数据挖掘技术支持下的土壤重金属污染评价系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
(1)本文的研究意义。土壤不仅是农业生产的基础,而且还是人类生存坏境的重要组成部分,在生态系统中有着独特和重要的地位。目前中国土壤污染的总体形势相当严峻。引起土壤重金属空间变异的原因比较复杂,不仅包括母质、气候、地形等非人为因素,还有施肥、农药、土地利用方式和工业污染等人为因素。不同尺度上土壤重金属的变异情况和变异机理也会有所不同。由于人类活动(工业、农业生产)或者自然变化(土壤母质矿化)而引起的土壤重金属时空变化,这些变化均能导致土壤重金属时空属性数据的复杂化,而且土壤中不同重金属之间的相互关系也在空间上表现出复杂的相关性与变异性。因此,探索科学的土壤重金属污染评价方法、开发相应的土壤重金属污染评价软件对于保护土壤环境质量、消减土壤污染,保障我国土壤生态安全和粮食生产安全具有重要的现实意义。
     (2)本文的主要研究内容和研究方法。地统计学方法虽然在研究土壤重金属污染空间变异方面取得了很大的成功,但因为地统计学的应用首先要符合内蕴假设,而不同土壤特性的空间变异性是否符合内蕴假设尚不清楚;其次,半方差函数的拟合曲线选择受主观因素影响较大;再次,取样数目和采样布局直接影响变异程度的高低,如何经济、高效、可靠地确定采样策略和方法仍然是一个难题。同时由于Kriging方法模拟是利用周围已知样点的数据去模拟未知区域中的数据。在土壤重金属污染的空间分布模拟和评价中,很多变化剧烈的异常区的信息在Kriging插值平滑后丢失。富阳市土壤重金属含量受人为活动特别是工业活动影响强烈,空间自相关性相当低。统计分析表明富阳市土壤重金属含量在分布上变异强烈,不符合正态分布。另外,借助于GIS的空间分析技术往往也只能得到定性的分析结果,而很难综合考虑人类活动之间的交互作用。而空间数据挖掘技术恰恰能有效的弥补这些不足。由此本文结合区域土壤重金属污染评价系统的建立,引入决策树方法、模糊综合评判等数据挖掘方法,更好地适应重金属污染程度变异大而且相对区域较集中的特点,初步建立起了基于组件式GIS的土壤重金属污染评价系统,从而提高评价的针对性、精度及效率。
     (3)主要的研究结论。在应用决策树方法(CART)对整个富阳市进行土壤Zn污染评价后,结果显示其评价精度由原先的提高到了89.39%和87.18%(训练集和测试集)。Kappa系数则由原先的0.2584提高到了0.8296和0.8018(训练集和测试集)。结果还是比较令人满意。当然,决策树方法并不能取代地统计插值法,二者在这里是一种互补的关系。
     同时,相对一个行政区域而言,它有工业活动剧烈的乡镇,但同时也存在着相当数量的乡镇,因为自然条件、交通运输及自身发展的其它主客观因素影响,从而使得其工业活动处于一个较低的水平,这类地区重金属的空间分布主要受母质及土壤类型等自然因素影响,那么它还是符合Kriging方法的基本条件。在这种情况下,类似决策树的评价方法就有其欠缺与不足。所以在此提出了应用模糊数学的方法,先将各个乡镇的重金属空间分布的空间变异强烈程度进行比较,然后再针对该乡镇或者该地区所属乡镇的特点选择相应的模拟方法。本文利用了数据挖掘中的模糊综合评判方法,即利用各个乡镇在工业用地、建设用地、工业类型、境内交通及其距离交通主干线等因子方面的不同,分别计算出了隶属度并将污染程度按隶属度总共分5级。1为最轻污染,5则为污染最严重的乡镇。然后对这些地区或乡镇分别采取地统计或者决策树方法。从评价精度的结果来看,大部分地区(包括工业活动相当强烈的地区)的评价精度能提高到95%以上,特别是那些受到轻微污染的乡镇如湖源乡和常绿镇(它们的隶属度都为1),其评价精度能达到98%以上。
     最后,GIS与数学建模的紧密耦合提供了强大的技术支持。在环境、社会和经济问题的解决中,空间表达很重要。而现有的GIS软件缺乏复杂问题的预测能力和其它相关的分析能力,大多数数学模型描述的复杂的非空间过程非一般GIS系统所能完成的;应用模型软件则缺少足够灵活的类似GIS的空间分析环境,因而难以被缺少专业知识的用户接受;GIS与应用模型结合能使二者相辅相成,相得益彰。二者的紧密耦合是解决土壤重金属污染空间变异模拟评价的有效途径。
Alongside air,water and the biota,the soil is of central significance in ecosystem research as it is the place where many kinds of interactions take place between minerals,air,water and the living environment.Heavy metals in soil originate either from weathering of parent material and/or from numerous external contaminating sources.In unpolluted regions,parent materials are the primary source of trace elements.Human activities,such as non-point source agriculture activities,release of emissions from nearby point sources such as smelters,and traffic may also affect the chemical composition of soil.In urban areas,deposition of pollutants emitted to the atmosphere from point sources such as residential heating,industrial facilities and mobile sources such as traffic are the primary sources of soil pollution.Various aspects must be considered by the society to provide a sustainable environment, including a soil clean of heavy metal pollution.The first among them is to identify environments(or areas) in which anthropogenic loading of heavy metals puts ecosystems and their inhabitants at health risk.Based on the soil sampling point data, DEM,soil map,and land use map,the present study explored the interwined influences of these factors on the heavy metal concentrations in soils,and evaluated the quality of amble land considering the complex influencing factors.
     (1) To understand the spatial distribution of soil heavy metals contents,and identify pollution sources,multivariate analysis,geostatistical methods and spatial analysis have been developed and widely applied in soil systems.But these methods could not efficiently simulate the spatial distribution of heavy metals which are greatly influenced by human activities.However,a prior requirement of these methods is to quantify the spatial autocorrelation between properties at different locations so that the information from samples can be weighted into an estimator of the values at unsampled locations.As a new modeling approach,the data mining technology(fuzzy comprehensive judgment and decision tree models) has been shown to have high predictive accuracy and Geographic information systems(GIS) have increasingly become a valuable management tool,providing an effective infrastructure for managing,analyzing,and visualizing disparate datasets related to soils,topography,land-use and land cover.So integration of the data mining technology approach with a GIS offers a potential solution in meeting this challenge.
     (2) The Fuyang County is assumed as representative to counties in the Yangtze Delta where the economic development has witnessed an unprecedented rapid growth since economic reform in 1978 and also heavily contaminated by industrial waste, mining,vehicular emissions and so on.Statistic analysis showed that Cu,Zn,Pb and Cd had been added by exterior factors,and Ni was mainly controlled by natural factors.The combination of multivariate statistical and geostatistical analysis successfully grouped three groups(Cu,Zn and Pb;Cd;and Ni) of heavy metals from different sources.Through pollution evaluation,it was found that 15.76%of the study area for Cu,Zn and Pb,and 46.14%for Cd suffered from moderate or severe pollution.Further spatial analysis identified the limestone mining activities,paper mills,cement factory and metallurgic activities were the main sources for the concentration of Cu,Zn,Pb and Cd in soils,and soil Ni was mainly determined by the parent materials.
     The simulated semivariogram for the raw Zn data of Fuyang presented a horizontal line,denoting soil Zn content was greatly influenced by exterior factors. Thus,the Box-Cox transformation was used to obtain normally distributed transformed soil Zn content.The experimental semivariogram suggested that the Box-Cox transformed Zn contents are best fitted to a Gaussian model dominated by a long-range structure.The nugget,sill and range of this semivariogram is 0.21,0.43, 9508 m,respectively,and the determination coefficient(r~2) is 0.72.So in this study, the classification and regression tree(CART) has been integrated with GIS to predict the spatial distribution of soil heavy metals contents in Fuyang County.
     The overall CART accuracy of assigning samples to the right Zn classes is 89.39%and 87.18%,the Kappa coefficient is 0.8296 and 0.8018 respectively for training data and test data.This is a great improvement compared to ordinary Kriging method in ArcGIS.The total accuracy of assigning kriged estimates of Zn classes to measured values is 41.79%,and the corresponding Kappa coefficient is 0.2584.The main reason for increased accuracy might be that Zn content in this study area is greatly influenced by human activities leading to localized sharp variations and hotspots which are smoothed over by Kriging with a long range variogram.
     Certainly,the method of CART decreases the measurement scale of the raw data to a lower level for the classification of the target.But decision makers and spatial planners require information on soil quality for different purposes:to locate areas suitable for organic(ecologically clean) farming and agro-tourism;to select sites suitable for conversion of agricultural to non-agricultural land,particularly for urbanization;setting up protection zones for groundwater pumped for drinking water; to estimate costs of remediation of contaminated areas and similar.So these classifications are however useful when detailed concentrations are not required.Of course,CART can not replace Kriging to predict heavy metals concentrations at unsampled points.The two methods have their own respective advantages and disadvantages in simulation the spatial distribution of soil heavy metals concentrations.
     (3) In this study,the fuzzy comprehensive judgment method also has been integrated with GIS to predict the spatial distribution of soil heavy metals contents in Fuyang County.First,different township's membership was achieved in the Fuyang region by fuzzy comprehensive judgment.There were five membership degrees: unpolluted,light-degree,moderate,heavy-degree and severely polluted respectively. With different membership we have had different method to simulate the spatial distribution of soil heavy metals contents.Decision tree classification and kriging interpolation were both used.For example,the Huyuan and Changlv town's membership is 1,so they were polluted most lightly.Then the ordinary Kriging method was taken to simulate the spatial distribution of soil heavy metals contents for the spatial autocorrelation of the two towns were not severely destroyed by human activities.If the spatial autocorrelation of the towns was severely destroyed,i.e,the towns' membership is high(4 or 5),and then the decision tree model would be considered.The Divide-And-Conquer method has brought us a satisfied result of soil heavy metals contents prediction.Most towns of the Fuyang County could achieve a 95%or even higher assessment accuracy of assessment.
     (4) There are two primary advantages for the integration:①Spatial representation is critical to environmental problem solving,but GIS currently lack the predictive and related analytic capabilities necessary to examine complex problems;②Modelling tools typically lack sufficiently flexible GIS-like spatial analytic components and are often inaccessible to potential users less expert than their makers. The developed system seamlessly links ArcObjects and the data mining models, automating the transfer of parameters and data,and graphically displaying the analysis results.The system also removes the margin for error intrinsic to any manual process.Successful implementation of the data mining models involves the integration of GIS,multiple databases,and visualization tools for extraction of the needed model input parameters and for analysis and visualization of the simulated results.In this study,the developed system provided an approach for assessing the spatial distribution of soil heavy metals contents with high predictive accuracy,and to present model predictions over space for further application and investigation.
引文
Abderahman N.,Abu-Rukah Y.H.,2006.An assessment study of heavy metal distribution within soil in upper course of Zarqa River basin,Jordan.Environmental Geology,49,1116-1124.
    Abel D J,Kilby P J,Davis J R,1994.The systems integration problem.International Journal of Geographical Information System,8(1),1-12.
    Abrahams P W.,2002.Soils:their implications to human health.The Science of The Total Environment,291,1 -32.
    Adriano D.C.,2001.Trace elements in the terrestrial environment-biogeochemistry,bioavailability,and risks of metals(2nd ed.).Spring,Berlin Heidelberg New York,P.867.
    Al-Chalabi A.S.,Hawker D.,2000.Distribution of vehicular lead in roadside soils of major roads of Brisbane,Australia.Water Air and Soil Pollution,118,299-310.
    Al-Khashman O.M.,Shawabkeh R.A.,2006.Metals distribution in soils around the cement factory in southern Jordan.Environmental Pollution,140,387-394.
    Al-Khashman Omar.A.,2004.Heavy metal distribution in dust,street dust and soils from the work place in Karak Industrial Estate,Jordan.Atmospheric Environment,38,6803-6812
    Alloway B.J.,1995.Heavy metals in soils(2nd ed.).Balckie,p.339.
    Amini M.,Afyuni M.,Fathianpour N.,Khademi H.,Fl(u|¨)hler H.,2005a.Continuous soil pollution mapping using fuzzy logic and spatial interpolation.Geoderma,124,223-233.
    Amini M.,Afyuni M.,Khademi H.,Abbaspour K.C.,Schulin R.,2005b.Mapping risk of cadmium and lead contamination to human health in soils of Central Iran.Science of the Total Environment,347,64-77.
    Andrew S.Dye,Shih-Lung Shaw.,2007.A GIS-based spatial decision support system for tourists of Great Smoky Mountains National Park.Journal of Retailing and Consumer Services,14,269-278
    Arrouays, D., Martin, S et al., 2000. Shortrange spatial variability of metal contents in soil on a one hectare agricultural plot. Communications in Soil Science and Plant Analysis. 31(3-4), 387-400.
    Atkinson P M, Tatnall A R L. Neural networks in remote sensing-Introduction. International Journal of Remote Sensing, 1997,18, 699-709.
     Babu A. Jagadeesh, Thirumalaivasan D, Venugopal K.,2006. STAO: a component architecture for raster and time series modeling. Environmental Modelling & Software, 21,653-664
    Baisen Zhang, Ian Valentine, Peter Kemp, Greg Lambert.,2006. Predictive modelling of hill-pasture productivity: integration of a decision tree and a geographical information system. Agricultural Systems, 87,1-17
    Bansal O P., 1998. Heavy metal pollution of soils and plants due to sewage irrigation. Indian Environmental Health,40(11),51-52.
    Barrera-Bassols N, J.A. Zinck, E. Van Ranst., 2006.Local soil classification and comparison of indigenous and technical soil maps in a Mesoamerican community using spatial analysis. Geoderma, 135,140-162
    Battaglia A, N. Calace, E. Nardi, B.M. Petronio, M. Pietroletti. ,2007.Reduction of Pb and Zn bioavailable forms in metal polluted soils due to paper mill sludge addition Effects on Pb and Zn transferability to barley. Bioresource Technology, 98, 2993-2999
    Batty M, Xie Y,1994. Modeling inside GIS: Part 1. Model structures, exploratory spatial data analysis and aggregation. International of Geographical Information Systems,8(3),291-307.
    Bennett D A., 1997. A framework for the integration of geographical information systems and modelbase management. International Journal of Geographical Information Science, 11(4),337-3 57.
    Bhattacharya A., Routh J., Jacks G., Bhattacharya P., MOrth M., 2006. Environmental assessment of abandoned mine tailings in Adak, Vasterbotten district (Northern Sweden). Applied Geochemistry, 21, 1760-1780.
    Biasioli M., Barberis R., F. Ajmone-Marsan. The influence of a large city on some soil properties and metals content. Science of the Total Environment, 2006, 356, 154-164.
    Biot M. A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics, 12,155-165.
    Bojorquez-Tapis, L. A., Diaz-Mondragon S., Ezcurra, E., 2001. GIS-based approach for participatory decision making and land suitability assessment. International Journal of Geographical Information Science, 40,477-492.
    BOler Trond, Kostas Karatzas, Gertraud Peinel, Thomas Rose, Roberto San Jose.,2002.Providing multi-modal access to environmental data—customizable information services for disseminating urban air quality information in APNEE. Computers, Environment and Urban Systems 26,39-61
    Boon D. Y., Soltanpour P. N., 1992. Lead, cadmium, and zinc contamination of Aspen garden soils and vegetation. Journal of Environment Quality, 21, 81-86.
    Breiman L, Friedman J H, Olshed R A, et al., 1984. Classification and Regression Trees. Belmont, California: Wadsworth International Group, pp. 1-451.
    Breiman, L.,2001. Decision-tree forests. Machine Learning, 45 (1), 5-32.
    
