选择性复合印迹膜的制备及其对水杨酸类化合物的分离富集行为和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水杨酸类物质包括水杨酸(Salicylic Acid,SA).水杨酸甲酯(Methyl Salicylate,MS)、水杨酰胺(Salicylamide, SAM)和乙酰水杨酸(Acetylsalicylic Acid, ASA)等,广泛应用于化工、医药、食品以及美容等领域。水杨酸类化合物在生产过程中常由于原料转化不完全和分离提纯工艺落后等不足,不可避免地使产品带有多种浓度较高的副产物,同时产生大量富含水杨酸类物质的废液。由于水杨酸类化合物本身的应用大部分与人密切相关,其副产物浓度超标会直接影响人类的生命健康安全。此外,由于传统的分离富集技术难以实现对这些废液中水杨酸类物质的回收利用和变废为宝,这些具有较高回收利用价值的废液常常当作工业废水处理,造成了严重的资源浪费和经济损失。此外,这些水杨酸类废液中水杨酸物质浓度较高,一般的污水处理技术又难以处理彻底,若排放到环境中将对水体和土壤将造成不同程度的危害,影响生态平衡,并最终危害人的生命。因此,对水杨酸类化合物生产过程中富含水杨酸类物质的废液进行有效的分离富集,既可回收利用高价值的水杨酸类物质,又可防止其工业废水的产生,对实现水杨酸类化合物的“绿色生产”和“环境保护”具有重要意义。
     目前,水杨酸类化合物的分离富集方法主要有重结晶法、萃取法、色谱法、分子蒸馏法和膜分离法等。这些方法各具优势,但也存在其局限性。膜分离技术以其高效、节能、操作方便、分子级过滤、环境友好等优点广泛应用于工业生产过程中。但传统的膜分离技术仍存在一些限制其发展的因素,如目前的商售膜只能实现某一类物质的分离而无法实现单个物质的分离,特别是对结构相似的有机化合物。由于水杨酸类化合物结构十分相似,使用传统膜分离技术无法实现它们之间的高效分离。因此,研究开发一类高效、低能耗、绿色便捷的水杨酸类物质分离富集方法具有重要的科学、经济和社会价值。
     采用分子印迹技术(Molecular Imprinting Technology, MIT)制备的分子印迹聚合物(molecularly imprinted polymers MIPs)是具有分子识别能力的高分子材料,材料表面存在的印迹位点对目标分子具有特异亲和性。将MIT与膜分离技术结合制备的复合印迹膜是由结构优化的多孔支撑层和具有选择性的薄层复合而成的,其兼具了特异识别性能和优良通量的双重优点,是一种理想的分离材料。基于印迹膜材料的分离方法,一方面具备“绿色化学”能耗低、能源利用率高、便于放大连续操作等独特优势;另一方面该方法针对目前商业膜材料难以实现对单个物质选择性分离的缺陷,为将特定分子从结构类似物中分离出来提供了可行有效的解决途径。
     本论文采用多种表面修饰印迹聚合技术,分别合成了以聚偏氟乙烯微滤膜(PVDF)、聚丙烯微滤膜(PP)和无机氧化铝陶瓷膜(A1203)为基膜的五大类复合印迹膜,并用于选择性分离富集水杨酸类化合物;采用紫外可见光谱(UV)、红外光谱(FTIR)、拉曼光谱、扫描电镜(SEM)、透射电镜(TEM)、光电子能谱(XPS)、原子力显微镜(AFM)、接触角分析等多种手段对所合成的复合印迹膜的表面形貌、结构组成、表面润湿性、膜通量等进行了深入表征。系统研究了复合印迹膜在分离富集水杨酸类化合物过程中对目标物的吸附能力、渗透性能和动态分离性能,并详细探讨了复合印迹膜的识别机制。
     本论文主要研究结果如下:
     1.基于表面光引发聚合技术复合印迹膜的制备及其选择性分离富集性能研究
     以PVDF膜为基膜,SA为模板分子、N,N’-亚甲基双丙烯酰胺(MBAA)为交联剂,苯甲酮(BP)为光引发剂,采用紫外光引发印迹聚合技术制备了分别以甲基丙烯酸(MAA)、丙烯酰胺(AM)和4-乙烯基毗啶(4-VP)为功能单体的3类复合印迹膜,依次为:MAA-MIM、AM-MIM和4-VP-MIM。采用UV、SEM、FTIR、拉曼光谱等技术对所合成的三类MIM的形貌和结构进行了表征。静态动力学实验表明,在10min内MAA-MIM, AM-MIM和4-VP-MIM对SA的吸附几乎均达到平衡。从等温吸附曲线可以得出,以4-VP为功能单体所合成的4-VP-MIM具有较好的吸附效果,且随着功能单体浓度的增大,4-VP-MIM对SA的吸附容量也随之增大。选择性实验结果表明,4-VP-MIM对SA的选择性优于相应MAA-MIM和AM-MIM,且发现功能单体用量的多少影响MIM的选择性。通过紫外光谱和核磁共振氢谱结合阐述了MAA-MIM, AM-MIM和4-VP-MIM性能差异的原因,认为可能的识别机理是SA和4-VP之间的离子键作用强于SA和MAA以及AM之间的氢键作用力。渗透性实验表明4-VP-MIM对SA和ASA的分离符合延迟渗透传质机理。
     2.基于溶胶-凝胶技术复合印迹膜的制备及其选择性分离富集性能研究
     (1)采用无机A1203陶瓷膜为基膜,对羟基苯甲酸(p-HB)为印迹分子,分别以异氰酸丙基三乙氧基硅烷(ICPTES)和3-氨丙基三乙氧基硅烷(APTES)为功能单体,正硅酸四乙酯(TEOS)为交联剂,盐酸(HCl)为催化剂,采用溶胶-凝胶技术制备2类对羟基苯甲酸复合印迹膜即非共价复合印迹膜(NCIM)和半共价复合印迹膜(SCIM)。采用FTIR和SEM表征手段研究了NCIM和SCIM的结构和形貌特征。通量测试表明2种复合印迹膜表面的印迹聚合物有利于增大膜通量;二元选择性实验结果表明了SCIM和NCIM对p-HB都具有特异选择性;SCIM对p-HB和SA的选择性分离系数为3.120,明显高于NCIM的相应值,证明采用半共价印迹聚合法制备的印迹膜对p-HB具有更高的选择性;渗透性实验揭示了SCIM和NCIM对SA和p-HB的渗透符合促进渗透传质机理。动态分离实验采用3因素3水平的响应曲面BBD卖验优化法对SCIM对p-HB和SA选择性分离的主要影响因素(如:混合溶液中p-HB的浓度、分离温度和溶液的流速等)进行了优化,得到的最佳动态分离条件即:p-HB的浓度为5.0mg/L,分离温度为10℃,流速为1.0mL/min。
     (2)龙胆酸(GA)为模板分子,γ-甲基丙烯酰氧基丙基三甲氧基硅烷(MPS)为交联剂,偶氮二异丁腈(AIBN)为引发剂,室温离子液体(RTIL)为孔模板,无机Al2O3陶瓷膜为基膜,选择三种羧酸:甲基丙烯酸(MAA)、丙烯酸(AA)和肉桂酸(CA)为功能单体,制备了相应3种复合印迹膜分别为:MAA-CIAM, AA-CIAM和CA-CIAM。采用UV、FTIR、SEM、 AFM等技术研究了所合成复合印迹膜的结构和形貌特征;通量测试实验表明所合成三类复合印迹膜均具有良好孔隙率,且印迹聚合物内部结构稳定;静态吸附性实验证明CA作为功能单体制备的印迹膜具有更高的吸附量,其中交联剂用量也影响膜吸附性能;渗透性实验揭示了离子液体对印迹膜的分离效果起着关键作用;CA-CIAM2具有较高的SA传质系数(5.146×103cm/s)和较低的GA传质系数(1.233×103cm/s)说明CA-CIAM2对SA和GA具有最佳分离效果。选择3因素3水平实验设计BBD法结合响应曲面模型优化了最佳动态分离条件,即为:GA的浓度为5.0mg/L,分离温度为15℃,流速为1.0mL/min。
     3.基于乳液聚合技术复合印迹膜的制备及其选择性分离富集性能研究
     (1)以SA为模板分子,4-乙烯基吡啶(4-VP)为功能单体,司班80(Span80)为表面活性剂,甲苯为油相,乙二醇二(甲基丙烯酸)酯(EGDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,聚丙烯微孔滤膜(PP)为基膜,采用油包水型(W/O)普通乳液聚合法制备了水杨酸复合印迹聚丙烯膜(SIPM)。采用拉曼光谱、SEM、AFM和接触角测试等表征手段研究了SIPM的结构组成和形貌特征以及表面湿润性;通量测试结果表明SIPM表面的亚微米印迹聚合微球有利于增大膜通量。静态吸附实验结果揭示了SIPM对SA有特异选择性,且适当增加SIPM表面印迹聚合微球的量有利于提高SIPM对SA的吸附容量。渗透性实验证明SIPM对SA和ASA的渗透遵循促进渗透传质机理。
     (2)以苯酚为模板分子,4-乙烯基吡啶(4-VP)为功能单体,苯乙烯(St)为聚合单体、二乙烯基苯(DVB)为交联剂,十二烷基三甲基溴化铵(DTAB)为乳化剂,去离子水为连续相,过硫酸钾(KPS)为引发剂,Al2O3陶瓷膜为基膜,采用水包油(O/W)型微乳液聚合技术制备了苯酚复合印迹膜(CIAM)。采用UV、拉曼光谱、SEM、TEM和XPS等表征手段研究了CIAM的结构组成和形貌特征;表面活性剂的用量与油水相混合方式影响CIAM上纳米印迹微球的粒径大小。研究发现CIAM上印迹纳米微球的粒径大小影响CIAM的吸附容量和选择性能。CIAM的动态分离效果优于静态分离性能。渗透性实验中,CIAM5对SA和苯酚的选择性分离系数高达18.2,表明CIAM对苯酚的选择性随着CIAM表面的印迹纳米微球粒径的降低而增加,但纳米印迹微球粒径过小容易在CIAM表面发生团聚而不利于选择性分离。考查了人工模拟动态分离水杨酸样品中苯酚的行为以及加标回收法检测了水杨酸工业产品中的苯酚。
