水土污染空间分析及源辨析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤和水资源是人类生存的物质基础。它们的环境质量直接影响着人类的生活和生产;同时,人类活动也直接影响着土水环境。近几十年来,随着社会、经济的发展,土地利用与土地覆被方式的改变,以及工业化进程的加快,我国不少地方的土、水环境不断恶化。钱塘江流域和海宁市,经济发展快速,产业类型多样,结构复杂,土地利用方式变化频繁,对土水环境的影响较复杂,并最终导致这两个地方的污染水平、污染方式和污染的空间模式与众不同。本文分析了两地的污染源类型和空间分布模式,特别对海宁的重金属污染模式进行了分析和探讨。
     在钱塘江流域水污染分析方面,应用模糊综合评估方法,对41个监测点的13个变量进行评估,根据评估结果划分高、中、低的三大污染区;应用因子分析法,判别出主要影响因子。同时结合研究区的实际情况,给各污染源确定名称;最后,用UNMIX方法,进行定量的污染源源解析,计算出每个污染源对主要污染变量的贡献及对每个监测点的综合贡献。结果发现,在低污染区,面源污染,比如农田径流和城市径流,是主要的污染源;在中污染区和高污染区,以混合污染源为主。在低、中、高三个污染区可辨别的潜在污染源分别为2个、2个和3个,因子分析分别解释了三个污染区的67%、73%和80%总体方差。大体上,小支流污染比大支流和干流严重。
     在海宁土壤重金属污染分析及源辨析中,富集因子法定量分析了各变量的污染程度,判别出主要影响因子;聚类分析方法验证了因子分析的结论;地统计学方法对各变量进行空间分析和预测;GIS分析了道路对部分变量的影响;最后分别用指数法和概率法对生态风险进行了评价。结果显示,锡和汞在土壤中属中等程度的污染,其它的为低污染。Hg、Pb、Sn主要受人类活动的影响,其它的几个变量主要受自然因子的控制,局部地区受到人类不同程度的影响。空间预测图显示,明显受自然源影响的变量(Co、Cr、Ni、Cu和Zn)的空间分布相对规则和平滑,Cd、Pb、Sn和Hg的高值区分布相对分散。总体上,高值区分布在人类活动相对频繁的城镇周边区域。由于较低的有机质含量或砂性的土壤质地,除了汞以外的其它变量的平均含量在渗育水稻土和滨海盐土中较低。由于较低的施肥水平和较少农用化学用品的使用,除了汞以外的其它变量在苗圃中的浓度水平较低。点或线污染源对Pb、Sn和Hg的影响较高。受交通线影响的元素主要包括Pb、Cu,、Ni和Zn。Pb受到汽车排放的尾气的影响,Cu、Ni和Zn受到来自汽车零部件和轮胎磨损的影响。As, Cr, Ni, Pb, Cu和Zn的生态危害轻微;Cd,Hg的中等程度生态危害区分别占土地面积的98.4%,63.1%,Hg的强危害区占了33.7%,其余为轻危害区。As对生物种类的风险概率为43.7%,属中等危害;As和Cd对生态过程的风险概率分别为25.2%、25.3%,属中等危害,其余为轻微危害。
     在海宁土壤重金属污染区域的模糊识别方面,用模糊聚类法对复合污染区进行了划分。结果表明,对10个变量分为三组较合适:组Ⅰ(As、Cd、Co、Cr和Ni),组Ⅱ(Cu、Zn),和组Ⅲ(Hg、Pb和Sn)。每组又分别分为三个污染程度不同的区。方差分析显示不同污染区之间污染物的平均浓度有明显差别。组Ⅰ和组Ⅱ在研究区内总体复合污染程度较低,土壤污染程度隶属关系较明确;组Ⅲ在南部沿江地带极小片区域属重污染区,西部大部分地区和海宁市区附近属中度污染区,中部大部分和东南部为低污染区,地理空间上土壤对组Ⅲ的隶属关系也较明确。土壤类型对分区的影响跟样点设计有关,如大部分样点来自水稻土。另外,跟土壤本身的性质也有一定关系。有机质含量是影响前两组分区的主要因素;第三组分区的因子中,有机质含量所起的作用并不大。土地利用类型在分区中所起的作用并不大,pH值在不同类别之间的差别并不明显。
     在对研究区域的污染热点辨析方面,用局部Moran'sⅠ指数法辨别了污染热点(p=0.05)。权重函数,数据转换方法及极值都影响热点的数量和空间位置。极值剔除后的热点辨析结果与数据转换后的结果类似。高一高热点的数量明显比未去除极值时的数量要多,在空间上热点的覆盖面也相对更加广泛。
     在污染区划分的不确定性评估方面,对比普通克立格法和序贯高斯模拟在污染制图上的差别,用指示克立格和序贯高斯模拟产生超过某一概率水平的概率分布图,将模拟插值图和模拟概率图叠置划分可靠的污染区。结果发现克立格法产生的插值图趋于平滑,局部细节不明显。而模拟方法产生的预测图空间结构明显,信息丰富。Hg的污染区主要分布在西南靠近钱塘江的几个镇;Pb的污染区星星点点分布在整个区域,污染区总面积比例很小;Sn的高置信污染区主要在西南靠近钱塘江地带和东南部的两个镇的局部地区。
     最后,比较了Bayesian Maximum Entropy(贝叶斯最大熵)和克立格的空间预测精度。综合使用软、硬数据的BME (BME_HS),在对有高偏值存在的、非正态分布的环境变量的预测中,其预测偏差低于普通克立格,但预测的波动性表现趋势不一致;只使用硬数据的BME(BME_H)预测偏差小于普通克立格,对波动性的预测则表现不一致的趋势。在对极值的预测上,BME_HS对所有极高值的预测结果更接近实际值。
     本文主要在以下几个方面取得了进展:
     1)将模糊集方法、多元统计分析和GIS结合起来,共同探讨水体污染程度和污染空间模式。多种方法的综合使用,可以从不同角度了解水体污染状况,从而更全面、客观地认识水污染的实际情况,避免了单一方法可能产生的片面性。
     2)以往,土壤中是否存在重金属污染及污染水平的界定标准不一。本文同时使用多种界定标准(多元统计、富集因子法、地统计学和GIS)来分析研究区的土壤污染水平,从而使分析结果更加可靠。同时,分析了土壤类型、土地利用方式等与重金属污染的相互关系。
     3)土壤系统和人类活动本身的复杂性和模糊性决定了污染区的界定是个难题。本研究从土壤污染的特点出发,用模糊数学分析了污染水平的模糊性,定量分析了影响模糊分区的因素,再运用GIS确定最终的污染模糊分区,这和其它类似研究中所用的方法不同。同时,运用联合模拟概率图和模拟预测图,共同划分某一置信水平上的污染区,使污染区的划分更加真实可靠。
     4)对偏态性较大的Hg来说,BME预测效果比克立格预测效果好。类似地,用BME预测Pb,其误差比克立格小
Soil and wate are the most important resources for humanbeing. They have direct impact on the quality of human life, while human activities directly affect soil and water environment. With great social economic development and land use/land cover changes in recent decades, soil and water environment have gradually deteriorated. Qiantang River Basin and Haining City locate in the regions with fast-growing economy, rich industrial type, and frequently changing of land use/land cover, which all affect soil and water environment, and eventually lead to various pollution patterns. This dissertation characterized the spatial patterns of pollutions and identified the potential sources of pollution types.