    Brit L S, Tome A, Eirik F, et al.,2001. Heavy Metal Surveys in Nordic Lakes: Concentrations, Geographic Patterns and Relation to Critical Limits. AMBIO,30(1),2-10.
    Brun, L. A., Maillet, J., Richarte, J., Herrmann, P., Pemy, J. C., 1998. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils. Environmental Pollution, 102,151-161.
    Burrough, P.A.,1996. Environmental modeling with geographical information systems. (In: Kemp, Zarine (Ed.), Innovations in GIS 4. London, England: Taylor & Francis Publisher (pp. 143-153))
    Caetano S., J. Aires-de-Sousa, M. Daszykowskia, Y. Vander Heyden., 2005. Prediction of enantioselectivity using chirality codes and Classification and Regression Trees. Analytica Chimica Acta, 544, 315-326
    Cameron Euan, Chris Davies, Rob Elkins, Kylie Evans Anne Frankland, Shelly Gill etc.,2004.ArcGIS Engine Developer's Guide. (California: Environmental Systems Research Institute, Inc.)
    Chansheng, H., Changan, S., Changchun, Y., Brayan, P.A.,2001. A Window-based GIS-AGNPS interface. Journal of the American Water Resources Association 37 (2), 395-406
    Chen T B., Wong J W C., Zhou H Y et al., 1997. Assessment of trace metal distribution and contamination in surface soils of Hong Kong.Environmental Pollution,96(1),61-68.
    Chen T. B., Zheng Y. M., Lei M., Huang Z. C., Wu H. T., Chen H., Fan K. K., Yu K., Wu X., Tian Q. Z., 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60,542-551.
    Chen T., Liu X. M., Zhu M., Zhao K., Wu J., Xu J., Huang P., 2008. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China. Environmental Pollution, 151, 67-78.
    ChoT Seong-Hoon, David H. Newman.,2005.Spatial analysis of rural land development. Forest Policy and Economics, 7, 732- 744
    Cialella A T, Dubayah R, Lawrence W, et al, 1997. Predicting soil drainage class using remotely sensed and digital elevation data. Photogrammetric Engineering and Remote Sensing, 63,171-178.
    Cowin D L, Loague K L, Ellsworth T R.,1999. Advanced information technologies for accessing nonpoint source pollution in the Vadose zone: Conference overview. Journal of Environmental Quality,28,357-365.
    Crossman Neville D., Lyall M. Perry, Brett A. Bryan, Bertram Ostendorf., 2007.CREDOS: A Conservation Reserve Evaluation And Design Optimisation System.Chemosphere, 65,863-872
    
