典型香薷属植物对铜的耐性和吸收特性及污染土壤植物修复机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染环境植物修复研究是近几年国内外环境治理的热点和前沿领域,它利用某些耐性或超积累植物能从土壤中超量吸收转移一种或几种重金属的特性,从而达到减少土壤中重金属含量之目的。铜污染土壤的植物修复机理远未清楚,因此,研究不同植物对铜耐性和吸收特性及其在污染土壤修复中应用技术基础,对丰富植物修复理论,保障我国环境生态健康都具有重要意义。本论文结合野外调查、水培和土培等一系列培养方法,研究了两种香薷植物—海州香薷(E.splendens)和紫花香薷(E.argyi)对介质中铜的耐性及其对铜的吸收、运输和分布特性,并在对浙江省富阳市环山乡某一重金属典型污染地区调查的基础上,开展了田间试验研究这两种香薷对重金属污染土壤的植物修复潜力及其调控因素。主要研究结果归纳如下:
     1. 对浙江省富阳市污染比较严重的一个小高炉周围农田的土壤进行了调查分析,发现该区土壤的重金属污染主要是As、Cd、Cu、Pb和Zn这5种元素,尤其是Cu、Pb、Zn的含量分别可达1775.6、1140.1和621.3 mg kg~(-1)。在土壤重金属水平分布方向上,土壤受其污染的程度随污染源距离的增加而降低,到300m处已基本没有影响,在土壤重金属垂直分布方向上,其对土壤表层污染较为严重,并发现土壤微生物碳量与土壤重金属的含量有显著的负相关。在大田中采取的一些农艺措施降低重金属对作物的生长的影响,表明施石灰等农艺措施虽然降低了土壤中有效重金属含量并提高了产量,但未能使水稻谷粒内的重金属含量达到国家卫生标准。这些结果表明,农业土壤受重金属污染对人类健康具有潜在威胁,需要进行绿色修复,恢复或重建健康生态系统。
     2. 对浙江省诸暨铜矿山和三门Pb/Zn矿进行系统的调查,发现诸暨铜矿的矿床主要分布在海拔630m左右,海州香薷是铜矿床及尾矿渣上生长的优势植物,其不仅能在全铜和醋酸铵提取态铜含量分别高达6050和665mg kg~(-1)的土壤上正常生长,而且能在废矿渣堆(水分和养分较贫乏)条件下大量生长,对土壤中的高铜和养分条件都具有较好的耐性。此外发现,紫花香薷是三门Pb/Zn的主要优势植物,其能在NH_4OAc-Zn和NH_4OAc-Pb含量都高于100mg kg~(-1)的土壤上正常生长,而且其生物量都高于海州香薷。因此,可以得出海州香薷和矿山生态型紫花香薷对重金属都具有较高耐性。
     3. 在三门铅锌矿山上植物调查中找到了生物量大于海州香薷的紫花香薷,同时在杭州也发现非矿山生态型的紫花香薷。通过研究这两种生态型对Cu水平的生长反应以及铜吸收、运输和分布的差异。结果表明,矿山生态型比非矿山生态型具有更强的耐高Cu的能力。非矿山生态型根系和叶片的生物量在Cu处理水平为10μmol L-1时显著减少,而矿山生态型在50μmol L-1 Cu处理时才明显减少。矿山生态型根系Cu含量高于非矿山生态型,但地上部分,尤其是茎部Cu含量却低于非矿山生态型。此外,
    