     Spatial analysis and source apportionment of water pollution in Qiantang River Basin were conducted. In this work, we considered data for 13 water quality variables collected during the year 2004 at 46 monitoring sites along the Qiantang River (China). Fuzzy comprehensive analysis categorized the data into three major pollution zones (low, moderate, and high) based on national quality standards for surface waters, China. Most sites classified as "low pollution zones" (LP) occurred in the main river channel, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) occurred in the tributaries. Factor analysis identified two potential pollution sources that explained 67% of the total variance in LP, two potential pollution sources that explained 73% of the total variance in MP, and three potential pollution sources that explained 80% of the total variance in HP, respectively. UNMIX was used to estimate contributions from identified pollution sources to each water quality variable and each monitoring site. Most water quality variables were influenced primarily by pollutants from industrial wastewater, agricultural activities and urban runoff. In LP, non-point source pollution such as agricultural runoff and urban runoff dominated; in MP and HP, mixed source pollution dominated. The pollution in the small tributaries was more serious than that in the main channel. These results provide important information for developing better pollution control strategies of the Qiantang River.
     Spatial analysis and source identification of heavy metal pollution in soils of Haining City were performed. A total of 309 topsoil samples were collected in 2005 from agricultural land. Each sample was analyzed for 10 elements:arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb), tin (Sn) and zinc (Zn). With the combination of enrichment factor and multivariate statistics, the variables were classified into the high contaminating (Pb, Hg and Sn) and low contaminating elements (As, Co, Cr, Cu, Cd, Ni and Zn). The former were predominantly influenced by anthropic inputs, and the latter derived from natural sources or marginal human influence. Spatial analysis showed that high-value areas of Pb, Hg, Cd and Sn were isolated and mainly situated around the urban areas. The influence of soil type on uncontaminated or low contaminating elements was greater than on high contaminating elements, except for Hg. Land use had no distinct impact on most elements. Pb, Sn, and Hg were greatly influenced by point or linear pollution sources. Along the traffic lines, Pb was mainly from car exhausts, while Cu, Ni and Zn weremainly from wear and tear of mechanical parts and tires. For As, Cr, Ni, Pb, Cu and Zn, their ecological hazard was minor; The area with medium ecological hazards of Cd and Hg accounted for about 98.4% and 63.1%, respectively. The strongly hazardous area of Hg occupied 33.8%. The rest area was at slight risk. For biological types, risk probability of As with medium risk was 43.7%. For ecological process, risk probability of As and Cd was 25.2% and 25.3%, respectively. Risk level of the rest pollutants was low.
     Fuzzy clustering analysis was used to delineate combined pollution zones. The ten elements were divided into three groups:Group I (As, Cd, Co, Cr and Ni), GroupⅡ(Cu, Zn), GroupⅢ(Hg, Pb, Sn). Each group was divided into three zones with different pollution levels. One way ANOVA showed that the significant differences of mean concentration existed among different pollution zones. The overall combined pollution levels in groupⅠand groupⅡwere low, and membership was relatively explicit in the two groups. In groupⅢ, severe pollution zone located in the south of Haining and along the Qiantang River; moderate pollution zone mainly located in the west and near the urban region; low pollution zone was mainly in central and southeastern regions. The impact of soil type on the delineation of pollution zones was related with the design of the sample points and soil properties. Land-use types were not important in the delineation of pollution zones. The differences of pH between different zones were not obvious. Organic matter contents were important factors in pollution delineation of groupⅠandⅡ. In GroupⅢ, organic matter contents of low-pollution area were higher than those in high-contaminated area.
     Local Moran's I index was used to identify pollution hot spots. Weight function, data transformation methods and extreme values all affected the number and spatial location of hot spots. The results of removing the extreme values were similar to those in data transformation. High-high zones were increased after removing the extreme values and the area of high-high will also increase.
     Uncertainty assessment of contaminated areas delineation was conducted. Ordinary kriging was compared with Sequential Gaussian Simulation in pollution mapping. Indicator Kriging and Sequential Gaussian Simulation were used to produce the probability distribution map exceeding certain probability level. Overlaying simulated interpolation maps and simulated probability maps produced reliable contaminated areas. The results showed that Kriging interpolation maps tended to be smooth, with less local details. However, the maps produced by simulation had rich spatial structure information. Contaminated areas of Hg were mainly distributed in several towns in the southwest along the Qiantang River; Pb contamination areas scattered throughout the region, and the proportion of contaminated areas was small; Contaminated areas with high confidence of Sn were mainly in the southwest along the river and the two towns in the southeast.
     Spatial analysis was conducted based on Bayesian maximum entropy(BME). Integrating soft data and hard data in BME (BME_HS) had less bias than ordinary Kriging did in interpolating spatial data with highly skewed values. But, on prediction of variation (or fluctuation), BME_HS did not always perform better than ordinary Kriging. BME only with hard data also performeds better than ordinary Kriging. Predictions of extremely high values based on BME were closer to the real values than those based on ordinary Kriging.
     In sumary, this dissertation made the following improvements:
     1) Fuzzy method, multivariate statistics and GIS were used to explore the levels and spatial patterns of water pollution. The integrated uses of multiple techniques provided better understanding of water pollution, and the findings help developing better pollution control strategies of Qiantang River.
     2) This study used a variety of methods (multivariate statistics, enrichment factor method, geostatistics and GIS) to charaterize the status of soil pollution, quantify the relationships between pollution levels and soil type, land use/cover.
     3) The complexity of soil systems and human activity determined that the delineation of the contaminated area was difficult. In his study, fuzzy theory was used to analyze ambiguity of pollution levels, which could better reflect the reality.
     4) Comparing with kriging alone, the combination of simulation probability and simulations values produced better prediction to delineate the contaminated area.
     5) Mean error and mean squared error showed that prediction results of Hg based on BME were better than those based on Kriging. Mean error showed that prediction results of Pb based on BME were better than those based on Kriging, while mean squared error of Pb based on BME was greater than that based on kriging.
引文
[1]Adachia K., Tainoshob Y. Characterization of heavy metal particles embedded in tire dust [J]. Environment International,2004,30(8):1009-1017.
    [2]Adriano D.C. Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability and Risks of Metals [M]. Springer-Verlag, New York,2001.
    [3]Amini M., Afyuni M., Fathianpour N., et al. Continuous soil pollution mapping using fuzzy logic and spatial interpolation[J]. Geoderma,2005,124(3-4):223-233.
    [4]Anderson M.J., Daly E.P., Miller S.L., et al. Source apportionment of exposures to volatile organic compounds:II.Application of receptor models to TEAM study data [J]. Atmospheric Environment.2002,36 (22):3643-3658.