    da Silva E F., Zhang C S., Pinto If S., et al.,2004.Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal.Applied Geochemistry, 19(6),887-898.
    David H, Heikki M, Padhraic S., 2001. Principles of data mining. Cambridge: Massachusetts institute of technology.
    Davies B. E., Ballinger R. C., 1990. Heavy metals in soils in north Somerset, England, with special reference to contamination from base metal mining in the Mendips. Environmental Geochemistry and Health, 12,291-230.
    Davies D. J. A., Watt J. M., Thornton T., 1987. Lead levels in Birmingham dusts and soils. Science of Total Environment, 67,177-185.
    DBMiner Technology Inc. DBMiner 2.0 (Enterprise) User Manual For Windows NT.http://www.dbminer.com/
    De Carvalho L M T, Clevers J G P W, Skidmore A K, et al., 2004. Selection of imagery data and classifiers for mapping Brazilian semideciduous Arlantic forest. International Journal of Applied Earth Observation and Geoinformation, 5(3), 173-186.
    Deacon J. R., 1999. Distribution of trace elements in streamed sediment associated with mining activities in the upper Coloado river basin Colorado, USA, 1995-1996. Arch. Environ. Contain. Toxicol, 37(1), 7-18.
    Deacon J. R., 1999. Distribution of trace elements in streamed sediment associated with mining activities in the upper Coloado river basin Colorado, USA, 1995-1996. Arch. Environ. Contain. Toxicol, 37(1), 7-18.
    Deconinck E., T. Hancock, D. Coomans, D.L. Massart , Y. Vander Heyden., 2005.Classification of drugs in absorption classes using the classification and regression trees (CART) methodology. Journal of Pharmaceutical and Biomedical Analysis, 39, 91-103
    Espa G., R. Benedetti, A. De Meo, U. Ricci, S. Espa., 2006. GIS based models and estimation methods for the probability of archaeological site location. Journal of Cultural Heritage, 7,47-155
    Facchinelli A., Sacchi E., Mallen L., 2001.Multivariate statistical and GIS-based approach to identify heavy metal sources in soils.Environmenta] Pollution,114(3),313-324.
    Falah A. A., 1984. Contamination of environmental with heavy metals emitted from automotives. Ecotoxicology and Environmental Safety, (8), 152-161.
    Fazeli M. S., Khosravan F., Hossini M., Sathyanarayan S., Satish P. N., 1998.
    