    Cu从根系向地上部分的运输速率以及茎/根Cu含量与叶/根Cu含量比值也是非矿山
    生态型大于矿山生态型。这表明矿山生态型紫花香蕉是一种耐Cll植物,主要与其限
    制Cu从根部向地上部运输有关。
    4.通过水培试验研究海州香蕉和紫花香蕾对*u的吸收、分配和积累的差异,发
    现高CU(主78 pm*“‘)对两种香蕉的株高、根系伸长和地上部分及根系的干物
    质产量都有抑制作用,但海州香蕾受抑的程度较紫花香蕾小。在铜供应水平为625
    和1250 pm*厂’条件下,海州香蕉和紫花香蓄地上部分*u含量分别超过1000*g
    吨’‘,并且海州香蓄地上部分/根系*u含量的比值大于紫花香蕾,而且*u在植物
    地上部分的分配比率以及Cu从根系向地上部分的运输速率都高于紫花香素。在Cu
    处理12天时海州香蕾和紫花香蕉地上部分的最大*u积累量可分别高达101和142
    pg株1。因此从本研究可以看出海州香蕾和紫花香需在*u污染土壤植物修复中都
    具有良好的应用潜力。
    5.植物对铜的耐性和吸收可能受锌等其它阳离子的供应的调节。通过水培试验研究
    Cu和 Zn处理对两种香蕉生长及 Cu、Zn吸收和积累的影响。研究结果表明,50 pol
    L‘的*u有利于海州香需根系的生长,但却明显抑制紫花香蓄地上部分的干物质产
    量,Zn处理浓度直到 200 pmolL’也未见两种香蕉的干物质产量的下降。而且两种香
    蕉地上部分 Cu含量和积累量无论是高Cu还是低 Cu时都随 Zn的增加而减少。而海
    州香蓄地上部分的*n含量却随着*u处理水平的增加而有不同程度的提高,表现为
    Cu促进Zn的在体内的运输。同样紫花香需在Zn供应水平为 0.5和 50pmol’时,
    *u的增加也促进了*n的运输。而且海州香需在高*u*00 p*厂’对高*nQ00 pmOI
    L’)时对 Cu和 Zn的积累量明显高于紫花香需。
    6.对海州香慧和紫花香蕾在重金属污染土壤的植物修复效应研究,表明这两种香曹
    植物都能在铜等严重污染的农业土壤(全Cu量为320刁440mgkg-1)中正常生长,虽
    然在土壤全 Cu为 1200 mg kg”时地上部干物质产量略有下降,但也高达 9 ton ha”’以
    上。对*u的吸收和积累特性的研究,表明海州香蕾和紫花香蕾对土壤中铜的吸收和
    地上部浓度生育前期明显高于生育后期,在收获期?
Phytoremediation is a new novel technique to clean up contaminated soils with some accumulators or hyperaccumulators which can take up heavy metal, and transport and accumulation them in their above ground shoots. The mechanisms of phytoremediation for Cu contaminated soils are not fully understood and the technology is not established yet. Therefore, it is importance to elucidate the characteristics of Cu tolerance and uptake by specialized plants, and the mechanisms of phytoremediation of Cu polluted soils. The major objectives of this study were to identify Cu tolerant and accumulating plant species and characterize their Cu uptake and tolerance, understand their potential of application to phytoremediation of the Cu contaminated agricultural soil, as well as the factors enhancing phytoremediation efficiency. The main results obtained were summarized as follows:
    1. Investigation and analysis of soils and plants in the heavily polluted agricultural field near a smelting factory showed that the main contaminated heavy metals included As, Cd, Cu, Pb and Zn, among which Cu, Pb and Zn content in soil were very high, reached 1775.6, 1140.1 and 621.3 mg kg"1 respectively. The metal content in the soil decreased with increasing distance from the smelting factory and reached normal level at a distance of about 300 m. Heavy metal concentrations were relatively high at the surface soil layer (15cm), and decreased with increasing soil depth. Soil microbial carbon content in surface soil was closely related to the soil heavy-metal. Some agricultural measures were adopted in a field experiment to remediate the polluted soil, and they effectively reduced available heavy metal content in the soil and increased the crop yield. Yet, the heavy metal concentrations in rice grains still failed to achieve the national sanitary standards. These results indicate that normal chemical amendm
    ents can reduced metal toxicity of the crop plants, but can't ensure crop food safety and ecosystem safety.
    2. Detailed field survey on Cu mining area in Zhuji and Pb/Zn mining area in Sanmeng of Zhejiang province. The results showed that the Cu ore deposit in Zhuji mostly at the altitude of about 630 m and E. splendens was the dominant plants species
    
    
    growing on Cu ore deposit, and its distribution is along with that of the Cu ore deposit. Chemical analysis indicated that that E. splendens grew prosperously in soil which total Cu and NH4OAc-extracted Cu up to 6050 and 665 mg kg-1 respectively, and in mined tails with both low water and nutrient supply. Copper concentration in root and shoot of E. splendens was 223-613 mg kg-1 and 23-91 mg kg-1. In Sanmeng mining area, E. argyi was the dominant plant species, which grow normally in soil which NH4OAc-extracted Pb and Zn was more than 1000 mg kg-1. Hence, it is concluded that E. splendens and E. argyi belong to Cu tolerant plants in most cases.
    3. One non-mined ecotype of Elsholtzia argyi was found in Hangzhou suburb. Two contrasting ecotypes of E. argyi were compared with nutrient solution culture for their growth response and the uptake, distribution, and translocation of Cu. The results showed that the ecotype from the old mined area (Sanmen-ecotype) had greater tolerance of Cu than that from the non-mined area (Jiuxi-ecotype) based on their dry matter production. Inhibition of root and leaf growth was noted at the external Cu levels > 50 umol L"1 for the Sanmen-ecotype, and at > 5 umol L"1 Cu for the Jiuxi-ecotype respectively. Root Cu concentrations were higher in Sanmen-ecotype than in Jiuxi-ecotype, by contrast, leafespecially stem Cu concentrations were much lower in the former than in the latter. Furthermore, Jiuxi-ecotype was much more efficient than Sanmeng-ecotype in translocation of Cu from root to shoot, and it had higher ratios of stem/root and leaf/root Cu concentration. These results indicate that the Sanmen-ecotype of E. argyi is a Cu-tolerant ecotype, and its tolerance to high Cu levels was mainly related to its extraordinary capab
引文
1.Adalsteinsson S. 1994. Compenstory root growth in winter wheat: effects of copper exposure on root geometry and nutrient distribution. J. Plant Nutr.17(9):1501-1512.
    2.Alexander A.K., Dani(?)l van der L. 2000. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Bioscience Reports. 20(4):239-249.
    3.Alva A.K., Graham J.H., Tucker D.P.H. 1993. Role of calcium in amelioration of copper phytotoxicity for Citrus. Soil Science 155:211-218.
    4.Alva A.K., Huang B. and Paramasivam S. 2000. Soil pH affects copper fractionation and phytotoxicity. Soil Sci. Soc. Am. J. 64:955-962.
    5.Baker A.J.M. and Brooks R.R. 1989. Terrestrial higher plants which hyperaccumulate metallic elements. Biorecovery. 1:81~97.
    6.Baker A.J.M., McGrath S.P. and Reeves R.D. 2000. Metal hyperaccumulator plants: A review of the ecology and physiology resource for phytoremediation of metal-polluted soils. In: Terry, N., Banuelos, G. and Vangronsveld, J. (eds.) Phytoremediation of Contaminated Soil and Water.Lewis Publishers, Boca Raton, FL, USA. Pp. 85~107.
    7.Baker A.J.M, Brooks R.R., Pease A.J., Malaisse F. 1983. Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae) from Za(?)re. Plant and Soil. 73:377-385.
    8.Baker A.J.M., McGrath S.P., Sidoli C.M.D. and Reeves R.D. 1994. The possibility of in situ heavy metal decontaimination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11:41-49.
    9.BakerA.J.M. 1987. Metal tolerance. New Phytol. (Suppl.). 106:93-111.
    10.Baker A.J.M. 1981. Accumulators and excluders—strategies in the response of plants to heavy metals. Journal of Plant Nutrition. 3:643-654.
    11.Baker A.J.M, Whiting S.N. 2002. In search of the holy grail-a further step in understanding metal hyperaccumulation? New Phytologist. 155:1-7.
    12.Baker A.J.M., Reeves R.D., McGrath S.P. 1991. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants—a feasibility study. In: Olfenbuttel R.F. (eds.) In situ bioreclamation.Butterworth-Heinemann. Boston. Pp. 539~544.
    13.Baker D.E. 1990. Copper. In Heavy Metals in Soils. (Dr. Alloway B.J. ed).Blackie & Sons Ltd. London. Pp.151-176.
    14.Baker A.J.M., Reeves R.D., McGrath S.P. 1991. In situ decontamination of heavy metal polluted soils. Using crops of metal-accumulating plants—a
    