Salicylic acid series products including salicylic acid, methyl salicylate, salicylamide and acetyl salicylic acid and so on, are widely used in the field of chemical, pharmaceutical, food, cosmetic and so on. On account of the incomplete conversion of raw materials and poor technology of separation and purification during the production process of salicylic acid series products, it will inevitably create a lot of by-products in the aim products as well as large number of the liquid waste rich in salicylic acid substance. Because most of the application of salicylic acid is closely related to people, the by-products concentration exceeded standard will directly affect human life and health safety issues. Moreover, it seems impossible to effectively recycle of salicylic acid series material in the waste liquid and turn "waste" into wealth with the traditional separation/enrichment technology. These waste liquid with high recycling value are often treated as industrial wastewater, causing serious waste of resources and economic losses. Additionally, the general sewage treatment technology is difficult to dispose of the high concentration of salicylic acid series material in the waste liquid. If released into the environment of water and soil, it will cause varying degrees of damage, and affect the ecological balance and ultimately endanger human life. Therefore, the effective separation and purification of the waste liquid during the production process of salicylic acid series products will, on the one hand, can recycle high value of salicylic acid series material, then it can prevent the formation of the industrial waste water. It is of great significance For the green production of salicylic acid products and environmental protection.
     At present, the main methods for the separation and enrichment of salicylic acid products are recrystallization, extraction, chromatography method, molecular distillation and membrane separation, etc. These methods have their own unique advantages, but also has its limitations. The rise of membrane separation technology with its high efficiency, energy conservation, convenient operation, molecular filtration, environment friendly advantages in the production process has been widely used in enterprises. But the membrane separation technology in traditional still exist some restrict factors of its development, such as the current commercially available membrane can realize the separation of a substance but can not achieve the separation of a single material, especially for organic compounds with similar structure. The traditional film can not show a single, highly selective separation of a substance. Therefore, it is significant to research and develop a high efficiency, low energy consumption, green and convenient purification method of salicylic acid series products.
     Molecularly imprinted polymers (MIPs) prepared via molecular imprinting technology (MIT) is a polymer materials with molecular recognition ability, there are many imprinted cavities on its surface which have specific affinity and recognition ability to the target molecule. Molecularly imprinted composite membrane is compounded of a optimized porous support layer structure and selective layer, which unite molecular imprinting technology and membrane separation technology. This composite membrane possesses the advantages of specific recognition excellent performance of flux, it is an ideal imprinted membrane materials. On the one hand, the technique is convenient for continuous operation, easy amplification, low energy consumption, high energy utilization rate, it is the typical "green chemistry". On the other hand, it overcomes the defect that the present commercial membrane materials such as ultrafiltration, microfiltration and reverse osmosis membrane cannot realize single substance separation. It provides a feasible and effective way to separate the specific molecular from the structure similar mixture.