    Enrichment of heavy metals in paddy crops irrigated by paper mill effluents near Nanjangud, Mysore District, Karnatake, India. Environmental Geology, 34(4), 297-301.
    Franssen, H. J. W. M. H., van Eijnsbergen A. C., Stein A., 1997. Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants. Geoderma, 77,243-262.
    Geertman S C M, Van Eck J R R.,1995. GIS and models of accessibility potential: An application in planning. International Journal of Geographical Information Systems,9(1),67-80.
    Goodchild M F, Raining R P, Wise, S, et al., 1992.Integrating GIS and spatial analysis: Problems and possibilities. International Journal of Geographical Information Systems,6(5), 407-423.
    Goovaerts P, Webster R, Dubois J P., 1997. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics.Environmental and Ecological Statistics,4(1),49-64.
    Govil P K, Reddy G L N, Krishna A K.,2001. Contamination of soil due to heavy metals in the Patancheru industrial development area, Andhra Pradesh, India.Environmental Geology, 41(3-4),461-469.
    Grazebisz W., Kocialkowski W. Z., et al., 1997. Copper geochemistry and avarlability incultivated soils contaminated by a copper smelter. Journal of Geochemistry Exploration, 58, 301-307.
    Hillyer A.E.M, McDonagh J.F, Verlinden A.,2006.Land-use and legumes in northern Namibia—The value of a local classification system. Agriculture, Ecosystems and Environment, 117,251-265
    
    Holmgren, G. G. S., Meyer, M. W., Chaney, R. L. Daniels, R. B., 1993. Cadmium, lead, zinc, copper, and nickel in agricultural soils of United States of America. Journal of Environmental Quality, 22, 335-348.
    Imrie C. E., Korre A., Munoz-Melendez, G., Thornton I., Durucan S., 2008. Application of factorial kriging analysis to the FOREGS European topsoil geochemistry database. Science of the Total Environment, 393, 96-110.
    Inacio M M., Pereira V., Pinto M S.,1998. Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal).Geoderma,85(4),325-339.
    Juang K. W., Chen Y. S., Lee D. Y., 2004. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 127(2), 229-238.
    Kabata-Pendias A., Dudka S., 1991. Baseline data for cadmium and lead in soils and some cereals of Poland. Water, Air, Soil pollution, 57-58,723-721.
    Kalogirou S., 2002. Expert systems and GIS: an application of land suitability evaluation [J]. Computers, Environment and Urban systems, 26,89-112.
    Kelly J., Thornton I., Simpson P R.,1996. Urban Geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain.Applied Geochemistry, 11,363-370.
    Kheir Rania Bou, Jean Chorowicz, Chadi Abdallah, Damien Dhont. (2008). Soil and bedrock distribution estimated from gully form and frequency: A GIS-based decision-tree model for Lebanon. Geomorphology, 93,482-492
    Kollias V. J., Kalivas D. P., 1998. The enhancement of a commercial geographical information system with fuzzy processing capabilities for the evaluation of land resources. Computers and Electronics in agriculture, 20, 79-95.
    Koperski K, Adhihary J, Han J. Spatial Data Mining: Progress and Challenge. SIGMOD'96Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'96). Canada;Montreal.l 996
    Krystyna Grodzinsk, Renate Alber.,2008.Metal accumulation in mosses across national boundaries: Uncovering and ranking causes of spatial variation. Environmental Pollution, 151, 377-388
    Lagacherie P, Legrod J P, Burrough P A., 1981. A soil survey procedure using the knowledge of soil pattern established on a preciously mapped reference area. Geoderma, 65,283-301.
    
    Lee C. S., Li X., Shi W., Cheung S. C., Thornton L, 2006. Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356,45-61.
    Lee Tian-Shyug, Chih-Chou Chiu,Yu-Chao Chou, Chi-Jie Lu., 2006. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50,1113 - 1130
    Leharne S., 1992. A survey of metal levels in street dusts in an inner London
    neighbourhood. Environmental International, 1992,18: 263-270.
    L'Herroux L., Roux S L., Appriou P., et al., 1997. Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France).Environmental Pollution,97( 1-2), 119-130.
    
    Li Q., Wu Z., Chu B., Zhang N., Cai S., Fang J., 2007. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China. Environmental Pollution, 149,158-164.
    Li X D., Poon C S., Pui S L.,2001. Heavy metal contamination of urban soils and street dusts in HongKong. Applied Geochemistry, 16(11-12),1361-1368.
    Li X, Lee Siu-lan, Sze-chung Wong, Shi Wenzhong, Iain Thornton,2004. The study of mental contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129: 113-124.
    