    [5]Bartell S.M. Some thoughts concerning quotients, risks, and decision-making [J]. Human and Ecological Risk Assessment,1996,2(01):25-29.
    [6]Bellinger D. Neuropsychologic functions in children exposed to environmental lead [J]. Epidemiology.1995,6(3):101-103.
    [7]Bergamaschi L, Rizzio E, Valcuvia M.G., et al. Determination of trace elements and evaluation of their enrichment factors in Himalayan lichens[J]. Environmental Pollution,2002, 120(1):137-44.
    [8]Bezdek J.C. Pattern Recognition with Fuzzy objective Function Algorithms [M]. Plenum Press.1981, New York.
    [9]Bhaduri B., Minner M., Tatalovich S., et al. Long-term hydrologic impact of urbanization:A table of two models [J]. Journal of Water Resources Planning and Management.2001,127 (01):13-19.
    [10]Bogaert P., Christakos G., Jerrett M., et al. Spatiotemporal modelling of ozone distribution in the State of California [J]. Atmospheric Environment,2009,43(15):2471-2480.
    [11]Bogaert P., D'Or D. Estimating soil properties from thematic soil maps:the Bayesian Maximum Entropy approach [J]. Soil Science Society of America Journal,2003,66:1492-1500.
    [12]Booty W.G., Resler O., McCrimmon C. Mass balance modelling of priority toxic chemicals within the great lakes toxic chemical decision support system:RateCon model results for Lake
    Ontario and Lake Erie [J]. Environmental Modelling and Software,2005,20(6):671-688.
    [13]Bragato G. Fuzzy continuous classification and spatial interpolation in conventional soil survey for soil mapping of the lower Piave plain [J]. Geoderma,2004,118(1-2):1-16.
    [14]Bruin D. S., Stein A. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model (DEM) [J]. Geoderma,1998,83(1-2):17-33.
    [15]Brus D., Bogaert P., Heuvelink G.B.M. Bayesian Maximum Entropy prediction of soil categories using a traditional soil map as soft information [J]. European Journal of Soil Science, 2008,59(2):166-177.
    [16]Brus D.J, de Gruijter J.J., Walvoort D.J.J., et al. Mapping the probability of exceeding critical threshold for cadmium concentrations in s oils in the Netherlands. Journal of Environmental Quality [J].2002,31(6):1875-1884.
    [17]Budiansky S. Dispersion modeling [J].Environmental Science and Technology,1980,14(4): 370-373.
    [18]Cahoon L.B., Ensign S.H. Spatial and temporal variability in excessive soil phosphorus levels in eastern North Carolina. Nutrient Cycling in Agroecosystems,2004,69 (2):111-125.
    [19]Cattle J.A., McBratney A.B., Minasny B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination[J]. Journal of Environmental Quality,2002, 31(5):1576-1588.
    [20]Chang H. Spatial analysis of water quality trends in the Han River basin, South Korea [J]. Water Research,2008,42 (13):3285-3304.
    [21]Chang N.B. Sustainable water resources management under uncertainty [J]. Stochastic Environmental Research and Risk Assessment,2005,19(2):97-98.
    [22]Chen H.W., Chang N.B., Shaw D. Valuation of in-stream water quality improvement via fuzzy contingent valuation method [J]. Stochastic Environmental Research and Risk Assessment, 2005,19(2):158-171.
    [23]Chen T. B, Wong J.W.C., Zhou H.Y., et al. Assessment of trace metal distribution and contamination in surface soils of Hong Kong [J]. Environmental pollution,1997,96(1):61-68.
    [24]Chen T., Liu X.M., Zhu M.Z., et al. Identification of trace element sources and associated risk assessment in vegetable soils of the urban-rural transitional area of Hangzhou, China [J]. Environmental Pollution,2008,151(1):67-78.
    [25]Christakos G. A Bayesian Maximum Entropy view to the spatial estimation problem [J]. Mathematical Geology,1990,22(7):763-776.
    [26]Christakos G. Modern Spatiotemporal Geostatistics [M]. Oxford University Press, New York, NY,2000.
    [27]Christakos G. Random Field Models in Earth Sciences [M]. Academic Press, San Diego, CA, 1992.
    [28]Christakos G. Spatiotemporal information systems in soil and environmental sciences [J]. Geoderma,1998,85 (2-3):141-179.
    [29]Christakos G., Li X. Bayesian maximum entropy analysisand mapping:a farewell to kriging estimators [J]? Mathematical Geology,1998,30 (4):435-462.
    [30]Christakos G., Serre M. L. BME analysis of spatiotemporal particulate matter distributions in North Carolina [J]. Atmospheric Environment,2000,34 (20):3393-3406.
    [31]Christensen E.R, Zhang X. Sources of polycyclic aromatic hydrocarbons to Lake Michigan determined from sedimentary records[J]. Environmental Science and Technology,1993, 27(1):139-146.
    [32]Christensen E.R., Arora S. Source apportionment of PAHs in sediments using factor analysis by time records:Application to Lake Michigan, USA [J].Water Research,2007,41(01):168-176.
    [33]Conrad C.F, Chisholm-Brause C.J. Patial survey of trace metal contaminations in the sediments of the Elizabeth River, Virginia [J]. Marine Pollution Bulletin 2004,49(4):319-24.
    [34]Cui Y., Zhu Y.G., Zhai R., et al. Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China[J]. Environment International,2005,31(6):784-790.
    [35]D'Or D., Bogaert P., Christakos G. Application of the BME approach to soil texture mapping [J]. Stochatic Environmental Research and Risk Assessment,2001,15(01):87-100.
    [36]De Gruijter J.J., McBratney A.B. A modified fuzzy k means for predictive classification[C]. In:Bock H.H. (editor) Classification and Related Methods of Data Analysis. pp.97-104. Elsevier Science, Amsterdam,1988.
    [37]De Gruijter J.J., Walvoort D.J.J., van Gaans P.F.M. Continuous soil maps-a fuzzy set approach to bridge the gap between aggregation levels of process and distribution models[J].Geoderma,1997,77(2-4):169-195.
    [38]Dobermann A., Oberthur T. Fuzzy mapping of soil fertility-a case studies on irrigated riceland in the Philippines [J]. Geoderma,1997,77(2-4):317-339.
    [39]D'Or D., Bogaert P. Continuous-valued map reconstruction with the Bayesian Maximum Entropy [J]. Geoderma,2003,112(3-4):169-178.
    [40]Douaik A., Meirvenne M.V., Toth T. Soil salinity mapping using spatio-temporal kriging and Bayesian maximum entropy with interval soft data[J]. Geoderma 2005,128, (3-4):234-248
    [41]Elhatip H., Hinis M.A., Gulgahar N. Evaluation of the water quality at Tahtali dam watershed in Izmir-Turkey by means of statistical methodology [J]. Stochastic Environmental Research and Risk Assessment,2007,22(3):391-400.
    [42]Facchinelli A., Sacchi E., Mallen L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils [J]. Environmental Pollution,2001,114(03):313-324.