     In this paper, using a variety of surface modification technology, on the surface of different substrate membrane (polyvinylidene fluoride microfiltration membrane, polypropylene microfiltration membrane and inorganic ceramic membrane), prepared of compound molecularly imprinted membrane which is used in the study of selective purification of salicylic acid products. Through the system analytical measurements to character the surface morphology, structural composition, hydrophobic and membrane flux of the prepared composite membranes. Studying the adsorption capacity, permeability, and the dynamic separation performance of various molecularly imprinted composite membranes for selectively recognizing salicylic acid products, and discusses the recognition mechanism in detail. The main study results of this thesis are as follows:
     1. The preparation of salicylic acid composite imprinted membrane by the photo-init iation polymerization method for selective separation and enrichment
     Three kinds of imprinted membranes for salicylic acid:MAA-MIM, AM-MIM and4-VP-MIM, were prepared via photopolymerization based on polyvinylidene fluoride membrane (PVDF) with methacrylic acid (MAA), acrylamide (AM) or4-vinylpyridine (4-VP) as the functional monomer, respectively, and N.N'-methylene-bis-acrylamide (MBAA) as crosslinking agent, benzophenone as photoinitiator. The structure, morphology of three imprinted membrane was characterized by UV, SEM, FT-IR and Raman spectra. The static kinetics experiment indicates that adsorption equilibrium time for three imprinted membranes were all10min. The isothermal adsorption curve indicates that the membrane prepared with4-VP as functional monomer had good adsorption effect. Moreover, the adsorption capacity of4-VP-MIM for SA increases with the increase of the concentration of functional monomer. Selectivity study shows that4-VP-MIM has better selectivity than MAA-MIM and AM-MIM on SA and high functional monomer concentration affect the selectivity of MIM. The different performance among MAA-MIM, AM-MIM and4-VP-MIM was investigated by UV spectra and1HNMR. It was drawn that the ionic bonding between SA and4-VP stronger than the hydrogen bond between SA and MAA or AM may the main recognition mechanism of imprinted membrane. Permeation experiment shows that transport mechanism for permeation of the ASA and SA towards4-VP-MIM was accordance with the facilitated mechanism.
     2. The preparation of composite imprinted membrane by the the sol-gel method for selective separation and enrichment
     (1) Two kinds of composite imprinted membranes (CIAM) for p-hydroxybenzonic acid (p-HB) was prepared via hydrolytic sol-gel method based on alumina membrane by using p-HB as the template molecule,(3-isocyanatopropyl) triethoxysilane (ICPTES) or aminopropyltriethoxysilane (APTES) as the functional monomer, the tetraethoxysilane (TEOS) as the cross-linker, and hydrochloric acid as the catalyst. The structure, morphology of CIAM was characterized by FT-IR and SEM. Flux test shows that the imprinted polymer layer on the membrane is helpful to increase the membrane flux. Binary selective experiments shows CIAM can selective rebind the p-HB, moreover, Compared with composite imprinted membrane via non-covalent imprinting approach (NCIM), the SCIM exhibited higher selective separation factor (3.120), showing excellent selectivity for p-HB. Permeation experiment show that transport mechanism for permeation of the p-HB and SA towards SCIM or NCIM was accordance with the facilitated mechanism. Response surface methodology of a three level, three variable Box-Behnken design (BBD) was applied to determine the best dynamic separation parameters for optimizing the separation process including the the concentration of p-HB (mg/L), the temperature (℃) and the flow rates (mL/min). The optimal conditions for the separation of p-HB from SA were as follows:the p-HB concentration of5.0mg/L, the temperature of10℃and the flow rate of1.0mL/min.
     (2) Three kinds of composite imprinted membranes (CIAM) for gentisic acid (GA) was prepared via room temperature ionic liquid (RTIL)-mediated nonhydrolytic sol-gel (NHSG) methodology based on alumina membrane by using GA as the template molecule, acrylic acid (AA), cinnamic acid (CA), and methacrylic acid (MAA) as three functional monomers, RTIL as pore template, methacryloxypropyltrimethoxysilane (MPS) as the crosslinker,2,2'-azobis(2-isobutyronitrile)(AIBN) as an initiator. The structure, morphology of CIAM was studied by UV、FTIR、SEMA、AFM. Flux test shows that the CIAM have good porosity and the structure of the imprinted polymer on the membrane was stable. Static adsorption study show that the CIAM prepared with CA as functional monomer has higher adsorbing capacity. Additional, it is obvious that the crosslinker amount can affect the performance of the membrane. Permeation experiment show that the ionic liquid play an important role in the separation effect of CIAM. The higher SA permeability coefficients (5.146×10-3cm/s) and lower GA permeability coefficients (1.233x10-3cm/s) for CIAM2show the optimal separation effect. Additionally, a three-level Box-Behnken experimental design with three factors combining the response surface modeling was used to optimize dynamic separation process and the optimal conditions were as follows:the GA concentration of5.0mg/L, the temperature of15℃and the flow rate of1.0mL/min.
     3. The preparation of composite imprinted membrane by the emulsion polymerization method for selective separation and enrichment
     (1) The submicrosized imprinted polypropylene microfiltration membrane (SIPM) for salicylic acid (SA) was prepared via common water-in-oil emulsion polymerization method based on polypropylene microfiltration membrane by using salicylic acid as template molecule,4-vinyl pyridine as functional monomer, Span80as emulsifier, toluene as the oil phase, ethyleneglycol dimethacrylate as cross-linking agent,2,2'-azobis (2-methylpropionitrile) as initiator. The structure, morphology and surface wettability of SIPM was characterized by Raman spectra, SEM, AFM and contact angle test. Flux test shows that the submicrosized Imprinted Spheres on the membrane is helpful to increase the membrane flux. Static adsorption experiment indicates that SIPM had a selective rebinding for SA. Moreover, it will increase the adsorption amount of SA with properly increasing the amount of imprinted spheres. Permeation experiment show that transport mechanism for permeation of the SA and ASA towards SIPM was accordance with the facilitated mechanism.
     (2) The molecularly imprinted composite membrane (CIAM) for phenol was prepared via oil-in-water microemulsion polymerization method based on alumina membrane by using phenol as template molecule,4-vinyl pyridine as functional monomer, styrene as the monomer, N,N,N-trimethyl-l-dodecanaminium bromide as the emulsifier, deionized water as the continuous phase, divinylbenzene as cross-linking agent and potassium persulfate as initiator. The structure, morphology of CIAM was characterized by UV, Raman spectra, SEM, TEM and XPS. The amount of surfactant and the mixed mode of oil and water phase can affect the particle size of imprinted nano-spheres in the membrane. Flux test shows that CIAM possessed good porosity. The nano-spheres with different size affect the adsorption capacity and selective performance of the CIAM. In the permeation experiment, the selective separation factor of CIAM5for SA and phenol was18.2, indicating that smaller nano-spheres benefited selective separation to some extent. However, it will be bad for selective separation if the nano-spheres is too small because of their reunion. Last, simulating dynamic separation of salicylic acid and phenol as well as the detection of phenol in salicylic acid industrial products through standard addition recovery method were investigated.
引文
[1]Caro J, Woldehaimanot M, Rasmuson A. Semibatch reaction crystallization of salicylic acid[J]. Chem. Eng. Res. Des.,2014,92(3):522-533.
    [2]Jones V, Steffan S, Wiman N, et al. Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards[J]. Biol. Control,2011,56(1): 98-105.