    Li X., Huang C., 2006. Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji city, P. R. China. Environmental Geology, 52(8), 10.1007/s00254-006-0608-3
    Li Yong., 2006. Predicting materials properties and behavior using classification and regression trees. Materials Science and Engineering A, 433,261-268
    Liao, H., Tim, U.S., 1997. An interactive modeling environment for nonpoint source pollution control. Journal of American Water Resources Association, 33 (3), 591-603.
    Lin Y. P., Chang T. K., 2000. Simulated annealing and Kriging method for identifying the spatial patterns and variability of soil heavy metal. Journal of Environmental Social Health, Part A, Toxic/Hazard. Subst. Envrion. Eng., 35(7), 1089-1115.
    Lin Y. P., Chang T. K., Lee D. Y., 2001. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soil. Environmental Pollution, 41(1-2), 189-199
    Lin Y., Teng T. P., Chang T. K., 2002. Multivariate analysis of soil heavy metal pollution and landscape pattern in Changhua county in Taiwan. Landscape and Urban Planning, 62,19-35.
    Linzon S. N., Chai B. L., Temple P. J., Pearson R. G, Smith M. L., 1976. Lead contamination of urban soils and vegetation by emissions from secondary lead industries. Journal of Air Pollution Control Associate, 26,650-654.
    Little P., Martin M. H., 1972. A survey of zinc, lead and cadmium in soil and natural vegetation around a smelting complex. Environment Pollution, 3,241-254.
    Liu X., Wu J., Xu J., 2006. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environmental Pollution, 141,257-264.
    Luo W., Wang T. Y., Lu Y. L., Giesy J. P., Shi Y., Zheng Y., Xing Y., Wu G., 2007. Landscape ecology of the Guanting Reservoir, Beijing, China: Multivariate and geostatisticsl analyses of metals in soils. Environmental Pollution, 146,567-576.
    Mandal A., Sengupta D., 2006. An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51,409-420.
    Manno Emanuela, Daniela Varrica, Gaetano Dongarra., 2006.Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmospheric Environment, 40, 5929-5941
    Manzoor S., Shah M. H., Shaheen N., Khalique A., Jaffar M., 2006. Multivariate analysis of trace metals in textile effluents in relation to soil and groundwater. Journal of Hazardous Materials Q137, 31-37.
    Markus J., McBratney A. B., 2001. A review of the contamination of soil with lead II. Spatial distribution and risk assessment of soil lead. Environment International, 27,399-411.
    
    Martin A C., Rivero V C., Marin M T L,.1998. Contamination by heavy metals in soils in the neighborhood of a scrapyard of discarded vehicles.The Science of the Total Environment,212(2-3),142-152.
    
    Martin J. A. R., Arias M. L., Corbi J. M. G., 2006. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of multivariate geostatistical methods to study spatial variations. Environmental Pollution. 144, 1001-1012.
    
    Me Grath, S. P., Zhao, F. J., Dunham, S. L., Crosland, A. R., Coleman, K., 2000. Long-term changes in the extractability and bioavailability of zinc and cadmium after sludge application. Journal of Environmental Quality, 29, 875-883.
    McGrath D., Zhang C.S., Owen C.T., 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127,239-248.
    
    McGrath David, Chaosheng Zhang, Owen T. Carton., 2004. Geostatistical analyses and hazard assessment on soil lead in Silvermines area. Ireland Environmental Pollution, 127, 239-248
    McKensie N J, Ryan P J., 1999. Spatial prediction of soil properties using environmental correlation. Geoderma, 89,67-94.
    Meirvenne M. V., Goovaerts P., 2001. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold. Geoderma, 102, 75-100.
    Michael Zeiler. 2001. Exploring ArcObjects. (California: Environmental Systems Research Institute, Inc.)
    
    Mico C., Recatala, Peris M., Sanchez J., 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65, 863-872.
    Mico'C, L. Recatala', M. Peris, J. Sa'nchez. 2006. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis.Environmental Modelling & Software 22,449-463
    Miller, R.C., Guertin, D.P., Heilman, P., 2004. Information technology in watershed management decision making. Journal of the American Water Resources Association, 40 (2), 349-357.
    Moran C J, Bui E N., 2001. Spatial data mining for enhanced soil map modeling. International Journal of Geographic Information Science, 16,533~549.
    Nan, Z. R., Li, J. J., Zhang, J. M., Cheng G. D.,2002. Cadmium and zinc interactions and their transfer in soil-crop system under actual field conditions [J]. The Science of the Total Environment, 285,187-195.
    Nelder J. A., Wedderbum R. W. M., 1972. Generalied linear model. Journal of the Royal Statistical Society A, 135: 370-384.
    Nicholson F A., Smith S R., Alloway B J.,2003. An inventory of heavy metals inputs to farmland soils in England and Wales.The Science of The Total Environment,311(1-3),205-219
    Nisar Ahamed T. R., Gopal Rao K., Murthy J. S. R., 2000. GIS-based fuzzy membership model for crop-land suitability analysis. Agricultural systems, 63, 75-95.
    Novoa-Munoz J. C., Queijeiro J. M. G., Bianco-Ward D., Alvarez-Olleros C., Martinez-Cortizas A., Garcia-Rodeja E., 2007. Total copper content and its distribution in acid vineyards soils developed from granitic rocks. Science of the Total Environment, 378,23-27.
    
    Nriagu, J. O.,1996. A history of global metal pollution.Science,272(5295),223-224.
    
    Nriagu, J. O., Pacyna, J. M., 1988. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 33,134-139.
    Obrador, A., Alvarez J. M., Lopez-Valdivia L. M., Gonzalez D., Novillo J., Rico M. I., 2007. Relationships of soil properties with Mn and Zn distribution in acidic soils and their uptake by a barley crop. Geoderma, 137, 432-443.
    Osnabriick in relation to land use. The Science of the Total Environment, 166, 137-148
    Page B,1995. Environmental informatics-Towards a new discipline in applied, Computer Science for Environmental Protection and Research. Environmental Software Systems. London, UK: Chapman&Hall.
    Pal M, Mather P M., 2003. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 86, 554-565.
    Parks B O., 1993. The need for integration. In: Goodchild M F, Parks B O, Steyaert L T. Environmental Modeling with GIS. New York: Oxford University Press.
    Pichtel J., Sawyerr H T., Czarnowska K.,1997. Spatial and temporal distribution of metals in soils in Warsaw,Poland.Environmental Pollution,98(2),169-174.
    Pouyat R. V., McDonnell M. J., 1991. Heavy metal accumulations I forest soils along an urban-rural gradient in southeastern New York, USA. Water Air and Soil Pollution, 57(8), 797-807.
    Qiu B., Chi T., Wang Q., 2005. Qinmin. Fruit tree suitability assessment using GIS and multi-criteria evaluation. Transactions of the CSAE, 21(6), 96-100.
    Reimann, C., Fllzmoser, P., 2000. Normal and lognormal data distribution in geochemistry: death of a myth. Consequences for the statistical treatment of geochemical and environmental data. Environmental Geology, 39(9), 1001-1014
    Rieuwerts J S., Farago M., Bencko V., et al., 1999,.Heavy metal concentrations in and around households near a secondary lead smelter.Environmental Monitoring and Assessment,58(3),317-335.
    