    [43]Field A. Discovering statistics using SPSS for windows:advance techniques for the beginner [M]. Great Britain:Sage Publication,2000.
    [44]Franco C., Soares A., Delgado J. Geostatistical modelling of heavy metal contamination in the topsoil of Guadiamar river margins(S Spain)using a stochastic simulation technique[J]..Geoderma,2006,136(3-4):852-864.
    [45]Friedlander S.K. Chemical element balances and identification of air pollution sources [J].Environmental Science and Technology,1973,7(3):235-240.
    [46]Galarneau E. Source specificity and atmospheric processing of airborne PAHs:Implications for source apportionment [J].Atmospheric Environment,2008,42 (35):8139-8149.
    [47]Gallego J.L.R., Ordonez A., Loredo J. Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environment International [J],2002,27(7):589-596.
    [48]Gokhale S., Kohajda T., Schlink U. Source apportionment of human personal exposure to volatile organic compounds in homes, offices and outdoors by chemical mass balance and genetic algorithm receptor models[J].Science of The Total Environment,2008,407(01):122-138.
    [49]Goktepe A.B., Altun S., Sezer A. Soil clustering by fuzzy c-means algorithm [J]. Advances in Engineering Software,2005,36(10):691-698.
    [50]Goovaerts P, Jacquez G.M. Accounting for regional background and population size in the detection of spatial clusters and outliers using geostatistical filtering and spatial neutral models: the case of lung cancer in Long Island, New York [J]. International Journal of Health Geographics, 2004,3(1):14.
    [51]Goovaerts P. Geostatistics for Natural Resources Evaluation [M]. Oxford University Press, New York, USA, pp.85-97,1997.
    [52]Goovaerts P. Study of spatial relationships between two sets of variables using multivariate geostatistics. Geoderma[J],1994,62 (1-3):93-107.
    [53]Goovaerts P., Webster R., Dubois J. P. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics [J]. Environmental and Ecological Statistics 1997,4(1):31-48.
    [54]Goovaerts, P. Geostatistical modeling of uncertainty in soil science [J]. Geoderma,2001, 103(1-2):3-26.
    [55]Gu S., Kralovec A.C, Christensen E.R., et al. Source apportionment of PAHs in dated sediments from the Black River, Ohio [J]. Water Research,2003,37 (09):2149-2161.
    [56]Guleda O.E., Ibrahim D., Halil H. Assessment of urban air quality in Istanbul using fuzzy synthetic evaluation [J]. Atmospheric Environment,2004,38(23):3809-3815.
    [57]Haining R. Spatial Data Analysis in the Social and Environmental Science[M]. London: Cambridge University Press,1994.
    [58]Hakanson L. An ecological risk index for aquatic pollution control:a sedimentological approach [J]. Water Research,1980,14(8):975-1001.
    [59]Han Y.M., Du P.X., Cao J.J., Posmentie E.S. Multivariate analysis of heavy metal contamination in urban dusts of Xi'an, Central China [J]. Science of the Total Environment,2006, 355(1-3):176-186.
    [60]Hanesch M., Scholger R., Dekkers M. J. The Application of Fuzzy C-Means Cluster Analysis and Non-Linear Mapping to a Soil Data Set for the Detection of Polluted Sites [J]. Physics and Chemistry of the Earth (A),2001,26 (11-12):885-891.
    [61]Hankanson L. An ecological risk index for aquatic pollution control-A sedimentological approach [J]. Water Research,1980,14(8):975-1001.
    [62]Helena B., Pardo R., Vega M., et al. Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga river, Spain) by principal component analysis [J]. Water Research,2000, 34(03):807-816.
    [63]Hendricks Franssen H.J.W.M, van Eijnsbergen A.C, Stein A. Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants [J]. Geoderma,1997,77(2-4): 243-262.
    [64]Henry R.C. EPA Unmix 6.0 Fundamentals & User Guide. US Environmental Protection Agency,2007 http://www.epa.gov/heasd/products/unmix/unmix-6-user-manual.pdf.
    [65]Hernandez L., Probst A., Probst J.L., et al. Heavy metal distribution in some French forest soils:evidence for atmospheric contamination. Science of the Total Environment,2003, 3(12):195-219.
    [66]Holmgren G.G.S., Meyer M.W., Chaney R.L., et al.Cadmium, lead, zinc, copper and nickel in agricultural soils of the United States of America[J]. Journal of Environmental Quality,1993, 22 (2):335-348.
    [67]Hopke P.K. Recent developments in receptor modeling[J]. Chemometrics,2003,17(5): 255-265.
    [68]Huang W., Campredon R., Abrao J.J., et al. Variation of heavy metals in recent sediments from Piratininga Lagoon (Brazil):interpretation of geochemical data with the aid of multivariate analysis [J]. Environmental Geoloy,1994,23(4):241-247.
    [69]Juang K.W., Chen Y.S., Lee D.Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils [J]. Environmental Pollution,2004, 127(2):229-238.
    [70]Juang K.W., Lee D.Y. Simple indicator kriging for estimating the probability of incorrectly delineating hazardous areas in a contaminated site [J]. Environmental Science and Technology, 1998,32(17):2487-2493.
    [71]Juang K.W., Lee D.Y.A comparison of three kriging methods using auxiliary variables in heavy2metal contaminated soils [J]. Journal of Environmental Quality,1998,27 (2):355-363.
    [72]Kannel P.R., Lee S., Lee Y.S. Assessment of spatial-temporal patterns of surface and ground water qualities and factors influencing management strategy of groundwater system in an urban river corridor of Nepal [J]. Journal of Environmental Management,2008,86 (04):595-604.
    [73]Kasahara M., Choi K.Ch., Takahashi K. Source contribution of atmospheric aerosols in Japan by chemical mass balance method [J]. Atmospheric Environment,1990,24 (3):457-466.
    [74]Kelly J., Thornton I., Simpson P.R. Urban geochemistry:a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and nonindustrial areas of Britain[J]. Applied Geochemistry,1996,11(1-2):363-370.
    [75]Kim B.M., Henry R.C. Application of SAFER model to the Los Angeles PM10 data[J]. Atmospheric,2000,34 (11):1747-1759.
    [76]Kolovos A., Christakos G., Serre M.L., et al. Computational BME solution of a stochastic advection-reaction equation in the light of site-specific information [J]. Water Resources Research, 2002,38(12):1318-1334.
    [77]Kowalczyk G.S., Gorden G.E., Rhelngrover S. W. Identification of atmospheric particulate sources in Washington, D.C. using chemical element balances[J]. Environmental Science Technology,1982,16 (2):79-90.
    [78]Kowalkowski T., Zbytniewski R., Szpejna J., et al. Application of chemometrics in river water classification [J]. Water Research,2006,40(04):744-752.
    [79]Kuperman R.G., Williams G.P., Parmelee R.W., et al. Spatial variability in the soil food webs in a contaminated grassland ecosystem[J]. Applied Soil Ecology,1998,9(1-3):509-514.