    [3]Yoon J, Cho L, Lee S, et al. Syntheses of 1,2,3-triazolyl salicylamides with inhibitory activity on lipopolysaccharide-induced nitric oxide production[J]. Bioorg. Med. Chem. Lett.,2011,21(7):1953-1957.
    [4]Kurban S, Mehmetoglu I. Effects of acetylsalicylic acid on serum paraoxonase activity, Ox-LDL, coenzyme Q10 and other oxidative stress markers in healthy volunteers[J]. Clin. Biochem.,2010,43(3):287-290.
    [5]Togo K, Suzuki Y, Yoshimaru T, et al. Aspirin and salicylates modulate IgE-mediated leukotriene secretion in mast cells through a dihydropyridine receptor-mediated Ca(2+) influx[J]. Clin. Immunol.,2009,131(1):145-156.
    [6]Finamore F, Priego-Capote F, Gluck F, et al. Impact of high glucose concentration on aspirin-induced acetylation of human serum albumin:An in vitro study [J]. EuPA Open Proteomics,2014,3:100-113.
    [7]Sun J, Fu J, Zhou R. Proteomic analysis of differentially expressed proteins induced by salicylic acid in suspension-cultured ginseng cells[J]. Saudi J. Biol. Sci.,2014,21(2): 185-190.
    [8]Wang D, Zhang X, Wei W, et al. Mg/Al mixed oxides:Heterogeneous basic catalysts for the synthesis of salicylamide from urea and phenol[J]. Catal. Commun.,2012,28: 159-162.
    [9]Orre Gordon G, Wratten S, Jonsson M, et al. Attract and reward:Combining a herbivore-induced plant volatile with floral resource supplementation-multi-trophic level effects[J]. Biol. Control,2013,64(2):106-115.
    [10]Hussain M, Javeed A, Ashraf M, et al. Aspirin and immune system[J]. Int. Immunopharmacol.,2012,12(1):10-20.
    [11]Sahebally S, Healy D, Coffey J, et al. Should patients taking aspirin for secondary prevention continue or discontinue the medication prior to elective, abdominal surgery best evidence topic (BET)[J]. Int. J.Surg.,2014,12(1):16-21.
    [12]An F, Du R, Wang X, et al. Adsorption of phenolic compounds from aqueous solution using salicylic acid type adsorbent[J]. J. Hazard. Mater.,2012,201:74-81.
    [13]Tamtam F, Mercier F, Le Bot B, et al. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions[J]. Sci. Total Environ.,2008,393(1):84-95.
    [14]Chen X, da Silva D, Martinez-Huitle C. Application of advanced oxidation processes for removing salicylic acid from synthetic wastewaters[J]. Chin. Chem. Lett.,2010,21(1): 101-104.
    [15]Pirkanniemi K, Sillanpaa M. Heterogeneous water phase catalysis as an environmental application:a review[J]. Chemosphere,2002,48(10):1047-1060.
    [16]Sztwiertnia K. Recrystallization textures and the concept of oriented growth revisited [J]. Mater. Lett.,2014,123:41-43.
    [17]Duca R, Salquebre G, Hardy E, et al. Comparison of solid phase-and liquid/liquid-extraction for the purification of hair extract prior to multi-class pesticides analysis[J]. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci.,2014,955-956:98-107.
    [18]Kawamura T, Ohnishi T, Masud R S, et al. Chromatographic separation of cs in simulated high-level liquid wastes[J]. Energy Procedia,2013,39:328-336.
    [19]Ye F, Yang R, Hua X, et al. Adsorption characteristics of rebaudioside A and stevioside on cross-linked poly(styrene-co-divinylbenzene) macroporous resins functionalized with chloromethyl, amino and phenylboronic acid groups[J]. Food Chem.,2014,159:38-46.
    [20]Zhang L, Zeng Z, Zhao C, et al. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis[J]. J. Chromatogr. A,2013,1313:245-252.
    [21]Miao J, Zhang L, Lin H. A novel kind of thin film composite nanofiltration membrane with sulfated chitosan as the active layer material[J]. Chem. Eng. Sci.,2013,87: 152-159.
    [22]Becerra-Herrera M, Sanchez-Astudillo M, Beltran R, et al. Determination of phenolic compounds in olive oil:New method based on liquid-liquid micro extraction and ultra high performance liquid chromatography-triple-quadrupole mass spectrometry[J]. LWT-Food Science and Technology,2014,57(1):49-57.
    [23]Farajzadeh M, Khoshmaram L, Nabil A. Determination of pyrethroid pesticides residues in vegetable oils using liquid-liquid extraction and dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection[J]. J. Food Compos. Anal.,2014,10.1016/j.jfca.2014.03.004.
    [24]Florido P, Andrade I, Capellini M, et al. Viscosities and densities of systems involved in the deterpenation of essential oils by liquid-liquid extraction:New UNIFAC-VISCO parameters[J]. J. Chem. Thermodyn.,2014,72:152-160.
    [25]Saien J, Daliri S. Improving performance of liquid-liquid extraction with temperature for mass transfer resistance in both phases[J]. J. Taiwan Inst. Chem. Eng.,2014,45(3): 808-814.
    [26]Mdel N S, Santos P, Sappo C, et al. Microextraction by packed sorbent and salting-out-assisted liquid-liquid extraction for the determination of aromatic amines formed from azo dyes in textiles[J]. Talanta,2014,119:375-384.
    [27]Sereshti H, Khosraviani M, Sadegh Amini-Fazl M. Miniaturized salting-out liquid-liquid extraction in a coupled-syringe system combined with HPLC-UV for extraction and determination of sulfanilamide[J]. Talanta,2014,121:199-204.
    [28]Han J, Wang Y, Li Y, et al. Equilibrium phase behavior of aqueous two-phase systems containing l-alkyl-3-methylimidazolium tetrafluoroborate and ammonium tartrate at different temperatures:experimental determination and correlation[J]. J. Chem. Eng. Data,2011,56(9):3679-3687.
    [29]Patricio P, Mesquita M, da Silva L, et al. Application of aqueous two-phase systems for the development of a new method of cobalt (Ⅱ), iron (Ⅲ) and nickel (Ⅱ) extraction:A green chemistry approach[J]. J. Hazard. Mater.,2011,193:311-318.
    [30]李蕾,薛珺,练萍,等.组合表面活性剂-盐-水双水相体系萃取水杨酸和洛美沙星[J].分析化学,2004,32(1):96-98.
    [31]戚琦,李蕾,李勋,等.聚乙二醇800-PVP双水相体系萃取荧光测定阿司匹林肠溶片中水杨酸[J].光谱实验室,2005,22(1):103-105.
    [32]Bhushan R, Dixit S. Reversed-phase high-performance liquid chromatographic separation of diastereomers of (R,S)-mexiletine prepared by microwave irradiation with four new chiral derivatizing reagents based on trichloro-s-triazine having amino acids as chiral auxiliaries and 10 others having amino acid amides[J]. J. Chromatogr. A,2010, 1217(49):7669-7676.