    feasibility study, In Hinchee, R.E., Olfenbuttel, R.F. (eds.) In situ Bioreclamation, Butterworth-Heinemann, Stoneham, M.A.. pp.539.
    15.Balsberg Pahlson A.M. 1989. Toxicity of heavy metals (Zn, Cu, Cd, Pb) to vascular plants. Water, Air and Soil pollution. 47:287-319.
    16.Bartlett R. and James B. 1979. Behavior of chromium in soils. Ⅲ. oxidation.J. Environ. Qual. 8:31.
    17.Bernal M.P. and McGrath S.P. 1994. Effects of pH and heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. and C. Presl (Brassicaceae). New Phytol. 127:61-68.
    18.Besnard E., Chenu C. and Robert M. 2001. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environmental Pollution. 112:329-337.
    19.Bingham F.T., Peryea F.J. and Jarrell W.M. 1986. Metal toxicity to agricultural crops. Metal Ions Biol. Syst. 20:119~156.
    20.Blaylock M.J. and James B.R. 1994. Redox transformations and plant uptake of selenium resulting from root-soil interactions. Plant and Soil. 158:1-12.
    21.Blaylock M., Salt D.E., Dushenkov S., Zakharova O., Gussman C., Kapulnik Y.,Ensley B.D., Raskin I. 1997. Enhanced accumulation of Pb in Indian Mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860-865.
    22.Bradshaw A.D., Chadwick M.J. 1980. The restoration of land. Berkeley:University of California Press.
    23.Branquinho C., Brown D.H., Catarino F. 1997. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluerescene.Environ. Exper. Botany. 38:165-179.
    24.Brooks P.C., Landman A., Pruden G. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry. 17(6):837-845.
    25.Brooks R.R., Lee J., Reeves R.D., Jaffr(?) T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. Journal of Geochemical Exploration. 7:49-77.
    26.Brooks R.R., Baker A.J.M. and Malaisse F. 1992. Copper flowers. National geographic research and exploration. 8(3):338-351.
    27.Brooks R.R., Reeves R.D., Morrison R.S., and Malaisse F. 1980. Hyperaccumulation of copper and cobalt-a review. Bulletin de la Societie royale de Botanique de Belgique. 113:166-172.
    28.Brooks R.R. 1998. Plants that hyperaccumulate heavy metals. Wallingford:CAB international.
    29.Brown S.L., Chaney R.L., Angle J.S., Ryan J.A. 1998. A plant
    
    growth-promoting of cadium to lettuce in long-term biosolids-arnended soils. J.Environ. Qual. 27:1071-1078.
    30.Brun L.A., Maillet J., Hinsinge P., P(?)pin M. 2001. Evalution of copper availability to plants in copper-contaminated vineyard soils. Environmental Pollution. 111:293-302.
    31.Brun L.A., Maillet J., Richarte J., Hinsinge P., Remy J.C. 1998. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soil. Environmental Pollution. 102:151-161.
    32.Cao Z.H., Hu Z.Y. and Wong M.H. 2000. Copper contamination in paddy soils irrigated with wastewater. Special issue of Environ-mental contamination,toxicology and health. Chemosphere. 41:3-6.
    33.Cathala N., Salsac L. 1975. Absorption du cuivre par les raciness de ma(?)s (Zea mays L.) et de tournesol (Helianthus annuus L.). Plant and Soil 42:65-83.
    34.Chancy R.L., Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S. and Baker A.J. 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol.8:279-284.
    35.Chancy R.L., Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S.,Baker A.J. 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8,279-284.
    36.Clijsters H., Van Assche F. 1985. Inhibition of photosynthesis by heavy metals.Photosym. Res.7:31-40.
    37.Conningham S.D., Berti W.R., Huang J.W. 1995. Phytoremediation of contaminated soils. Bio/Techoiogy. 13:393-397.
    38.Crowley D.E., Wang Y.C., Reld C.P.P., et al. 1991. Mechanisms of iron acquisition from siderophores by micro-oganisms and plants. Plant and Soil, 130:179-198.
    39.Cunningham S.D., Shann J.R., Crowley D.E., Anderson T.A. 1997. Phytoremediation of contaminated water and soil. J. Environ. Qual. 28,760-766.
    40.Cunningham S.D. and Ow D.W. 1996. Promise and prospects of phytoremediation. Plant Physiology. 110:715-719.
    41.Czpyrna G., Mcklean A.I. and Levy R.D. 1989.In situ immobilization of heavy-metal-contaminated soils, Noyes Data Comporation, New Jersy.
    42.De Abreu C.A., Van Raij B., De Abreu M.F., Dos Santos W.R. 1996. Efficiency of multinutrient extractants for the determination of available copper in soils.Commun. Soil Sci. Plant Anal. 27:763-771.
    43.De Vos C.H.R., Schat H. and Vooijs R. 1989. Copper induced damage to the permeability barrier in roots of Silene Cucubalus. J. Plant Physiol. 135:164-169.
    