    Robertson D. J., Taylor K. G., 2007. Temporal variability of metal contamination in urabn road-deposited sediment in Manchester, UK: Implications for urban pollution monitoring. Water Air and Soil Pollution, 186(1-4), 209-220.
    Romic Marija, Tomislav Hengl, Davor Romic, Stjepan Husnjak., 2007. Representing soil pollution by heavy metals using continuous limitation scores. Computers & Geosciences, 33,1316-1326
    Saby N., Arrouays D., Boulonne L., Jolivet C., Pochot A., 2006. Geostatistical assessment of Pb in soil around Paris, France. Science of the Total Environment, 367,212-221.
    Schro¨der Winfried, Roland Pesch, Cordula Englerta, Harry Harmens, Ivan Suchara, Harald G. Zechmeister, Lotti Tho¨ni, Blanka Manˇkovska', Zvonka Jeran ,
    Schulin R., Curchod F., Mondeshka M., Daskalova A., Keller A., 2007. Heavy metal contamination along a soil transect in the vicinity of the iron smelter of Kremikovtzi (Bulgaria). Geoderma, 140, 52-61.
    Senesi G S., Baldassarre q Senesi N., et al., 1999.Trace element inputs into soils by anthropogenic activities and implications for human health .Chemosphere, 39, 343-377.
    Sterckeman, T., Douay, F., Baize, D., Fourrier, H., Proix, N., Schvartz, C., 2004. Factors affecting trace element concentrations in soils developed on recent marine deposits from northern France. Applied Geochemistry, 19, 89-103.
    Sun Y., Zhuang G., Zhang W., Wang Y., Zhuang Y., 2006. Characteristics and sources of lead pollution after phasing out leaded gasoline in Beijing. Atmospheric Environment, 40,2973-2985.
    Sutherland R A., Tolosa C. A., 2001. Variation in total and extractable elements with distance from roads in an urban watersehd, Honolulu, Hawaii, Water, Air and Soil Pollution, 127,315-338.
    Swaileh K M.,Rabaya N., Salim R R et al.,2001. Concentration of heavy metals in roadside soils, plants and landsnail from the West Bank, Palestine.Journal of Environment Science and Health,36(5),765-778
    Swaileh, K. M., Hussein R. M., Abu-Elhaj S., 2004. Assessment of heavy metal contamination in roadside surface soil and vegetation from the west bank. Archives of Environmental contamination and Toxicology, 47,23-30.
    Swaileh, K. M., Hussein R. M., Abu-Elhaj S., 2004. Assessment of heavy metal contamination in roadside surface soil and vegetation from the west bank. Archives of Environmental contamination and Toxicology, 47, 23-30.
    TAO SHU., 1998. Factor score mapping of soil trace element contents for the Shenzhen area. Water, Air, and Soil Pollution,102,415-425.
    
    Tariq, S. R., Shah M. H, Shaheen, S. N., Khalique A., Manzoor S., Jaffar M., 2006. Multivariate analysis of trace metal levels in tannery effluents in relation to soil and water: A case study from Peshwar, Pakistan. Journal of Environmental Management, 79,20-29.
    
    Tavares M. T., Sousa A. J., Abreu M. M., 2008. Ordinary kriging and indicator kriging in the cartography of trace elements contamination in Sao Domingos mining site (Alentejo, Portugal). Journal of Geochemical Exploration, 98,43-56.
    Tembo B. D., Sichilongo K., Cernak J., 2006. Distribution of copper, lead, cadmium and zinc concentrations in soils around Kabwe town in Zambia. Chemosphere, 63,497-501.
    
    Thiu H. T. T., Tobschall H. J., An P. V., 1998. Distribution of heavy metals in urban soils - a case study of Danang-Hoian Area (Vietnam). Environmental Geology, 39(6), 603-610.
    
    Tischler, M, M. Garcia, C. Peters-Lidard, M.S. Moran,S. Miller, D. Thoma, S. Kumar, J. Geiger.,2007.A GIS framework for surface-layer soil moisture estimation combining satellite radar measurements and land surface modeling with soil physical property estimation. Environmental Modelling & Software, 22, 891-898
    Tran Van Tung, Bo-Suk Yang, Myung-Suck Oh, Andy Chit Chiow Tan., 2008.Fault diagnosis of induction motor based on decision trees and adaptive neuro-flizzy inference. Expert Systems with Applications (in press). doi:10.1016/j.eswa.2007.12.010
    Tso B, and Mather P.M., 2001. Classification methods for remotely sensed data. (London, England: Taylor & Francis)
    
    Veeken A, Hamelers B.,2002.Sources of Cd, Cu, Pb and Zn in biowaste.The Science of the Total Environment,300(1-3),87-98.
    Vega, F. A., Covelo, E. F., Andrade, M. L. Marcet P., 2004. Relationships between heavy metals content and soil properties in minesoils. Analytica Chimica Acta, 524,141-150.
    Vega, F. A., Covelo, E. F., Andrade, M. L. Marcet P., 2004. Relationships between heavy metals content and soil properties in minesoils. Analytica Chimica Acta, 524,141-150.
    VON STEIGER B, WEBSTER R, SCHULIN R, et al., 1996. Mapping heavy metals in polluted soil by disjunctive kriging. Environmental pollution,94(2),205-215.
    Waheed T., R.B. Bonnell, S.O. Prasher, E. Paulet, 2006.Measuring performance in precision agriculture: CART—A decision tree approach. Agricultural water management, 84,173 -185
    Wang G., Gertner G., Parysow P., Anderson A. B., 2000. Spatial prediction and uncertainty analysis of topographic factors for the revised soil loss equation. (RUSLE), Journal of Soil and Water Conservation, 55(3), 374-384.
    Wang, G., Su, M. Y., Chen, Y. H., Lin, F. F., Luo, D., Gao, S. F., 2006. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environmental Pollution, 144,127-135.
    