    [33]Chakravarty R, Ram R, Pillai K, et al. Ammonium molybdophosphate impregnated alumina microspheres as a new generation sorbent for chromatographic 137Cs/(137m)Ba generator[J]. J. Chromatogr. A,2012,1220:82-91.
    [34]任信荣,邵可声,唐孝炎.高效液相色谱法测定水杨酸及其羟基化产物[J].色谱,2001,19(2):191-192.
    [35]王晓燕,崔福德,马汝敏.高效液相色谱法测定复方阿司匹林片剂的含量[J].沈阳药科大学学报,2002,19(1):31-33.
    [36]杨媚,于泓,李萍,等.药品中水杨酸和苯甲酸的离子排斥色谱分析[J].药物分析杂志,2010(8):1454-1458.
    [37]Buran T, Sandhu A, Li Z, et al. Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins[J]. J. Food Eng.,2014,128:167-173.
    [38]Yang J, Yu M, Qiu T. Adsorption thermodynamics and kinetics of Cr(Ⅵ) on KIP210 resin[J]. J. Ind. Eng. Chem.,2014,20(2):480-486.
    [39]Wang X, Dai K, Chen L, et al. An ethylenediamine-modified hypercrosslinked polystyrene resin:Synthesis, adsorption and separation properties[J]. Chem. Eng. J., 2014,242:19-26.
    [40]Qiu X, Li N, Ma X, et al. Facile preparation of acrylic ester-based crosslinked resin and its adsorption of phenol at high concentration[J]. Journal of Environmental Chemical Engineering,2014,2(1):745-751.
    [41]毛晓芳,梁剑平,李雪虎,等.大孔树脂对大青叶有机酸的纯化工艺研究[J].湖北农业科学,2012,51(17):3832-3835.
    [42]Amtmann M. The chemical relationship between the scent features of goldenrod (Solidago canadensis L.) flower and its unifloral honey[J]. J. Food Compos. Anal.,2010, 23(1):122-129.
    [43]Blahusiak M, Schlosser S, Cvengros J. Simulation of a new regeneration process of solvents with ionic liquid by short-path distillation[J]. Sep. Purif. Technol.,2012,97: 186-194.
    [44]Bagheri H, Abdul Manap M, Solati Z. Antioxidant activity of Piper nigrum L. essential oil extracted by supercritical CO2 extraction and hydro-distillation[J]. Talanta,2014,121: 220-228.
    [45]Bhadra M, Mitra S. Nanostructured membranes in analytical chemistry[J]. TrAC, Trends Anal. Chem.,2013,45:248-263.
    [46]谢春英,袁雨婕,余少冲,等.分子蒸馏技术分离川芎油的研究[J].国际医药卫生导报,2007,13(19):73-76.
    [47]Xing D, Chan S, Chung T. Fabrication of porous and interconnected PBI/P84 ultrafiltration membranes using [EMIM]OAc as the green solvent[J]. Chem. Eng. Sci., 2013,87:194-203.
    [48]Zhang S, Fu F, Chung T. Substrate modifications and alcohol treatment on thin film composite membranes for osmotic power[J]. Chem. Eng. Sci.,2013,87:40-50.
    [49]Dumee L, Lee J, Sears K, et al. Fabrication of thin film composite poly(amide)-carbon-nanotube supported membranes for enhanced performance in osmotically driven desalination systems[J]. J. Membr. Sci.,2013,427:422-430.
    [50]Hong S, Kim I, Tak T, et al. Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes[J]. Desalination,2013,309: 18-26.
    [51]Sun A, Kosar W, Zhang Y, et al. A study of thermodynamics and kinetics pertinent to formation of PVDF membranes by phase inversion[J]. Desalination,2013,309:156-164.
    [52]Jin L, Ong S, Ng H. Fouling control mechanism by suspended biofilm carriers addition in submerged ceramic membrane bioreactors[J]. J. Membr. Sci.,2013,427:250-258.
    [53]Kim H, Jang K, Galebach P, et al. Seeded growth, silylation, and organic/water separation properties of MCM-48 membranes[J]. J. Membr. Sci.,2013,427:293-302.
    [54]Kolev S, St John A, Cattrall R. Mathematical modeling of the extraction of uranium(Ⅵ) into a polymer inclusion membrane composed of PVC and di-(2-ethylhexyl) phosphoric acid[J]. J. Membr. Sci.,2013,425-426:169-175.
    [55]Li Q, Bi Q, Lin H, et al. A novel ultrafiltration (UF) membrane with controllable selectivity for protein separation[J]. J. Membr. Sci.,2013,427:155-167.
    [56]Liao Y, Wang R, Tian M, et al. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation[J]. J. Membr. Sci.,2013,425-426:30-39.
    [57]Chang Q, Zhou J, Wang Y, et al. Application of ceramic microfiltration membrane modified by nano-TiO2 coating in separation of a stable oil-in-water emulsion[J]. J. Membr. Sci.,2014,456:128-133.
    [58]Gomaa H, Rao S, Al-Taweel A. Intensification of membrane microfiltration using oscillatory motion[J]. Sep. Purif. Technol.,2011,78(3):336-344.
    [59]Arthanareeswaran G, Mohan D, Raajenthiren M. Preparation, characterization and performance studies of ultrafiltration membranes with polymeric additive[J]. J. Membr. Sci.,2010,350(1-2):130-138.
    [60]Khosa M, Shah S, Feng X. Metal sericin complexation and ultrafiltration of heavy metals from aqueous solution[J]. Chem. Eng. J.,2014,244:446-456.
    [61]Kumar M, Ulbricht M. Novel antifouling positively charged hybrid ultrafiltration membranes for protein separation based on blends of carboxylated carbon nanotubes and aminated poly(arylene ether sulfone)[J]. J. Membr. Sci.,2013,448:62-73.
    [62]Kumar M, Ulbricht M. Low fouling negatively charged hybrid ultrafiltration membranes for protein separation from sulfonated poly(arylene ether sulfone) block copolymer and functionalized multiwalled carbon nanotubes[J]. Sep. Purif. Technol.,2014,127: 181-191.
    [63]Li Y, Su Y, Dong Y, et al. Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers[J]. Desalination,2014,333(1):59-65.
    [64]Maiti S, Lukka Thuyavan Y, Singh S, et al. Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes[J]. Bioresour. Technol.,2012,114:419-427.
    [65]Burdyny T, Struchtrup H. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process[J]. Energy,2010,35(5):1884-1897.
    [66]Merdaw A, Sharif A, Derwish G. Mass transfer in pressure-driven membrane separation processes, Part I[J]. Chem. Eng. J.,2011,168(1):215-228.
    [67]何江川,韩永萍.超滤膜分离法在多糖分离提取中的应用[J].食用菌,2005,1(5).