    
    44.Deram A., Petit D., Robinson B., Brooks R., Gregg P., Van-Halluwyn C. 2000. Natural and induced heavy-metal accumulation by Arrhenatherum elatius:implications for phytoremediation [J]. Commun. Soil Sci. Plant Anal.31:413-421.
    45.Ebbs S.D., Kochian L.V. 1998. Phytoextraction of zinc by oat (Avina sativa),barley (Hordeum vulgare) and Indian mustard (Brassica juncea). Environ. Sci.Technol. 32,802-806.
    46.Echevarria G.., Morera M.T., Fardeau J.C., Leclerc-Cessac E. 1998.Assessment of phytoavailablity of nickel in soils. J. Environ. Qual.27:1064-1070.
    47.Eide D., Broderius M., Fett J., Guerinot M.L. 1996. A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proceedings of the National Academy of Science U.S.A. Pp.5624-5628.
    48.Ernst W.H.O. 1976. Physiological and biochemical aspects of metal tolerance.In: Effect of air pollutants on plants. Cambridge University Press Cambridge.Pp. 115-133.
    49.Ernst W.H.O. 1989. Mine vegetation in Europe. In: Shaw A.J. ed. Heavy metal tolerance in plants: Evolutionary aspects. Bota. Raton. Florida: CRC Press.Pp.21-38
    50.Ernst W.H. 1996. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry. 11:163-167.
    51.Evans K.M., Gatehouse J.A., Lindsay W.P., Shi J., Tommey A.M., Robinson N.J. 1992. Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Platn Molecular Biology 20:1019-1028.
    52.Fernandes J.C., Henriques F.S. 1991. Biochemical, Physiological, and Structural effects of excess copper in plants. Bot. Rev. 57:246-266.
    53.Fitter A. 1997. Nutrient acquisition. In: Crawley M.J (ed.), Plant Ecology.Blackwell Science, London, pp.51-73.
    54.Geller K.E., Ernst W. and Steve P.M. 1998. Toxicity of heavy metals to microogranisms and microbial process in agricultural soils: A review. Soil Biol.Biochem, 30(10/11):1389-141.
    55.Gildon A. and Tinker P.B. 1983. Interaction of vesicular-arbuscular mycorrhiza colonization and heavy metals in plants: Ⅱ. The effects of coloniziation on uptake of copper, New Phytol. 95:263-268.
    56.Grěman H., Velikonja-Bolta (?)., Vodnik D., Kos B., Le(?)tan D. 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and
    
    toxicity. Plant Soil. 235:105-114.
    57.Grill E., Winnacker E.L., Zenk M.H. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science. 230:674-676.
    58.Grotz N., Fox T., Connolly E., Park W., Guerinot M.L., Eide D. 1998. Identification of family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proceedings of the National Academy of Science U.S.A.95:7220-7224.
    59.Gupta A., Singhal C. 1995. Inhibition of PS Ⅱ activity by copper and its effect on spectral properties on intact cells in Anacystis ridulans. Environ. Exper Botany. 35:435-439.
    60.Gupta S.K., Aten C. 1993. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentration in contaminated soils. Int. J. Environ. Anal. Chem.51:25-46.
    61.Hammond P.B. and Foulkes E.C. 1986. Metal ion toxicity in man and animals. Metal. Ions Biol. Syst. 20: 157-200.
    62.Haq A.U., Bates T.E., Soon Y.K. 1980. Comparison of extractants for plant-available zinc, cadmium, nickel, and copper in contaminated soils. Soil Sci. Soc. Am. J. 44:772-777.
    63.Harter R.D. 1983. Effect of soil pH on absorption of Lead、Copper, Zinc and Nickel. Soil Sci. Soc. Am. J. 47: 47-51.
    64.Hogan G.D., Rauser W.E. 1981. Role of copper binding, absorption and translocation in copper tolerance of Agrostis gigantean. Roth. J. Exp. Bot.32:27-36.
    65.Howden R., Cobbett C.S. 1992. Cadmium-sensitive mutants of Arabidopsis thaliana. Plant Physiology. 107:1067-1073.
    66.Huang J.W., Cunningham S.D., 1996. Lead phytoextraction: species variation in lead uptake and translocation. New Phytol. 134:75-84.
    67.Huang J.W., Blaylock M.J., Kapulnik Y., Ensley B.D. 1998. Phytoremediation of uranium contaminated soils: roles of organic acids in triggering uranium hyperaccumulation in plants. Environ. Sci. Technol. 32:2004-2008.
    68.Huang J.W., Chen J., Berti W.R., Cunningham S.D. 1997. Phtoremediation of lead-contaminated soils, role of synthetic chelates in lead phytoextraction.Environ. Sci. Technol. 31:800-805.
    69.Iwasaki K., Sakurai K., Takahashi E. 1990. Copper binding by the root cell walls of Italian ryegrass and red clover. Soil Sci. Plant Nutr. 36 (3):431-439.
    70.Juste C. 1988. Appreciation de la mobilit(?) et de la biodiisponibilit(?) des elements en traces du sol. Science du Sol. 26:103-112.
    