    [80]Lagacherie P., Cazemier D.R., Van Gaans P., et al. Fuzzy k-means clustering of fields in an elementary catchment and extrapolation to a larger area[J].. Geoderma,1997,77(2-4):197-216.
    [81]Lark R.M., Ferguson R.B. Mapping risk of soil nutrient deficiency or excess by disjuctive and indicator kriging [J]. Geoderma,2004,118(1):39-53.
    [82]Lark R.M., Kaffka S.R., Corwin D.L. Multiresolution analysis of data on electrical conductivity of soil using wavelets [J]. Journal of Hydrology,2003,272(1-4):276-290.
    [83]Lark R.M., Webster R. Changes in variance and correlation of soil properties with scale and location:Analysis using an adapted maximal overlap discrete wavelet transform [J]. European Journal of Soil Science,2001,52(4):547-562.
    [84]Lattin J., Carroll D., Green P. Analyzing Multivariate Data [M]. Duxbury Press, New York, 2003.pp.1-200.
    [85]Lee S.J., Yeatts K.B., Serre M.L. A Bayesian Maximum Entropy approach to address the change of support problem in the spatial analysis of childhood asthma prevalence across North Carolina [J]. Spatial and Spatio-temporal Epidemiology,2009,1(1):49-60.
    [86]Li A., Jang J.K., Scheff P.A. Application of EPA CMB8.2 model for source apportionment of sediment PAHs in Lake Calumet, Chicago[J]. Environmental Science and Technology,2003, 37(13):2958-2965.
    [87]Li X.D., Lee S.L., Wong S.C., et al. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach [J]. Environmental Pollution,2004,129(1):113-124.
    [88]Li Y., Shi Z., Li F., et al. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land [J]. Computers and Electronics in Agriculture,2007, 56(2):174-186.
    [89]Lin Y.P, Chang T.K, Teng T.P. Characterization of soil lead by comparing sequential Gaussian simulation, simulated annealing simulation and kriging methods, Environmental Geology,2001,41(1-2):189-199.
    [90]Liu C.W., Lin K.H., KuoY.M. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan [J]. Science in the Total Environment, 2003,313(1-3):77-89.
    [91]Liu M., Samal A. A fuzzy clustering approach to delineate agroecozones [J]. Ecological Modelling,2002,149(3):215-228.
    [92]Liu X., Xu J., Zhang M.,et al. Effects of land management change on spatial variability of organic matter and nutrients in paddy field:a case study of Pinghu, China [J]. Environmental Management,2004,34(5):691-700.
    [93]Loska K, Wiechuya D. Application of principle component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir[J]. Chemosphere,2003,51(8):723-733.
    [94]Love D., Hallbauer D., Amos A., et al. Factor analysis as a tool in groundwater quality management:two southern African case studies [J]. Physics and Chemistry of the Earth,2004, 29(15-18):1135-1143.
    [95]Lu R.S., Lo S.L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory [J]. Water Research,2002,36(09):2265-2274.
    [96]Ma B.Y., Zhang X.L. Regional ecological risk assessment of selenium in Jilin Province China [J]. The Science of The Total Environment,2000,262(1-2):103-110.
    [97]Manta D.S, Angelone M., Bellanca A., et al. Heavy metal in urban soil:a case study from the city of Palermo (Sicily), Italy [J]. The Science of the Total Environmental,2002,300(1-3): 229-243.
    [98]McBratney A.B. On variation, uncertainty and informatics in environmental soil management [J]. Australian Journal of Soil Research,1992,30(6):913-935.
    [99]McBratney A.B., De Gruijter J.J. A continuum approach to soil classification by modified fuzzy k-means with extragrades [J]. Journal of Soil Science,1992,43(1):159-175.
    [100]McBratney A.B., De Gruijter J.J., Brus D.J. Spacial prediction and mapping of continuous soil classes [J]. Geoderma,1992,54(1-4):39-64.
    [101]McBratney A.B., McSweeney K. Application of fuzzy sets in soil science:fuzzy logic, fuzzy measurements and fuzzy decisions [J]. Geoderma,1997,77(2-4):169-195.
    [102]McBratney A.B., Moore A.W. Application of fuzzy sets to climatic classification [J]. Agricultural Forest Meteorology,1985,35(1-4):165-185.
    [103]McGrath D., Zhang C.S., Carton O.T. Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland[J]. Environmental Pollution,2004,127(2):239-248.
    [104]McKenna Jr JE. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis [J]. Environmental Modelling and Software,2003, 18(3):205-220.
    [105]Mico C., Recatala L., Peris M., et al. Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis[J]. Chemosphere,2006, 65(5):863-872.
    [106]Mielke H.W., Gonzales C.R., Smith M.K., et al. Quantities and associations of lead, zinc, cadmium, manganese, chromium, nickel, vanadium, and copper in fresh Mississippi delta alluvium and New Orleans alluvial soils[J]. The Science of the Total Environment,2000,246(2-3): 249-259.
    [107]Miller S.L., Anderson M.J., Daly E.P., et al. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data [J]. Atmospheric Environment,2002,36(22):3629-41.
    [108]Mishra V.K., Kim K.H., Kang C.H., et al. Wintertime sources and distribution of airborne lead in Korea. Atmospheric Environment,2004,38(17):2653-64.
    [109]Mitra B., Scott H.D., Dixon J.C., et al. Applications of fuzzy logic to the prediction of soil erosion in a large watershed [J]. Geoderma,1998,86(3-4):183-209.
    [110]Mukherjee A.B., Zevenhoven R. Mercury in coal ash and its fate in the Indian subcontinent:A synoptic review [J]. Science of the Total Environment,2006,368(1):384-392.
    [111]O'Sullivan D., Unwin D.J. Geographic Information Analysis[M]. Wiley, Hoboken. 2003.
    [112]Odeh I.O.A., McBratney A.B., Chittleborough D.J. Fuzzy-c-means and kriging for mapping soil as a continuous system [J]. Soil Sciene Society of America Journal,1992b, 56:1848-1854.
    [113]Odeh I.O.A., McBratney A.B., Chittleborough D.J. Soil pattern recognition with fuzzy c-means:application to classification and soil-landform interrelationships [J]. Soil Sciene Society of America Journal,1992a,56:505-516.
    [114]Odeh, I.O.A., McBratney, A.B., Chittleborough, D.J. Design of optimal sampling spacings for mapping soil using fuzzy-k-means and regionalised variable theory [J]. Geoderma, 1990,47(1-2):92-122.
    [115]Ouyang Y., Nkedi-Kizzab P., Wu Q.T., et al. Assessment of seasonal variations in surface water quality [J]. Water Research,2006,40 (20):3800-3810.
    [116]Pekey H., Karakas D., Bakoglu M. Source apportionment of trace metals in surface waters of a polluted stream using multivariate statistical analyses [J]. Marine Pollution Bulletin, 2004,49:809-818.
    [117]Peltola P., Astrom M. Urban geochemistry:a multimedia and multielement survey of a small town in Northern Europe [J]. Environmental Geochemistry and Health,2003, 25(4):397-419.