    [68]何毅,李光明,苏鹤祥,等.纳滤膜分离技术的研究进展[J].过滤与分离,2003,13(3):5-9.
    [69]姜忠义,吴洪.膜技术在中药有效部位和有效成分提取分离中的应用[J].离子交换与吸附,2002,18(2):185-192.
    [70]吕钱江,吴雅红.膜分离技术及其在中药和生物制药中的应用进展[J].仲恺农业技术学院学报,2003,16(1):68-72.
    [71]Peng J, Su Y, Chen W, et al. Polyamide nanofiltration membrane with high separation performance prepared by EDC/NHS mediated interfacial polymerization[J]. J. Membr. Sci.,2013,427:92-100.
    [72]Singh R, Koros W. Carbon molecular sieve membrane performance tuning by dual temperature secondary oxygen doping (DTSOD)[J]. J. Membr. Sci.,2013,427:472-478.
    [73]Wei J, Qiu C, Wang Y, et al. Comparison of NF-like and RO-like thin film composite osmotically-driven membranes-Implications for membrane selection and process optimization[J]. J. Membr. Sci.,2013,427:460-471.
    [74]Wei Y, Ma J, Wang C. Preparation of high-capacity strong cation exchange membrane for protein adsorption via surface-initiated atom transfer radical polymerization[J]. J. Membr. Sci.,2013,427:197-206.
    [75]Chen S, Yue Q, Gao B, et al. Adsorption of hexavalent chromium from aqueous solution by modified corn stalk:A fixed-bed column study[J]. Bioresour. Technol.,2012,113: 114-120.
    [76]Cavas L, Karabay Z, Alyuruk H, et al. Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach wastePosidonia oceanica(L.) dead leaves[J]. Chem. Eng. J.,2011,171(2):557-562.
    [77]Maji S, Kao Y, Wang C, et al. Fixed bed adsorption of As (Ⅲ) on iron-oxide-coated natural rock (IOCNR) and application to real arsenic-bearing groundwater[J]. Chem. Eng. 1,2012,203:285-293.
    [78]Hu Y, Wang H, Cao G, et al. The adsorption of toluenediamine from the wastewater by activated carbon in batch and fixed bed systems[J]. Desalination,2011,279(1):54-60.
    [79]McKay G, Bino M. Fixed bed adsorption for the removal of pollutants from water[J]. Environ. Pollut.,1990,66(1):33-53.
    [80]Choi J, Kota A, Winey K. Micellar morphology in sulfonated pentablock copolymer solutions[J]. Ind. Eng. Chem. Res.,2010,49(23):12093-12097.
    [81]Debnath S, Biswas K, Ghosh U. Removal of Ni (Ⅱ) and Cr (Ⅵ) with titanium (Ⅳ) oxide nanoparticle agglomerates in fixed-bed columns[J]. Ind. Eng. Chem. Res.,2010,49(5): 2031-2039.
    [82]Hasan S, Srivastava P. Biosorptive Abatement of Cd2+ by Water Using Immobilized Biomass of Arthrobacter sp.:Response Surface Methodological Approach[J]. Ind. Eng. Chem. Res.,2010,50(1):247-258.
    [83]Otero M, Zabkova M, Grande C, et al. Fixed-bed adsorption of salicylic acid onto polymeric adsorbents and activated charcoal[J]. Ind. Eng. Chem. Res.,2005,44(4): 927-936.
    [84]Sotelo J L, Ovejero G, Rodriguez A, et al. Removal of atenolol and isoproturon in aqueous solutions by adsorption in a fixed-bed column[J]. Ind. Eng. Chem. Res.,2012, 51(13):5045-5055.
    [85]Xu D, Hein S, Loo S, et al. The fixed-bed study of dye removal on chitosan beads at high pH[J]. Ind. Eng. Chem. Res.,2008,47(22):8796-8800.
    [86]Liang H, Gao H, Kong Q, et al. Adsorption of tetrahydrofuran+water solution mixtures by zeolite 4A in a fixed bed[J]. J. Chem. Eng. Data,2007,52(3):695-698.
    [87]Miralles N, Valderrama C, Casas I, et al. Cadmium and lead removal from aqueous solution by grape stalk wastes:modeling of a fixed-bed column[J]. J. Chem. Eng. Data, 2010,55(9):3548-3554.
    [88]Lv L, Wang K, Zhao X. Effect of operating conditions on the removal of Pb2+ by microporous titanosilicate ETS-10 in a fixed-bed column[J]. J. Colloid Interface Sci., 2007,305(2):218-225.
    [89]Son S, Jegal J. Chiral separation of D, L-serine racemate using a molecularly imprinted polymer composite membrane[J]. J. Appl. Polym. Sci.,2007,104(3):1866-1872.
    [90]Jiang Z, Yu Y, Wu H. Preparation of CS/GPTMS hybrid molecularly imprinted membrane for efficient chiral resolution of phenylalanine isomers[J]. J. Membr. Sci., 2006,280(1):876-882.
    [91]Mosbach K. Molecular imprinting[J]. Trends Biochem. Sci,1994,19(1):9-14.
    [92]Pauling L. A theory of the structure and process of formation of antibodies[J]. J. Am. Chem. Soc.,1940,62(10):2643-2657.
    [93]Wulff G, Vesper W, Grobe-Einsler R, et al. Enzyme-analogue built polymers,4. On the synthesis of polymers containing chiral cavities and their use for the resolution of racemates[J]. Makromo. Chem.,1977,178(10):2799-2816.
    [94]Norrlow O, Glad M, Mosbach K. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates[J]. J. Chromatogr. A,1984,299:29-41.
    [95]Kempe M, Mosbach K. Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases[J]. J. Chromatogr. A,1995,691(1):317-323.
    [96]Yoshikawa M, Izumi J, Kitao T, et al. Molecularly imprinted polymeric membranes for optical resolution[J]. J. Membr. Sci.,1995,108(1):171-175.
    [97]Mozammel M, Sadrnezhaad S, Badami E, et al. Breakthrough curves for adsorption and elution of rhenium in a column ion exchange system[J]. Hydrometallurgy,2007,85(1): 17-23.
    [98]Jiang T, Zhao L, Chu B, et al. Molecularly imprinted solid-phase extraction for the selective determination of 17β-estradiol in fishery samples with high performance liquid chromatography[J]. Talanta,2009,78(2):442-447.
    [99]Kagaya S, Maeba E, Inoue Y, et al. A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples[J]. Talanta,2009,79(2):146-152.
    [100]Moller K, Davies R, Fred C, et al. Evaluation of molecularly imprinted solid-phase extraction for a 1,2,3,4-diepoxybutane adduct to valine[J]. J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci.,2010,878(27):2497-2501.
    [101]Nema T, Chan E, Ho P. Application of silica-based monolith as solid phase extraction cartridge for extracting polar compounds from urine[J]. Talanta,2010,82(2):488-494.