    
    71.Kahle H. 1993. Response of roots of trees to heavy metals. Environ. Exp.Botany. 33:99-119.
    72.Kampfenkel K., Kusnir S., Babiychuk E., Inzé, D., Van Montagu M. 1995. Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. Journal of Biological Chemistry.270(28):479.
    73.Kandeler E., Luftenegger G., Schwarz S. 1997. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soil. 23:299-306.
    74.Kārenlampi S., Schat H., Vangronsveld J., Verkleij J.A.C., Lelie der van D.,Mergeay M., Tervahauta A.I. 2002. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environmental Pollution.107:225-231.
    75.Ken E.G., Ernst W., Steve P.M. 1998. Toxicity of heavy metals to microogransims and microbial process in agricultural soils: A review. Soil Biology and Biochemistry. 30(10/11): 1389-1411.
    76.Khan A.G., Keuk C., Chaudhry T.M., Khoo C.S., Hayes W.J. 2000. Role of plants, mycorrizae and phytochelators in heavy metal contaminated land remediation. Chemosphere. 41:197-207.
    77.Knight B., Zhao F.J., McGrath S.P. and Shen Z.G. 1994. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solution.Plant and Soil. 197:71-78.
    78.Kr(?)mer U., Cotte-Howells J.D., Chaarnock J.M., Baker A.J.M. and Smith J.A.C. 1996. Free histidine as a metal chelator in plants that accumulate nickel.Nature. 379:635-638.
    79.Krishnamurti G.S.R., Huang P.M., Van Rees K.C.J. 1997. Kinetics of cadmium release from soils as influenced by organic: implications in cadmium availability. J. Environ. Qual. 26(1):271-277.
    80.Kuiters A.T. and Mulder W. 1993. Water-soluble organic matter in forest soils.Plant and Soil 152:215-235.
    81.Lambert D.H. and Weidensaul F.C. 1991. Element uptake by mycorrhizal soybean from sewage-sludge-treated soil. Soil Sci. Soc. Am. J. 85:393-398.
    82.Lebourg A., Sterckeman T. 1996. In: Ciesielski, H., Proix, N. (eds), Intérét de différents réactifs d'extraction chimique pour 1' evaluation de la biodisponibilité des stations d'épuration urbaines. Aceme, Angers, France.
    83.Ledin M. 2000. Accumulation of metals by microorganisms-processed and importance for soil systems. Earth-Science Review. 51:1-31.
    
    
    84.Lefebvra C. and Vemet P. 1990. Microevolutionary processes on contaminated deposits. In: Heavy-metal tolerance in plants: Evolutionary aspects. Shaw A.J.ed. CRC Press, Inc. Boca Raton, Florida. Pp.285-300.
    85.Lepp N.W. 1981. Effects of heavy metal pollution on plants. Applied Science Publishers LTD.
    86.Li F., Shan X., Zhang T., Zhang S. 1998. Evalutation of plant availability of rare earth elements in soils by chemical fractionation and multiple regression analysis. Environ. Pollution. 102:269-275.
    87.Lombi E., Zhao F.J., Dunham S.J. and McGrath S.P. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense.New Phytologist. 145:11-20.
    88.Luo Y.M. and Rimmer D.L. 1995. Zinc-Copper interaction affecting plant growth on a metal-contaminated soil. Environment Pollution. 88: 79-83.
    89.MacNair M.R. 1987. Heavy metal tolerance in plant: a model evolutionary system. Treads in Ecology and Evoluation. 2:354-378.
    90.Marschner H. 1995. Mineral nutrition of higher plants. 2ed edn. Academic Press. San Diego. CA. USA.
    91.Maschner H., R(?)mheld V. 1994. Strategies of plant for acquisition of iron.Plant Soil. 165:261-274.
    92.Matilde Barón, Juan B.A. and Julio L.G. 1995. Cop ra dsyo mⅡ: A controversial relationship. Physiol. Plant. 94:174-180.
    93.McEldowney S., Hardman D.J., Waite S. 1993. Treatment Technologies. In:McEldowney S., Hardman J., Waite S. eds. Pollution Ecology and Biotreatment Technologies. Longman, Singapore Publishers, Singapore.
    94.McGrath S.P., Zhao F.J., Lombi E. 2001. Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant and Soil.232:207-214.
    95.McGrath S.P. 1998 Phyextraction for soil reclamation. In Plants that hyperaccumulate heavy metal. Their role in phytoremediation. Microbiology,archaeology, mineral exploration and phytomining. Ed. Brooks R.R. CAB International. Wallingford. Pp. 261-287.
    96.McGrath S.P., Shen Z.G. and Zhao F.J. 1997. Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucm grown in contaminated soils. Plant and Soil. 188:153-159.
    97.McNair M.R. 1981. The uptake of copper by plants of Mimulus guttatus differing in genotype primarily at a single major copper tolerance locus. New Phytol. 88:723-730.
    98.Meagher R.B. 2000. Phytoremediation of toxic element and organic pollutants.Curr. Opin. in Plant Biol. 3(2):153-162.
    
