEEE Transactions on geoscience and remote sensing, 2000, 38(3): 1303-1308
    [170]Brosseau C. Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective. J.Phy.D: Appl. Phys., 2006, 39:1277-1294
    [171]Tuncer T, Bowler N, Youngs I J. Application of the spectral density function method to a composite system. Physica B, 2006. 373:306-312
    [172]肖纪美,师昌绪,新型材料与材料科学.北京:科学出版社,1988
    [173]Van Beek L K H. Dielectric behavior of heterogeneous system. Progress in Dielectrics,1967, 7:69-114
    [174]Sihvola A H, Kong J A. Effective permittivity of dielectric mixtures. IEEE Transactions on geoscience and remote sensing, 1988, 26(4): 420-429
    [175]王家礼,朱满座,路宏敏编著,电磁场与电磁波.西安:西安电子科技大学出版社,2000
    [176]Jin Au Kong. Electromagnetic wave. Beijing: Higher Education Press, 2002
    [177]Kafesaki M, Economou E N. Multiple-scattering theory for three-dimensional periodic acoustic composites. Phys.Rev., 1999, B60:11993-12001
    [178]Fishchuk I I. The AC conductivity and hall effects in inhomogeneous semiconductors.Phys.status Solidi. 1986, 93(2):675-684
    [179]Dyre J C. Universal low-temperature ac conductivity of macroscopically disordered nonmetals. Phys.Rev., 1993, B48:12511~12526
    [180]Almond D P, Vainas B. The dielectric properties of random R-C networks as an explanation of the 'Universal' power law dielectric response of solids. J.Phys.:Condens.Matter, 1999,11:9081-9093
    [181]Dyre J C, Schroder T B. Universality of ac conduction in disordered solids. Reviews of Modern Physics, 2000, 72(3):873-892
    [182]Almond D P, Bowen C R. Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. Physical Review Letters, 2004, 92 (15): 157601-11
    [183]Brosseau C. Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective. J.phys.D: Appl. Phys.,2006, 39:1277-1294
    [184]Almond D P, Bowen C R, Rees D A. Composite dielectrics and conductors:Simulation, Charaterization and Design. J.phys.D: Appl. Phys.,2006, 39:1295-1304
    [185]李永平,董欣,刘滠编著,Pspice电路设计与实验.北京:国防工业出版社,2005
    [186]Frank D J, Lobb C J, Highly efficient algorithm for percolative transport studies in two dimensions. Physical Review B, 1988, 37(1): 302-307
    [187]Bouamrane R, Almond D E The 'emergent scaling' phenomenon and the dielectric properties of random resistor-capacitor networks. J.Pys.Condens.Matter., 2003, 15:4080-4100
    [188]Campbell C K, Free space permittivity measurements on dielectric materials at millimeter wavelengths. IEEE Trans.Instrum.Meas., 1978, 27:54~62
    [189]ASTM D 5568.01,1995 Standard test method for measuring relative complex permittivity and relative magnetic permeability of solid materials at microwave frequencies (American Society for the Testing of Materials: www.astm.org)
    [190]Jenkins S, Hodgetts T E, Clarke R N, Preece A W. Dielectric measurements on reference liquids using automatic network analysers and calculable geometries. Meas.Sci.Technol., 1990, 1:691-702
    [191]周清一编著,微波测量技术.北京:国防工业出版社,1964
    [192]Metaxas A C, Meredith R J. Industrial microwave heating. Lndon: Peter Peregrinus Ltd., 1983,32-40
    [193]Julien A, Guillon P. Electromagnetic analysis of spherical dielectric shielded resonators. IEEE Transactions on microwave theory and technology, 1986, 34:723-729
    [194]Kobayashi Y, Fukuoka N, Yoshida S. Resonant modes for a shielded dielectric rod resonator. Electron.commun. Japan, 1981,64-B:44-51
    [195]Krupka J, Milewski A. Accurate method of the measurement of complex permittivity of semiconductors in H_(01n) cylindrical cavity. Electron. Technol., 1978,11:11-31
    [196]傅君眉、冯恩信编著,高等电磁理论.西安:西安交通大学出版社,2002
    [197]Waldron RA, Perturbation theory of resonant cavities. Proc. IEE. 1960, 107c:272-274
    [198]黄铭,彭金辉,张世敏等,沥青石墨混合物的吸波特性及应用.见:第十二届全国微波能应用学术会议论文集.成都:2005,79—80
    [199]Duran J. Powders, Sands and Grains. Berlin: Springer-Verlag, 2000
    [200]陆坤权,刘寄星主编,软物质物理学导论.北京:京大学出版社,2006
    [201]张健,蒋继穆,重有色金属冶炼设计手册(铜镍卷).北京:冶金工业出版社,1995
    [202]汤清华,马树涵等编著,高炉喷吹煤粉知识问答.北京:冶金工业出版社,2002
    [203]杨天钧,苍大强,丁玉龙编著,高炉富氧煤粉喷吹.北京:冶金工业出版社,1996
    [204]张健,蒋继穆,重有色金属冶炼设计手册(铜镍巷).北京:冶金工业出版社,1995
    [205]何焕华,蔡乔方,中国镍钴冶金.北京:2000
    [206]中国标准出版社第二编辑室编,铝及铝合金标准汇编(上).北京:中国标准出版社,2004
    [207]北京有色金属设计院总院等编,中有色金属冶炼手册:铅锌铋卷.北京:冶金 工业出版社,1995
    [208]中国标准出版社第二编辑室编,铝及铝合金标准汇编(上).北京:中国标准出版社,2004
    [209]辛勤主编(上册),固体催化剂研究方法.北京:科学出版社,2004
    [210]陈镜泓,李传儒编著,热分析及其应用.北京:科学出版社,1985
    [211]胡荣祖,史启祯主编,热分析动力学.北京:科学出版社,2001
    [212]Tanaka H. Thermal analysis and kinetics of solid state reactions. Thermochim. Acta., 1995, 267:29-44
    [213]唐定兴,赵芸,非等温法研究Ni(CH_3COO)_2.4H_2O脱水反应得动力学,安徽工程科技学院学报,2003,18:15—18
    [214]唐定兴,赵芸,水合乙酸锌脱水反应的动力学,化学物理学报,2003,16:237—239

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700