    [102]Ozcan S, Satiroglu N, Soylak M. Column solid phase extraction of iron(Ⅲ), copper(Ⅱ), manganese(Ⅱ) and lead(Ⅱ) ions food and water samples on multi-walled carbon nanotubes[J]. Food Chem. Toxicol.,2010,48(8-9):2401-2406.
    [103]Ravelo-Perez L, Herrera-Herrera A, Hernandez-Borges J, et al. Carbon nanotubes: Solid-phase extraction[J]. J. Chromatogr. A,2010,1217(16):2618-2641.
    [104]Scorrano S, Longo L, Vasapollo G. Molecularly imprinted polymers for solid-phase extraction of 1-methyladenosine from human urine[J]. Anal. Chim. Acta,2010,659(1-2): 167-171.
    [105]Ghorai S, Pant K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina[J]. Sep. Purif. Technol.,2005,42(3):265-271.
    [106]Aksu Z, Gonen F. Binary biosorption of phenol and chromium(Ⅵ) onto immobilized activated sludge in a packed bed:Prediction of kinetic parameters and breakthrough curves[J]. Sep. Purif. Technol.,2006,49(3):205-216.
    [107]Mosbach K, Ramstrom O. The emerging technique of molecular imprinting and its future impact on biotechnology[J]. Nat. Biotechnol.,1996,14(2):163-170.
    [108]Liu X, Lv P, Yao G, et al. Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology[J]. Colloids Surf., A, 2014,441:420-426.
    [109]Ren Y, Yang J, Ma W, et al. The selective binding character of a molecular imprinted particle for Bisphenol A from water[J]. Water Res.,2014,50:90-100.
    [110]Huo P, Lu Z, Liu X, et al. Preparation photocatalyst of selected photodegradation antibiotics by molecular imprinting technology onto TiO2/fly-ash cenospheres[J]. Chem. Eng.J,2012,189-190:75-83.
    [111]Liu X, Lv P, Yao G, et al. Microwave-assisted synthesis of selective degradation photocatalyst by surface molecular imprinting method for the degradation of tetracycline onto ClTiO2[J]. Chem. Eng. J.,2013,217:398-406.
    [112]Takeda K, Uemura K, Kobayashi T. Hybrid molecular imprinted membranes having selectivity and separation behavior to targeted indole derivatives[J]. Anal. Chim. Acta, 2007,591(1):40-48.
    [113]Jantarat C, Tangthong N, Songkro S, et al. S-propranolol imprinted polymer nanoparticle-on-microsphere composite porous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol[J]. Int. J. Pharm.,2008, 349(1-2):212-225.
    [114]Cutivet A, Schembri C, Kovensky J, et al. Molecularly imprinted microgels as enzyme inhibitors[J]. J. Am. Chem. Soc.,2009,131(41):14699-14702.
    [115]Dam H A, Kim D. Selective copper (Ⅱ) sorption behavior of surface-imprinted core-shell-type polymethacrylate microspheres[J]. Ind. Eng. Chem. Res.,2009,48(12): 5679-5685.
    [116]Ebenstein Y, Gassman N, Kim S, et al. Lighting up individual DNA binding proteins with quantum dots[J]. Nano Lett.,2009,9(4):1598-1603.
    [117]Piletska E, Guerreiro A, Whitcombe M, et al. Influence of the polymerization conditions on the performance of molecularly imprinted polymers[J]. Macromolecules,2009, 42(14):4921-4928.
    [118]Ulbricht M. Membrane separations using molecularly imprinted polymers[J]. J. Chromatogr. B,2004,804(1):113-125.
    [119]Yan F, Goedel W. Preparation of mesoscopic gold rings using particle imprinted templates[J]. Nano Lett.,2004,4(7):1193-1196.
    [120]Li Z, Day M, Ding J, et al. Synthesis and characterization of functional methacrylate copolymers and their application in molecular imprinting [J]. Macromolecules,2005, 38(7):2620-2625.
    [121]Alexander C, Andersson H, Andersson L, et al. Molecular imprinting science and technology:a survey of the literature for the years up to and including 2003[J]. J. Mol. Recognit.,2006,19(2):106-180.
    [122]Bodhibukkana C, Srichana T, Kaewnopparat S, et al. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol[J]. J. Control. Release, 2006,113(1):43-56.
    [123]Huang J, Hu Y, Hu Y, et al. Disposable terbium (Ⅲ) salicylate complex imprinted membrane using solid phase surface fluorescence method for fast separation and detection of salicylic acid in pharmaceuticals and human urine[J]. Talanta,2013,107: 49-54.
    [124]Kochkodan V, Hilal N, Melnik V, et al. The express monitoring of organic pollutants in water with composite imprinted membranes[J]. J. Membr. Sci.,2011,377(1-2):151-158.
    [125]Ye Y, Ma X, Xu Z, et al. Theophylline molecular imprinted composite membranes prepared on a ceramic hollow fiber substrate[J]. Ind. Eng. Chem. Res.,2014,53(1): 346-354.
    [126]Pogorelova S, Zayats M, Bourenko T, et al. Analysis of NAD (P)+/NAD (P) H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals[J]. Anal. Chem.,2003,75(3):509-517.
    [127]Wulff G n, Liu J. Design of biomimetic catalysts by molecular imprinting in synthetic polymers:the role of transition state stabilization[J]. Acc. Chem. Res.,2011,45(2): 239-247.
    [128]Zhang H, Zhang Z, Hu Y, et al. Synthesis of a novel composite imprinted material based on multiwalled carbon nanotubes as a selective melamine absorbent[J]. J. Agric. Food Chem.,2011,59(4):1063-1071.
    [129]Zhang Y, Shan X, Gao X. Development of a molecularly imprinted membrane for selective separation of flavonoids[J]. Sep. Purif. Technol.,2011,76(3):337-344.
    [130]Del Blanco S, Donato L, Drioli E. Development of molecularly imprinted membranes for selective recognition of primary amines in organic medium[J]. Sep. Purif. Technol., 2012,87:40-46.
    [131]Kou X, Li Q, Lei J, et al. Preparation of molecularly imprinted nanospheres by premix membrane emulsification technique[J]. J. Membr. Sci.,2012,417-418:87-95.
    [132]杨座国,许振良,邴乃慈.分子印迹膜的研究进展[J].化工进展,2006,25(2):131-135.
    [133]卢春阳,马向霞,何锡文,等.邻香草醛分子印迹聚合物膜的制备及其透过选择性质的研究[J].化学学报,2005,63(6):479-483.
    [134]刘丽娟,许振良,张颖.S-布洛芬分子印迹膜的制备与手性拆分性能[J].高分子材料科学与工程,2012,28(12):159-163.
    [135]左言军,余建华,黄启斌,等.分子印迹纳米膜的制备及其在检测神经性毒剂沙林中的应用[J].分析化学,2003,769.
    [136]吴朝阳,张晓蕾,杨云慧,等.尼古丁分子印迹聚邻氨基酚敏感膜传感器[J].湖南大学学报:自然科学版,2005,32(3):10-14.