    
    99.Meharg A.A. 1993. The role of the plasmalemma in metal tolerance in angiosperms. Physiol. Plant. 88:191-198.
    100.Mench M., Martin E., 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L., and Nicotiana rustica L. Plant Soil. 132(2): 187-196.
    101.Mocquot B., Vangronsveld J., Clijsters H., Mench M. 1996. Copper toxicity in young maize plants: effects on growth, mineral and chlorophyll contents, and enzymes activities. Plant and Soil. 182:287-300.
    102.Mohanty N., Vass Ⅰ., Demeter S. 1989. Copper toxity affects photosytem Ⅱ electron transport at the secondary quinone acceptor QB. Plant Physiol. 90:175-179.
    103.Monni S., Salemaa M., White C., Tuittila E., Huopalained M. 2000. Copper resistance of Calluna vulgaris originating from the pollution gradient of a Cu-Ni smelter, in Southwest Finland. Environmental Pollution. 109:211-219.
    104.Morel J.L. 1997. Assessment of phytoavailability of trace elements in soils.Analusis Magazine. 25(9-10):70-72.
    105.Morrey D.R., Balkwill K., Balkwill M.J., Williamson S. 1992. A review of some studies of the serpentine flora of Southern Africa. In: Baker A.J.M.,Proctor J., Reeves R.D. (eds.) The Vegetation of Ultramafic (Serpentine) Soils.Intercept, Andover. Pp. 147-158.
    106.Msaky J.J. and Calvert R. 1990. Adsorption behaviour of copper and zinc in soils: influence of pH on adsorption characteristics. Soil Sci. 150:513-522.
    107.Mulligan C.N., Yong R.N., Gibbs B.F. 2001a. Heavy metal removal from sediments by biosurfactants. Journal of Hazardous Materials 85:111-125.
    108.Mulligan C.N., Yong R.N., Gibbs B.F. 2001b. Remediation technologies for metal-contaminated soils and groundwater: an evalution. Engineering Geology.60:193-207.
    109.Murphy A., Taiz L. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiology. 109,945-954.
    110.Murphy A., Zhou J., Goldsbrough P.B., Taiz L. 1997. Purification and immunological identification of metallothioneins 1 and 2 from Arabidopsis thaliana. Plant Physiology. 113,1293-1301.
    111.Nriagu J.O. 1979. The global copper cycle. In J. O. Nriagu ed. Copper in the environment. Part I: Ecological cycling. John Wiley and Sons, New York.
    112.Nriagu J.O., Pacyna J.M. 1988. Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature. 333:134-139.
    113.Ouzonidou G. 1994. Copper-induced changes on growth, metal content and photosynthetic function of Alyssum montanum L. plants. Environmental and
    
    Experimental botany. 34(2):165-172.
    114.Ouzounidou G., Eleftheriou E. and Karataglis S. 1991. Ecophysiological and ultrastructural effects of copper in Thlaspi Ochroleucum (Cruciferae). Can. J.Bot. 70: 947~957.
    115.Ouzonidou G. 1994. Root growth and pigment composition in relationship to element uptake in Silene Compacta plants treated with copper. J. Plant Nutr.17(6):933-943.
    116.Paul R., Lucas B., Jan J., Cathrina D. 2002. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environmental Pollution.116:109-121.
    117.Poschenrieder C., Bech J., Llugany M., Alina P., Fen(?)s E., Barcel(?) J. 2001.Copper in plant species in a copper gradient in Catalonia (North East Spain)and their protential for phytoremediation. Plant and Soil. 230:247-256.
    118.Ramos L., Hernandes L.M. and Gonzalez J.M. 1994. Sequential fractionation of Copper, Cadmium and Zinc in soils from or near Donana National Park. J.Environ Qual. 23:50-57.
    119.Raskin I., Smith R.D., Salt D.E. 1997. Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8:221-226
    120.Rauser W.E. 1990. Phytochelatins. Ann. Rev. Biochem. 59:61-86.
    121.Reeves R.D. and Baker J.M. 1984. Studies on metal uptake by plants from serpentine and non-serpertine populations of Thlaspi geoesingense Halacsy(Cruciferae). New Phytologist. 98:191-204.
    122.Reeves R.D. and Baker J.M. 2000. Metal-accumulating plants. In Raskin, H. and Ensley, B. D. eds. Phytoremediation of Toxic Metals: Using Plants to Clean up the Environment. John Wiley & Sons, New York. Pp. 193~230.
    123.Rensing C., Kues U., Stahl U., Nies D.H., Friedrich B. 1992. Expression of bacterial mercuric ion reductase in Saccharomyces cerevisiae. Journal of Bacteriology. 174,1288-1292.
    124.Robinson N.J., Tommey A.M., Kuske C., Jackson P.J. 1993. Plant metallothioneins. Biochim. J.295:1-10.
    125.Robinson, B.H., Brooks R.R., Howes A.W., Kirkman J.H., Gregg P.E.H. 1997. The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. Journal of Geochemical. Exploration.60:115-126.
    126.Romheld V. 1991. The role of phytosiderophores in acquisition of iron and other micronutrients in graminaceous species: An ecological approach. Plant and Soil. 130:127-134.
    127.Rugh C.L., Senecoff J.F., Meagher R.B., Merkle S.A. 1998. Development of
    