    Wegener, M. (Eds.), Spatial Models and GIS New Potential and New Models. (London, England: Taylor & Francis) White J G., Welch R M., and Novell W A., 1997. Soil Zn map of USA using Geostatistics and geographic information systems . SoilSci.Soc.Am, 61,185-194.
    Wilcke W., Miller S. Kanchanankool N., Zech W., 1998. Urban soil contamination in Bangkok: heavy metal and aluminium partitioning in top soils. Geoderma, 86, 211-228
     Williams C. H., David D. J., 1976. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Science, 121. 86-93.
    Wong S C., Li X D., Thornton I.,2006. Urban environmental geochemistry of trace metals. EnvironmentalPollution, 142(1), 1 -16.
    Wu F L.,1998. SimLand: A prototype to simulate land conversion through the integrated GIS and CA with AHP-derived transition rules. International Journal of Geographical Information Systems, 12(1),363-82.
    Wu J, Norvell W. A., Hopkins D. G., Smith D. B., UImer M. G., Welch R. M, 2003. Improved prediction and mapping of soil copper by kriging with auxiliary data for cation-exchange capacity. Soil Science Society of America Journal, 67, 919-927.
    Wu J., Norvell W. A., Welch R. M., 2006a. Kriging on highly skewed data for DTPA-extractable soil Zn with auxiliary information for pH and organic carbon. Geoderma, 134,187-199.
    Wu Y., Hou X., Cheng X., Yao S., Xia W., Wang S., 2006b. Combing geochemical and statistical methods to distinguish anthropogenic source of metals in lacustrine sediment: a case study in Dongjiu Lake, Taihu Lake catchment, China. Environmental Geology, 52(8), 10.1007/s00254-006-0587-4
    Xu S., Tao S., 2004. Co regionalization analysis of heavy metals in the surface soil of Inner Mongolia. The Science of the Total Environmental, 320(1),2004,73-87.
    Yao Tingling., 1999. Nonparametric cross-covariance modeling as exemplified by soil heavy metal concentrations from the Swiss Jura. Geoderma, 88,13-38
    Yaya Ozan D., Omar Alaghab, Gu¨rdal Tuncelc. 2008. Multivariate statistics to investigate metal contamination in surface soil. Journal of Environmental Management, 86, 581-594
    Zarcinas B. A., Ishak C. F., McLaughlin M. J., Cozens G., 2004. Heavy metals in soils and crops in southeast Asia. Environmental Geochemistry and Health, 26, 343-357.
    Zhang C., 2006. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environmental Pollution, 142, 501-511.
    