    [118]Powell B., McBratney A.B., MacLeod D.A. The application of fuzzy classification to soil pH profiles in the Lockyer Valley, Queensland, Australia [J]. Catena,1991,18(3-4):409-420.
    [119]Puangthongthub S., Wangwongwatana S., Kamens R.M., et al. Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network. Atmospheric Environment,2007,41(36):7788-7805.
    [120]Reimann C., de Caritat P. Intrinsic flaws of element enrichment factors (Efs) in environmental geochemistry [J]. Environmental Science and Technology,2000,34(24): 5084-5091.
    [121]Ren W., Zhong Y., Meligrana L., et al. Urbanization, land use, and water quality in Shanghai 1947-1996[J]. Environment International,2003,29(05):649-659.
    [122]Rodriguez Martin J.A., Lopez Arias M., Grau Corbi J.M. Heavy metals contents in agricultural topsoils in the Ebro basin (Spain). Application of the multivariate geoestatistical methods to study spatial variations [J]. Environmental Pollution,2006,144(3):1001-1012.
    [123]Ruiz F., Gonzalesregalado M.L., Borrego J., et al. Stratigraphic sequence, elemental concentrations and heavy metal pollution in Holocene sediments from the Tinto-Odiel Esturay, Southwestern Spain[J]. Environmental Geology,1998,34(4):270-278.
    [124]Ruiz M.O., Tedesco C., McTighe T.J., et al. Environmental and social determinants of human risk during a West Nile virus outbreak in the greater Chicago area[J]. International Journal of Health Geogrphics,2002,3:8.
    [125]Saito H., Goovaerts P. Geostatistical interpolation of positively skewed and censored data in a dioxin-contaminated site[J]. Environmental Science and Technology,2000,34(19): 4228-4235.
    [126]Savelieva E., Demyanov T.V., Kanevski M., et al. BME-based uncertainty assessment of the Chernobyl fallout [J]. Geoderma,2005,128(3-4):312-324.
    [127]Schwartz J. Low-level lead exposure and children's IQ:a meta-analysis and search for a threshold [J]. Environmental Research,1994,65(1):42-55.
    [128]Serre M.L., Christakos G. Modern geostatistics:computational BME in the light of uncertain physical knowledge:The Equus Beds study [J]. Stochastic Environmental Research and Risk Assessment,1999,13 (1/2):1-26.
    [129]Shen G.Q., Lu Y.T., Wang M.N., et al. Status and fuzzy comprehensive assessment of combined heavy metal and organo-chlorine pesticide pollution in the Taihu Lake region of China [J]. Journal of Environmental Management,2005,76(04):355-362.
    [130]Shrestha S., Kazama F. Assessment of surface water quality using multivariate statistical techniques:A case study of the Fuji river basin, Japan [J]. Environmental Modelling and Software, 2007,22(04):464-475.
    [131]Simeonov V., Stratis J.A., Samara C., et al. Assessment of the surface water quality in Northern Greece [J].Water Research,2003,37(17):4119-4124.
    [132]Simeonova P., Simeonov V., Andreev G. Water Quality Study of the Struma River Basin, Bulgaria 1989-1998[J]. Central European Journal of Chemistry,2003,1(2):121-136.
    [133]Singh K.P., Malik A., Mohan D., et al. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India):a case study [J]. Water Research,2004,38(18):3980-3992.
    [134]Singh K.P., Malik A., Singh V.K., et al. Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic Plain, North India. Anal. Chim. [J]. Acta,2005,550(1-2): 82-91.
    [135]Singh K.P., Malik A., Sinha S. Water quality assessment and apportionment of pollution sources of Gomti river(India)using multivariate statistical techniques-A case study[J]. Analytica Chimica Acta,2005,538(1/2):355-374.
    [136]Sitthichok P., Supat W., Richard M., et al.. Modeling the space/time distribution of particulate matter in Thailand and optimizing its monitoring network [J]. Atmospheric Environment,2007,41(36):7788-7805.
    [137]Solomon K.R., Sibley P. New concepts in ecological risk assessment:where do we go from here [J]? Marine Pollution Bulletin,2002,44(4):279-285.
    [138]Song Y., Xie S.D., Zhang Y.H., et al. Source apportionment of PM25 in Beijing using principal component analysis/absolute principal component scores and UNMIX [J]. Science of the Total Environment,2006,372 (01):278-286.
    [139]Soonthornnonda P.and Christensen E.R. Source apportionment of pollutants and flows of combined sewer wastewater [J]. Water Research,2008,42 (8-9):1989-1998.
    [140]Srivastava A., Sengupta B., Dutta S.A. Source apportionment of ambient VOCs in Delhi City [J]. Science of the Total Environment,2005,343(1-3):207-220.
    [141]Sum C., Christensen E. R., Karls J.F. Determination of PAH sources in dated sediments from Green Bay, Wisconsin by a chemical mass balance model[J]. Environmental Pollution,1998, 99(3):411-419.
    [142]Sutherland R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii [J]. Environmental geology,2000,39(6):11-27.
    [143]Tabachnick B.G., Fidell L.S. Using Multivariate Statistics. Allyn and Bacon, Boston, MA,2001.
    [144]Tan M. Z., Xu F.M., Chen J., et al. Spatial prediction of heavy metal pollution for soils in peri-urban Beijing, China based on fuzzy set theory [J]. Pedosphere,2006,16(5):545-554.
    [145]Tariq S.R., Shah M.H., Shaheen N., et al. Multivariate analysis of selected metals in tannery effluents and related soil [J]. Journal of Hazardous Materials,2005,122(1-2):17-22.
    [146]Thurston G. D., Spengler J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston [J].Atmospheric Environment,1985, 19(1):9-25.
    [147]Tijhuis L., Brattli B., Saether O.M. A geochemical survey of topsoil in the city of Oslo, Norway [J]. Environmental Geochemistry and Health,2002,24(1):67-94.
    [148]Van Camp L., Bujarrabal B., Gentile A.R.,et al.2004. Reports of the Technical Working Groups Established Under the Thematic Strategy for SoilProtection, vol. IV. Contamination and Land Management [C]. EUR 21319 EN/4, European Communities, Luxembourg.
    [149]Van Meirvenne M., Goovaerts P. Evaluating the probability of exceeding a site-specific soil cadmium contamination threshold [J]. Geoderma,2001,102(1-2):75-100.
    [150]Vega M., Pardo R., Barrado E.,et al. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis [J]. Water Research,1998,32(12):3581-3592.
    [151]Voltz M., Webster R. A comparison of kriging, cubicsplines and classification for predicting soil properties from sample data [J]. Journal of Soil Science,1990,41(3):473-490.
    [152]Von Steiger B., Webster R., Schulin R., et al. Mapping heavy metals in polluted soil by disjunctive kriging [J]. Environmental Pollution,1996,94(2):205-215.