    transgenic yellow poplar for mercury phytoremediation. Nature Biotechnology. 16:925-928.
    128.Rugh C.L., Wilde H.D., Stack N.M., Thompson D.M., Summers A.O., Meagher R.B. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proceedings of the National Academy of Sciences U.S.A. 93:3182-3187.
    129.Salomons W. and Forstner U. 1984. Metals in the hyrocycle. Springer-Verlag, Berlin. Pp.349.
    130.Salt D.E., Blaylock M., Nanda Kumar P.B.A.N, Duschenkov S., Ensley B.D., Chet I., Raskin I., 1995. Phytoremediation: A noval strategy for the removal of toxic metals from the environment using plants. Biotechnol. 31:468-474.
    131.Salt D.E., Smith R.D. and Raskin I. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 49:643-668.
    132.Salt D.E., Blaylock M., Nanda Kumar P.B.A.N., Duschenkov S., Ensley B.D., Chet I., Raskin I. 1995. Phytoremediation: A noval strategy for the removal of toxic metals from the environment using plants. Biotechnol. 31:468-474.
    133.Salt D.E., Smith R.D. and Raskin I. 1998. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643-668.
    134.Salt D.E., Kràmer U. 2000. Mechanisms of metal hyperaccumulation in plants. In: Raskin I., Ensley B.D. eds. Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment. Pp.231-245.
    135.Schramel O., Michalke B., Kettrup A. 2000. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures. The Science of the Total Environment. 263:11-22.
    136.Schwartz C., Morel J.L., Saumier S., Whiting S.N., Baker A.J.M. 1999. Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant and Soil. 208:103-115.
    137.Shamma S.S., Schat H. and Voous R. 1999. Contamination toxicology of copper, zinc and cadmium in binary mixture: concentration dependent antagonistic, nonaditive, and synergistic effects on root growth in Silene Vulgaris. Environ Toxicol. Chem. 18(2): 348-355.
    138.Se S.T. and Sjuj B.L. 1953. Elsholtzia haichowensis Sun-A plant that can reveal the presence of copper-bearing strata. Dichzi Sjuozheo. 32:360-368.
    139.Sims J.L., Patrick W.H. 1978. The distribution of micronutrients cations in soils under conditions of varying redox potential and pH. Soil Sci. Soc. Am. J. 42:258-262.
    140.Sims J.T. 1986. Soil pH effects on the distribution and plant availability of Manganese Copper and Zinc. Soil Sci. Soc. AM. J. 150:367-373.
    
    
    141.Smith R.M., Martell A.E., Motekaitis R.J. 1995. NIST critical selected stability constants of metal complexes database. U.S.: Department of Commerce.
    142.Stanhope K.G., Young S.D., Hutchinson J.J., Kamath R. 2000. Use of isotopic dilution techniques to aassess the mobilization of nonlabile Cd by chelating agents in phytoremediation. Environmental Science &Technology.34:4123-4127.
    143.Stephen D.E. and Leon V.K. 1997. Toxicity of Zinc and Copper to Brassia Species: Implication for Phytoremediation. J. Environ. Qual. 26:776-781.
    144.Strange J., Macbaur M.R. 1991. Evidence for a role for the cell membrane in copper tolerance. New Physiol. 119:383-388.
    145.Tang S.R., Wilke B.M. and Huang C.Y. 1999. The uptake of copper by plants dominantly growing on copper mining spoils along the Yangtze River, the People's Republic of China. Plant and Soil. 209:225-232.
    146.Tang S.R., Wilke B.M., Brooks R.R. 2001. Heavy-metal uptake by metal tolerant Elsholtzia haichowensis and Commelina communis from china. Commun. Soil Sci. Plant Anal. 32(5&6), 895-905.
    147.Temminghoff E.J., Van der Zee SEATM F.A.M. de Haan. 1997. Copper mobility in a copper-contaminated sandy soil as affected by pH and solid and dissolved organic matter. Environ. Sci. Tech. 31(4): 1109-1115.
    148.Tessier A., Cambell P.C. and Bisson M. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 284:66-69.
    149.Tiller K.G., Merry R.H. 1981. Copper pollution of agricultural soils, In Loneragan J.F., Robson A.D and Graham R.D. eds. Copper in Soils and Plants. Academic Press. New York. Pp. 119-123.
    150.Tomesett A.B., Thurman D.A. 1988. Molecular biology of metal tolerance of plants. Plant Cell Environ. 11: 383.
    151.Treeby M., Marschner H., Ròmheld V. 1989. Mobilization of ion and other micronutrient cations from a cations from a calcareous soil by plant-borne, microbial, and synthetic metal chelators. Plant and Soil. 114:217-226.
    152.Turco R.F., Kennedy A.C., Jawson M.D. 1994. Microbial indicators of soil quality. In Doran J.W. (ed.), Defining Soil Quality for a Sustainable Environment. Madison, Wisconsin, USA. Pp.73-90.
    153.Uren N.C. 1981. Chemical reduction of an insoluble higher oxide of manganese by plant roots. J. Plant Nutr. 4:65-71.
    154.Varvara P. G., Filby B., Glick B.R. 2000. Increased ability of transgenic plants expression the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. Journal of Biotechnology. 81:45-53.
    155.Walter A., R6mheld V., Maschner H., Moris, S. 1994. Is the release of phytosiderophores in zinc-deficient wheat plants a response to impaired iron
    
    ultilization? Physiol. Plant. 92:493-500.
    156.Walter I. and Cuevas G. 1999. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application. The Science of the Total Environment. 226:113-119.
    157.Welch R.M., Norvell W.A., Schake S.C., Shaft J.E., Kochian L.V. 1993.Induction of iron(Ⅲ) and copper(Ⅱ) reduction in pea roots by Fe and Cu status: Does the root-cell plasmalemma Fe(Ⅲ)-chelate reductase perform a general role in regulating cation uptake? Planta. 190:555-561.
    158.Whiting S.N., Leake J.R., McGrath S.P., Baker A.J.M. 2000. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145:199-210.
    159.Wu L.H., Luo Y.M., Christie P., Wong M.H. 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere. 50:819-822.
    160.Wu L. 1990. Colnization and establishment of plants in contaminated environments. In Shaw A.J. eds. Heavy metal tolerance in plants: Evolutionary aspects. CRC Press, Inc. Boca Raton, Florida. Pp.269-284.
    161.Xiang C., Oliver D.J. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell. 10:1539-1550
    162.Yang M.J., Yang X.E., Rōmheld V. 2002. Growth and nutrient composition of Elsholtzia splendens Nakai under copper toxicity. J. Plant Nutr. 25(7):1359-1375.
    163.Yang X.E., Baligar V.C., Martens D.C. and Clark R.B. 1996. Cadmium effects on influx and transport of mineral nutrients in plant species. J. Plant Nutri. 19:643-656.
    164.Yang X.E., Shi W.Y., Fu Q.X., Yang M.J. 1998. Copper-hyperaccumulators of Chinese native plants: characteristics and possible use for phyto-remediation. In: Bassam N E L, ed. Sustainable Agriculture for Food, Energy and Industry. London: James and James Publishers. Pp484-489.
    165.陈怀满,郑春荣,涂从,朱永官.1999.中国土壤重金属污染现状及防治对策.人类环境杂志.28(2):130-134.
    166.陈怀满.1996.土壤—植物系统中的重金属.科学出版社,北京.
    167.陈世宝等.1997.有机质在土壤重金属污染治理中的应用.农业环境与发展,3:26-29.
    168.陈世俭,胡霭堂.1995.土壤铜形态及有机物质的影响.长江流域资源与环境,4(4):367-371.
    169.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.2002.砷超富集植物
    