    Zhang X. Y., Lin F. F., Jiang Y. G., Wang K., Feng X. L., 2008. Variability of total and available copper concentrations in relation to land use and soil properties in Yangtse River Delta of China. Environmental Monitoring and Assessment.
    Zhang X.Y.,Lin F.F.,Jiang Y.G.,Wang K.,Wong M.T.F.,2008.Assessing soil Cu content and anthropogenic influences using decision tree analysis.Environment Pollution.
    Zhang X.Y.,Lin F.F.,Wong M.T.F.,Feng X.L.,Wang K.,2008.Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County,China.Environmental Monitoring and assessment.
    Zheng Na,Qichao Wang,Dongmei Zheng.,2007.Health risk of Hg,Pb,Cd,Zn,and Cu to the inhabitants around Huludao Zinc Plant in China via consumption of vegetables.Science of the Total Environment,383,81-89
    Zupancic N.,1999.Lead contamination in the roadside soils of Slovenia.Environment Geochemistry and Health,21(1),37-50
    Jiawei Han,Micheline Kambe.范明等译.2001.Data Mining Concepts and Techiques.北京:机械工业业出版社.
    柏延臣,李新,冯学智.1998.空间数据分析与空间分析模型.地理研究,18(2),185-190.
    曹尧东,孙波,宗良纲等.2005.丘陵红壤重金属复合污染的空间变异分析.土壤,37(2),140-146.
    曹志洪.2002.土壤质量演变规律与持续利用.中国科学院院刊,(1),45-46.
    陈芳,董元华,安琼,钦绳武,2005.长期肥料定位试验条件下土壤中重金属的含量变化.土壤,2005,37(3),308-311.
    陈怀满.2005.环境土壤学.北京:科学出版社
    陈杰,陈晶中,檀满枝.2002.城市化对周边土壤资源与环境的影响.中国人口,资源与环境,12(2),70-74.
    陈守煜,柴春岭,苏艳娜.2007.可变模糊集方法及其在土地适宜评价中的应用.农业工程学报,23(3),95-97.
    陈同斌.2005.土壤污染将成为中国的世纪难题.科技文萃,30-32.
    陈同斌,郑袁明,陈煌,吴泓涛,周建利,罗金发,郑国砥.2005.北京市不同土地利用类型的土壤砷含量特征.地理研究,24(2),229-235.
    邸凯昌.2001.空间数据发掘与知识发现,武汉:武汉大学出版社.
    丁锋,苏建平等.2005.江苏省如皋市土壤微量元素含量动态变化分析及有效性评价.上海农业学报,21(3):88-93.
    高鹏,刘作新,邹桂霞.2003.丘陵半干旱区小流域土地资源定量化评价研究.农业工程学报,19(6),298-231.
    顾继光,周启星,王新.2003.土壤重金属污染的治理途径及其研究进展。应用基础与工程科学学报,11(2),143-151.
    郭旭东,傅伯杰,陈利顶,马克明,李俊然.2000.河北省遵化平原土壤养分的时空变异特征.变异函数与Kriging插值分析.地理学报,55(5),555-566.
    何腾兵,董玲玲,刘元生,舒英格,罗海波,刘方.2006.贵阳市乌当区不同母质发育的土壤理化性质和重金属含量差异研究.水土保持学报,20(6),157-162.
    侯景儒,郭光裕.1993.矿床统计预测及地质统计学的理论与应用,北京:冶金工业出版社.
    胡大伟,卞新民,许泉.2006.基于ANN的土壤重金属分布和污染评价研究.长江流域资源与环境,15(4),475-479.
    姜理英,杨肖娥,叶海波,石伟勇,蒋玉根.2002.炼铜厂对周边土壤和作物体内重金属含量及其空间分布的影响.浙江大学学报(农业与生命科学版),28(6),689-693.
    康玲芬,李锋瑞,张爱胜等.2006.交通污染对城市土壤和植物的影响.环境科学,27(3),556-560.
    李静,2006.重金属和氟的土壤环境质量评价及健康基准的研究.浙江大学,博士论文
    李军,1998.地球空间数据集成的基础理论与应用研究.中国科学院地理研究所博士论文.
    李丽霞,郝明德.2006.黄土高原地区长期施用微肥土壤Cu、Zn、Mn、Fe含量的时空变化.植物营养与肥料学报,12(1),44-48.
    刘荣乐,李书田,王秀斌等.2005.我国商品有机肥料和有机废弃物中重金属的含量状况与分析.农业环境科学学报,24(2),392-397.
    刘世梁,崔保山,温敏霞,董世魁.2008.路域土壤重金属含量空间变异的影响因子.环境科学学报,28(2),253-260.
    刘莺迎.2008.决策树分类算法的分析和比较.科技情报开发与经济,18(2),65-67.
    卢瑛,龚子同,张甘霖,张波.2004.南京城市土壤重金属含量及其影响因素.应用生态学报,15(1),123-126.
    鲁春霞,谢高地,李双成等.2004.青藏铁路沿线土壤重金属的分布规律初探.生态环境,13(4),546-548.
    吕晓男,孟赐福,麻万诸,陈晓佳.2004.土壤质量及其演变.浙江农业学报,16(2),103-109.
    倪绍祥.1999.土地类型与土地评价概论(第二版).北京:高等教育出版社.
    倪吾钟,孙琴.等,2000.菜园土壤中铜及其与土壤有机碳的关系.广东微量元素科学,7(3),53-57.
    普传杰,秦德先,黎应书.2004.矿业开发与生态环境问题思考.中国矿业,13(6),21-24.
    任周桥,刘耀林,焦利民.2007.基于决策树的土地适宜性评价.国土资源科技管理,2007,24(3):21-25.
    邵学新,黄标,孙维侠,顾志权,钱卫飞,邓西海,骆永明.2006.长江三角洲签定地区工业企业的分布对土壤重金属污染的影响.土壤学报,43(3),397-404.
    施加春,刘杏梅,于春兰,朱海平,赵科理,吴建军,徐建明.2007.浙北环太湖平原耕地土壤重金属的空间变异特征及其风险评价研究.土壤学报,44(5),824-830.
    史舟,李艳,程街亮.2006.水稻土重金属空间分布的随机模拟和不确定评价.环境科学,28(1),209-214.
    檀满枝,陈杰,郑海龙,张学雷.2006.模糊c-均值聚类法在土壤重金属污染空间预测中的应用.环境科学学报,26(12),2086-2092.
    唐将.2005.三峡库区镉等重金属元素迁移富集及转化规律.成都理工大学,博士论文.
    陶澍,邓宝山,陈伟元.1993.深圳地区土壤汞含量分布与污染.土壤学报,13(1),35-38.
    汪庆华,董岩翔,郑文,周国华.2007.浙江土壤地球化学基准值与环境背景值.地质通报,26(5),590-597.
    王瑷玲,赵庚星,王瑞燕,袁祥明.2006.区域农地整理质量评价及其时空配置研究-以山东省青州市为例.自然资源学报,21(3),369-374.
    王大荣,张忠占.2007.联合广义线性模型中的变量选择.统计研究,24(4),37-40.
    王起超,沈文国.1999.中国燃煤汞排放量估算.中国环境科学,19(4),318-321.
    王庆仁,刘秀梅,崔岩山等.2002.我国几个工矿与污灌区土壤重金属污染状况及原因探讨.环境科学学报,22(3),354-358.
    王先进.1997.中国权威人士论中国怎样养活养好中国人.北京:中国财经出版社.
    王筱明.2007.生态位适宜度评价模型在退耕还林决策中的应用.农业工程学报,23(8),113-116.
    王学军,邓宝山等.1997.北京污灌区表层土壤微量元素的小尺度空间结构特征.环境科学学报,17(4),412-416.
    王政权.1999.地统计学及其在生态学中的应用.北京:科学出版社.
    王祖伟,李宗梅,王景刚,刘佐,刘景珍.2007.天津污灌区土壤重金属含量与理化性质对小麦吸收重金属的影响.农业环境科学学报,26(4),1406-1410.
    肖斌,潘懋,赵鹏大.2001.时空多元指示克里格法的理论研究.北京大学学报(自然科学版),37(1),94-98.
    谢正苗.1996.土壤中铜的化学平衡.环境科学进展,4(2),1-23.
    徐尚平,陶澍,徐福留,曹军,2000.内蒙微量元素含量的空间结构特征.地理学报,55(3),337-345.
    许嘉林,杨居荣,1996.陆地生态系统中的重金属.北京:中国环境科学出版社.125
    张海涛,周勇,汪善勤.2003.利用GIS和RS资料及层次分析法综合评价江汉平原后湖地区耕地自然地力.农业工程学报,19(2),219-223.
    张辉,马东升.2001.城市生活垃圾向土壤释放重金属研究.环境化学.20(1),44-47.
    张健挺.1998.地理信息系统集成若干问题探讨.遥感信息,(1),14-18.
    张磊,宋凤斌,崔良.化肥试用对土壤中重金属生物有效性的影响研究.中国生态农业学报,2006,14(4),121-124.
    张犁.1996.GIS系统集成的理论与实践.地理学报,51(4),306-313.
    张乃明,陈建军,常晓冰.2002.污灌区土壤重金属累积影响因素研究.土壤.34(2),90-93.
    张乃明,李保国,胡克林.2001.太原污灌区土壤重金属和盐分含量的空间变异特征.环境科学学报.21(3),349-53.
    张乃明,刑承玉,贾润山等.1996.太原污灌区土壤重金属污染研究.农业环境保护,15(1),21-23.
    张箐,陈智高.2005.基于神经网络专家系统的城镇土地分等定级评价.2005,29(1),55-59.
    张勇.2001.沈阳郊区土壤及农产品重金属污染的现状评价.土壤通报,32(4),182-186
    张志红,杨文敏.汽油车排出颗粒物化学组成分分析.中国公共卫生,2001,17(7),623-624.
    赵彦锋,郭恒亮,孙志英,史学正,吴克宁.2008.基于土壤学知识的主成分分析判断土壤重金属来源.地理科学,28(1),45-50.
    赵永存,汪景宽,王铁宇。2002.吉林公主岭土壤中砷、铬和锌含量的空间变异性及分布规律研究.土壤通报,33(5),372-376.
    浙江省土壤普查办公室.1994.浙江土壤.杭州:浙江科学技术出版社
    郑海龙,陈杰,邓文靖,檀满枝,张学雷.2006.城市边缘带土壤重金属空间变异及其污染评价.土壤学报,43(1),39-45.
    郑袁明,陈煌,陈同斌,郑国砥,吴泓涛,周建利.2003.北京市土壤中Cr、Ni含量的空间结构与分布特征,第四纪研究,23(4),436-445.
    郑袁明,陈同斌,陈煌,郑国砥,罗金发.北京市不同土地利用方式下土壤铅的积累.地理学报,2005b,60(5),791-797.
    郑袁明,陈同斌,郑国砥,黄泽春,罗金发.2005a.北京市不同土地利用方式下土壤铬和镍的积累.资源科学,27(6),162-166.
    中国农业持续发展和综合生产力研究组,1995.中国农业持续发展和综合生产力研究.济南:山东科技出版社.
    周斌,王人潮,王繁.,2004.运用分类树进行土壤类型自动制图的研究[J].水土保持学报,18(2),140-144
    周斌,许红卫,王人潮.2003.基于分类树方法的土壤有机质空间制图研究.土壤学报,2003,40(6),801-808.
    周国华,马生明,喻劲松,朱立新,王徽.2002.土壤剖面元素分布及其地质、环境意义.地质与勘探,38(6),70-75.
    周慧珍,龚子同.1996.土壤空间变异性研究.土壤学报.33(3),232-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700