    [153]Walter C., McBratney A.B., Douaoui A., et al. Spatial prediction of topsoil salinity in the Chelif valley, Algeria using ordinary kriging with local variograms versus a wholearea variogram[J]. Australian Journal of Soil Research,2001,39(2):259-272.
    [154]Wang D., Shi X., Wei S. Accumulation and transformation of atmospheric mercury in soil [J]. Science of the Total Environment,2003,304(1-3):209-214.
    [155]Wang G., Gertner G., Parysow P., et al. Spatial prediction and uncertainty analysis of topographic factors for the revised universal soil loss equation (RUSEL)[J]. Journal of Soil and Water Conservation,2000,55:374-384.
    [156]Wang H.B., Shooter D. Source apportionment of fine and coarse atmospheric particles in Auckland, New Zealand [J]. Science of the Total Environment,2005,340(1-3):189-198.
    [157]Wang H.Y. Assessment and prediction of overall environmental quality of Zhuzhou City, Hunan Province, China [J]. Journal of Environmental Management,2002,66(03),329-340.
    [158]Wang J.Y., Da L.J., Song K., et al. Temporal variations of surface water quality in urban, suburban and rural areas during rapid urbanization in Shanghai, China [J]. Environmental Pollution,2008,152 (02):387-393.
    [159]Wang X.L., Tao S., Dawson R.W., et al. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater irrigated area [J]. Environmental Research,2002,90(3):201-206.
    [160]Watson J.G., Zhu T., Chow J.C., et al. Receptor modeling application framework for particle source apportionment [J]. Chemosphere,2002,49(9:1093-1136.
    [161]Webster R., Oliver M.A. Geostatistics for Environmental Scientists [M]. John Wiley & Sons Ltd, Chichester,2001, pp.37-103.
    [162]Weiss P., Riss A., Gschmeidler E., et al. Investigation of heavy metal, PAH, PCB patterns and PCDD/F profiles of soil samples from an industrialized urban area (Linz, Upper Austria) with multivariate statistical methods [J]. Chemosphere,1994,29(9-11):2223-2236.
    [163]White J G, Welch RM., Norvell WA. Soil zinc map of the USA using geostatistics and geographic information systems [J]. Soil Science Society of America Journal,1997,61 (1):185-194.
    [164]Wu C., Wu J., Huang H., et al. Analyzing the Trophic State of Qiantang River, China with Landsat ETM/TM [J]. International Journal of Remote Sensing,2009, (In Press).
    [165]Wu J, Norvell WA, Hopkins DG, et al., Improved prediction and mapping of soil copper by kriging with auxiliary data for cationexchange capacity [J]. Soil Science Society of America Journal,2003,67 (3):919-927
    [166]Wunderlin D.A., Diaz M.P., Ame M.V., et al. Pattern recognition techniques for the evaluation of spatial and temporal variations in water quality. A case study:Suquia river basin (Cordoba, Argentina) [J]. Water Research,2001,35(12):2881-2894.
    [167]Xian G., Crane M., Su J. An analysis of urban development and its environmental impact on the Tampa Bay watershed [J]. Journal of Environmental Management,2007,85(04): 965-976.
    [168]Xie Z.Q., Sun L.G., Zhang P.F., et al. Preliminary geochemical evidence of groundwater contamination in coral islands of Xisha, South China Sea[J]. Applied Geochemistry,2005,20(10): 1848-1856.
    [169]Yang Z.S., Emery K.O. Yui X. Historical Development and Use of Thousand-Year-Old Tide-Prediction Tables [J]. Limnology and Oceanography,1989,34(5):953-957.
    [170]Ying Q., Lu J., Kaduwela A., et al. Modeling air quality during the California Regional PM10/PM2.5 Air Quality Study (CPRAQS) using the UCD/CIT Source Oriented Air Quality Model-Part Ⅱ. Regional source apportionment of primary airborne particulate matter [J].Atmospheric Environment,2008,42(39):8967-8978.
    [171]Yu H.L., Chu H.J. Understanding space time patterns of groundwater system by empirical orthogonal functions:A case study in the Choshui River alluvial fan, Taiwan [J]. Journal of Hydrology,2010,381(3-4):239-247.
    [172]Zhang C.B, Wu L.H., Luo Y.M., et al. Identifying sources of soil inorganic pollutants on a regional scale using a multivariate statistical approach:Role of pollutant migration and soil physicochemical properties [J]. Environmental Pollution,2008,151(3):470-476.
    [173]Zhang C.S., McGrath D. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods [J]. Geoderma, 2004,119 (3-4):261-75.
    [174]Zhang C.S. Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland [J]. Environmental Pollution,2006,142(3):501-511.
    [175]Zhang C.S., Luo L., Xu W.L. Use of local Moran's I and GIS to identify pollution hotspots of Pb in urban soils of Galway, Ireland [J]. Science of the Total Environment,2008,398 (1-3):212-221.
    [176]Zhang Y., Guo F., Meng W., et al. Water quality assessment and source identification of Daliao river basin using multivariate statistical methods[J]. Environmental Monitoring and Assessment,2009,152(1/4):105-121.
    [177]Zhang, R., Rahman, S., Vance, G.F., et al. Geostatistical analyses of trace elements in soils and plants [J]. Soil Science,1995,159(6):383-390.
    [178]Zhou F., Huang G., Guo H., et al. Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong [J].Water Research,2007,41(15):3429-3439.
    [179]安中华,安琼.农田土壤环境质量的最优模糊聚类及其分级[J].统计与决策,2008,(01):39-42.
    [180]包增军,王泽斌.钱塘江采砂管理的实践和思考[J].浙江水利水电专科学校学报,2003,15(02):14-15.
    [181]陈满荣.长江口潮滩沉积物重金属污染研究[M].上海:华东师范大学出版社,2009.
    [182]方晓明,刘皙皙,刘中志等.沈阳市丁香地区土壤重金属污染及生态风险评价[J].环境保护科学,2005,31(4):45-47.
    [183]郭广慧,陈同斌,宋波等.中国公路交通的重金属排放及其对土地污染的初步估算[J].地理研究,2007,26(5):922-930.
    [184]郭广慧,雷梅,陈同斌等.交通活动对公路两侧土壤和灰尘中重金属含量的影响[J].环境科学学报,2008,28(]0):1937—1945.
    [185]郭平,谢忠雷,李军等.长春市土壤重金属污染特征及其潜在生态风险评价地[J].地 理科学,25(1):108-112.
    [186]郭平,谢忠雷,李军等.长春市土壤重金属污染特征及其潜在生态风险评价[J].地理科学,2005,25(1):108—112.
    [187]郭仁忠.空间分析[M].北京:高等教育出版社,2001.
    [188]胡克林,张凤荣,吕贻忠等.北京市大兴区土壤重金属含量的空间分布特征[J].环境科学学报,2004,24(3):463-468.
    [189]胡克林,李保国,吕贻忠等.非平稳型区域土壤汞含量的各种估值方法比较[J].环境科学,2004,25(3):132-137.
    [190]胡先莉.序贯条件模拟方法研究及应用[D].成都理工大学硕士学位论文,2007.