    蜈蚣草及其对砷的富集特性.科学通报.47(3):207-286.
    170.成杰民,郑绍健,胡霭堂等.1997近矿区农田镉污染的调查与评价,南京农业大学学报.20(1):43-47.
    171.段昌群.1995.植物对污染环境的适应与植物的微进化.生态学杂志.14(5):43-50.
    172.黄泽春,陈同斌,雷梅.2002.污泥中的DOM对中国土壤中Cd吸附的影响Ⅰ,纬度地带性差异.环境科学学报.22(3):349-353.
    173.黄艺,陈有键,陶澍.2000.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响.应用生态学报,11(3):431-434.
    174.柯文山,席红安,杨毅,王万贤,陈世俭.2001.大治铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析.生态学报.21(6):907-912.
    175.孔维屏,陈家坊,武玫玲.1987.土壤中铜的形态及其转化.环境科学学报,7(1):78-85.
    176.孔维屏.1987.土壤中铜的形态及其转化的研究概况.土壤学进展,15(6):13-20.
    177.李永涛,吴启堂.1997.土壤重金属污染治理措施综述.热带亚热带土壤科学,6(2):134-139.
    178.龙新宪,杨肖娥,倪吾钟.2002.重金属污染土壤修复技术研究现状与展望.应用生态学报.13(6):757-762.
    179.龙新宪,杨肖娥,倪吾钟.2001.古老铅锌矿山生态型景天对锌耐性及超积累特性的研究.植物生态学报.25(6):665-672.
    180.垄平,孙铁珩,李培军,重金属对土壤微生物的生态效应,应用生态学报,1997,8(2):218-224.
    181.骆永明.金属污染土壤的植物修复.土壤,1999,5:261-265.
    182.南京农业大学主编.土壤农化分析(第二版).农业出版社,1992.
    183.桑伟莲.孔繁翔.植物修复研究进展.环境科学进展,1999,7:40-49.
    184.宋静.2002.土壤重金属植物有效性评价及铜污染土壤的植物修复研究.中国科学院研究生院博士学位论文.
    185.束文圣,杨开颜,张志权,杨兵,蓝崇钰.2001.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究.应用与环境生物学报.7(1):7-12.
    186.涂从,郑春荣,陈怀满,铜矿尾矿库土壤-植物体系的现状研究,土壤学报,2000,37(2):284-287.
    187.王果,陈建斌,高山等.1999.稻草和紫云英对外源铜的形态及生态效应的
    
    影响.生态学报,19(4):551-556.
    188.王凯荣,龚惠群,王久荣,栽培植物的耐镉性与镉污染土壤的农业利用,农业环境保护,2000,19(4):196-199.
    189.王卫红和吴刚.1997.赤红壤施用铜、锌对菜心生长和吸收铜、锌的影响.华南农业大学学报.18(2):66-71.
    190.王正直,刘春生,邱德峰,常红岩.2002.果园土壤铜素的含量、形态及剖面特征研究.土壤通报,33(5):369-371.
    191.韦朝阳,陈同斌,黄泽春,张学青.2002.大叶井口边草—一种新发现的富集砷的植物.生态学报.22(5):777-778.
    192.吴龙华,骆永明,黄焕忠.2001.铜污染旱地红壤的络合诱导植物修复作用.应用生态学报.2001,12(3):435-438.
    193.谢学锦,徐邦梁.1953.铜矿指示植物海州香薷.地质学报.32(4):360-368.
    194.杨居荣等.1982.我国几种主要土类对重金属污染物的吸附特性.农业环境保护.4:8-11.
    195.杨明杰.2000.海州香薷(Elsholtzia splendens Nakai)对铜的超积累机理研究.浙江大学博士生学位论文.
    196.杨元根,Paterson E, Campbell C. 2002.重金属Cu的土壤微生物毒性研究.土壤通报.33(2):137-141.
    197.余贵芬,青长乐.1998.重金属污染土壤治理研究现状.农业环境与发展,4:22-24.
    198.袁大伟.1988.土壤中铜,锌,铅,镉,镍,锰的测定预处理方法比较试验.农业环境保护.7(1)34-36.
    199.张甲耀,李静.1996.生物修复技术研究进展.应用与环境生物学报,193-199.
    200.石晋丽,朱甘培,中国香薷植物的药用及开发前景,中药材,1994,17(12):10-13.
    201.龚慕辛.海州香薷化学成份的研究,中草药,1998,29(4):227.
    202.糜留西,吕爱华,张丽红.海州香薷挥发油成份研究,武汉植物学研究,1993,11(1):94-96.
    203.朱甘培,冯晰,石晋丽,紫花香薷挥发油油化学成分的研究,北京中医学院学报,1992,15(6):57—59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700