    [191]黄昌勇.土壤科学[M].北京:中国农业出版社,1999.
    [192]黄国兰,萧航,陈春江等.化学质量平衡法在水体污染物源解析中的应用[J].环境科学,1999,20(6):14-17.
    [193]黄智刚,李保国,胡克林.丘陵红壤蔗区土壤有机质的时空变异研究[J].农业工程学报,2006,22(11):58-63.
    [194]霍霄妮,李红,孙丹峰等.北京耕作土壤重金属含量的空间自相关分析[J].环境科学学报.2009,29(6):1339-1344.
    [195]李保国,胡克林,陈德立等.农田土壤表层饱和导水率的条件模拟[J].水利学报,2002,(02):36-41.
    [196]李艳,史舟,李洪义等.滨海盐土盐分空间分布的条件模拟和不确定性研究[J].土壤通报,2008,39(1):9-15.
    [197]李艳,史舟,王人潮等.海涂土壤剖面电导率的协同克立格法估值及不同取样数目的比较研究[J].土壤学报,2004,41(3):434-443.
    [198]李志博,骆永明,宋静等.土壤重金属污染的生态风险评估分析:个案研究[J].土壤,2006,38(5):565—570.
    [199]梁二,王小彬,蔡典雄等.河南省土壤有机碳分布空间自相关分析[J].应用生态学报,2007,18(6):1305-1310.
    [200]刘晶,滕彦国,崔艳芳等.土壤重金属污染生态风险评价方法综述[J].环境监测管理与技术,2007,19(3):6-11.
    [201]罗杰,王世纪,温汉辉等.浙江三市水稻Pb污染原因研究[J].安徽农业科学,2009,37(10):4611-4613.
    [202]罗孝俊,陈社军,麦碧娴等.珠江三角洲地区水体表层沉积物中多环芳烃的来源、迁移及生态风险评价[J].生态毒理学报,2006,1(1):17-24.
    [203]骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,38(5):505-508.
    [204]马燕君.金华市产业结构和区域结构研究[J].时代经贸,2008,06(106):99-100.
    [205]毛卓战.衢州工业转型升级的“五线谱”[J].浙江经济,2008,19:47.
    [206]邵学新,黄标,赵永存等.长江三角洲典型地区土壤中重金属的污染评价[J].环境化学,2008,02:218-221.
    [207]沈琼,王开颜,张巍等.北京市通州区河流PAHs的源解析[J].农业环境科学学报,2007,26(3):904-909.
    [208]史舟,李艳,程街亮.水稻土重金属空间分布的随机模拟和不确定评价环[J].环境科学,2004,28(1):209-214.
    [209]史舟,李艳.地统计学在土壤学中的应用[M].北京:中国农业出版社,2006.
    [210]舒健,杜群阳.外商直接投资对杭州产业结构的影响[J].浙江经济,2007,03:59.
    [211]孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报,2003,22(02):248-251.
    [212]檀满枝,陈杰,郑海龙等.模糊c-均值聚类法在土壤重金属污染空间预测中的应用[J].环境科学学报,2006,26(12):2086-2092.
    [213]王国峰,黄锦法.浙北嘉兴平原土壤养分的平衡状况及改善对策的探讨[J].土壤通报,1999,30(3):104-107
    [214]王济,王世杰.土壤中重金属环境污染元素的来源及作物效应[J].贵州师范大学学报(自然科学版),2005,23(02):113-120.
    [215]王劲峰,李连发,葛咏等.地理信息空间分析的理论体系探讨[J].地理学报,2000,55(1):92-103.
    [216]王劲峰,武继磊,孙英君等.空间信息分析技术[J].地理研究,2005,24(3):464-472.
    [217]王劲峰.空间分析[M].北京:科学出版社,2006.
    [218]王世纪,罗杰,李向远等.浙江省海宁市制革企业镉污染对生态环境的影响[J].安徽农业科学,2009,37(23):11101-11103.
    [219]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999.
    [220]魏复盛.中国土壤元素背景值[M].中国环境科学出版社,1990.
    [221]邬伦,刘瑜,张晶等.地理信息系统——原理、方法和应用[M].北京:科学出版社,2001.
    [222]吴春发,吴嘉平,骆永明等.冶炼厂周边土壤重金属污染范围的界定与不确定性分析[J].土壤学报,2009,46(6):1007-1012.
    [223]吴春发.复合污染土壤环境安全预测预警研究-以浙江省富阳市某污染场地为例[D].浙江大学博士学位论文.2008.
    [224]吴章荣,俞震豫.浙江土壤[M].杭州:浙江科学技术出版社,1994.
    [225]徐英,陈亚新.土壤水盐特性空间变异的各向同性近似探讨[J].灌溉排水学报,2003,22(04):14-17,24.
    [226]许嘉琳,杨居荣.中国陆地生态系中的重金属[M].北京:中国环境科学出版社,1995.
    [227]杨宇,石璇,徐福留等.天津地区土壤中萘的生态风险分析环[J].环境科学,2004,25(2):115-118.
    [228]殷云龙,宋静,骆永明等.南京市城乡公路绿地土壤重金属变化及其评价[J].土壤学报,2005,02:206-210.
    [229]张长波,李志博,姚春霞等.污染场地土壤重金属含量的空间变异特征及其污染源识别指示意义[J].土壤,2006,38(5):525-533.
    [230]张长波,骆永明,吴龙华.土壤污染物源解析方法及其应用研究进展[J].土壤,2007,39(2):190-195.
    [231]张朝生,陶澍,袁贵平等.天津市平原土壤微量元素含量的空间自相关研究[J].土壤学报,1995,32(1):50-57.
    [232]章海波,骆永明,李志博等.土壤环境质量指导值与标准研究Ⅲ.污染土壤的生态风险评估[J].土壤学报,2007,44(2):338-349.
    [233]赵彦锋,郭恒亮,孙志英等.基于土壤学知识的主成分分析判断土壤重金属来源[J].地理科学,2008,28(01):45-50.
    [234]赵彦锋,史学正,黄标等.工业型城乡交错区农业土壤zn的空间分异及其影响因子探讨——以无锡市为例[J].土壤,2006,38(1):29-35.
    [235]赵永存,孙维侠,黄标等.不同随机模拟方法定量土壤镉含量预测的不确定性研究[J].农业环境科学学报,2008,27(01):139-146.
    [236]浙江省统计局.浙江统计年鉴[M].北京:中国统计出版社,2005.
    [237]钟晓兰,周生路,赵其国.长江三角洲地区土壤重金属污染特征及潜在生态风险评价———以江苏太仓市为例[J].地理科学,2007,27(3):395-400.
    [238]仲夏.守护钱塘江[J].浙江人大,2005,07:09-11.
    [239]朱飞虹.金华市农村生活污水和垃圾处置现状及对策[J].科技创新导报,2008,27:117.
    [240]朱立新,周国华,任天祥等.浙江杭嘉湖平原区土壤中营养元素丰缺状况的评价[J].物探与化探,1994,18(04):251-262.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700