    [137]张淑琼,杨黄浩,庄峙厦,等.分子印迹Si02纳米管膜的制备及其生化分离应用[J].高等学校化学学报,2004,25(6):1028-1030.
    [138]Piletsky S, Dubey I, Fedoryak D, et al. Substrate-selective polymeric membranes. Selective transfer of nucleic acid components[J]. Biopolym. Kletka,1990,6:55-58.
    [139]Yoshikawa M, Izumi J, Kitao T. Alternative molecular imprinting, a facile way to introduce chiral recognition sites[J]. React. Funct. Polym.,1999,42(1):93-102.
    [140]Kobayashi T, Fukaya T, Abe M, et al. Phase inversion molecular imprinting by using template copolymers for high substrate recognition[J]. Langmuir,2002,18(7): 2866-2872.
    [141]Trotta F, Drioli E, Baggiani C, et al. Molecular imprinted polymeric membrane for naringin recognition[J]. J. Membr. Sci.,2002,201(1):77-84.
    [142]Ramamoorthy M, Ulbricht M. Molecular imprinting of cellulose acetate-sulfonated polysulfone blend membranes for Rhodamine B by phase inversion technique[J]. J. Membr. Sci.,2003,217(1):207-214.
    [143]Sergeyeva T, Piletsky S, Brovko A, et al. Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection[J]. Anal. Chim. Acta,1999,392(2):105-111.
    [144]Piletsky S, Matuschewski H, Schedler U, et al. Surface functionalization of porous polypropylene membranes with molecularly imprinted polymers by photograft copolymerization in water[J]. Macromolecules,2000,33(8):3092-3098.
    [145]Sergeyeva T, Gorbach L, Piletska E, et al. Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes[J]. Anal. Chim. Acta,2013,770:161-168.
    [146]Lehmann M, Brunner H, Tovar G. Selective separations and hydrodynamic studies:a new approach using molecularly imprinted nanosphere composite membranes[J]. Desalination,2002,149(1):315-321.
    [147]Kocherginsky N. Mass transport and membrane separations:Universal description in terms of physicochemical potential and Einstein's mobility[J]. Chem. Eng. Sci.,2010, 65(4):1474-1489.
    [148]Peng X, Lei Q, Lv G, et al. Zeolite membrane-assisted preparation of high fatty esters[J]. Sep. Purif. Technol.,2012,89:84-90.
    [149]Faizal C, Hoshina Y, Kobayashi T. Scaffold membranes for selective adsorption of a-tocopherol by phase inversion covalently imprinting technique[J]. J. Membr. Sci.,2008, 322(2):503-511.
    [150]Chen R, Qin L, Jia M, et al. Novel surface-modified molecularly imprinted membrane prepared with iniferter for permselective separation of lysozyme[J]. J. Membr. Sci.,2010, 363(1-2):212-220.
    [151]Yoshikawa M, Shimada A, Izumi J. Novel polymeric membranes having chiral recognition sites converted from tripeptide derivatives [J]. Analyst,2001,126(6): 775-780.
    [152]Yoshikawa M, Ooi T, Izumi J. Novel membrane materials having EEE derivatives as a chiral recognition site[J]. Eur. Polym. J.,2001,37(2):335-342.
    [153]Faizal C, Kikuchi Y, Kobayashi T. Molecular imprinting targeted for a-tocopherol by calix[4]resorcarenes derivative in membrane scaffold prepared by phase inversion[J]. J. Membr. Sci.,2009,334(1-2):110-116.
    [154]Ingole P, Bajaj H, Singh K. Enantiomeric separation of a-amino acids by imprinted terpolymer membrane[J]. Arabian J. Chem.,2011,10.1016/j.arabjc.2011.10.011.
    [155]Visvanathan C, Aim R, Parameshwaran K. Membrane Separation Bioreactors for Wastewater Treatment [J]. Crit. Rev. Environ. Sci. Technol.,2000,30(1):1-48.
    [156]Pegoraro C, Silvestri D, Ciardelli G, et al. Molecularly imprinted poly(ethylene-co-vinyl alcohol) membranes for the specific recognition of phospholipids[J]. Biosens. Bioelectron.,2008,24(4):748-755.
    [157]Yune P, Kilduff J, Belfort G. Fouling-resistant properties of a surface-modified poly(ether sulfone) ultrafiltration membrane grafted with poly(ethylene glycol)-amide binary monomers [J]. J. Membr. Sci.,2011,377(1-2):159-166.
    [158]Wu Y, Yan Y, Pan J, et al. Fabrication and evaluation of molecularly imprinted regenerated cellulose composite membranes via atom transfer radical polymerization[J]. Chin. Chem. Lett.,2014,25(2):273-278.
    [159]Wang H, Kobayashi T, Fujii N. Surface molecular imprinting on photosensitive dithiocarbamoyl polyacrylonitrile membranes using photograft polymerization[J]. J. Chem. Technol. Biotechnol.,1997,70(4):355-362.
    [160]Wang D, Xie D, Shi W, et al. Designing a photoresponsive molecularly imprinted system on a silicon wafer substrate surface[J]. Langmuir,2013,29(26):8311-8319.
    [161]Matuschewski H, Sergeyeva T, Bendig J, et al. (2001), Surface engineering: molecularly imprinted affinity membranes by photograft polymerization, in Environ. Ind. Sens., edited, pp.65-74, International Society for Optics and Photonics.
    [162]Lee B, Park Y, Hwang Y, et al. Ultralow-k nanoporous organosilicate dielectric films imprinted with dendritic spheres[J]. Nat. Mater.,2005,4(2):147-150.
    [163]Ulbricht M. Membrane separations using molecularly imprinted polymers[J]. J. Chromatogr.B,2004,804(1):113-125.
    [164]Piletsky S, Panasyuk T, Piletskaya E, et al. Receptor and transport properties of imprinted polymer membranes-a review[J]. J. Membr. Sci.,1999,157(2):263-278.
    [165]Yao G, Liang R, Huang C, et al. Surface plasmon resonance sensor based on magnetic molecularly imprinted polymers amplification for pesticide recognition[J]. Anal. Chem., 2013,85(24):11944-11951.
    [166]Willig K, Stiel A, Brakemann T, et al. Dual-label STED nanoscopy of living cells using photochromism[J]. Nano Lett.,2011,11(9):3970-3973.
    [167]Wang H, Zhou W, Yin X, et al. Template synthesized molecularly imprinted polymer nanotube membranes for chemical separations[J]. J. Am. Chem. Soc.,2006,128(50): 15954-15955.
    [168]Sergeyeva T, Piletska O, Piletsky S, et al. Data on the structure and recognition properties of the template-selective binding sites in semi-IPN-based molecularly imprinted polymer membranes[J]. Mater. Sci. Eng., C,2008,28(8):1472-1479.
    [169]Schirhagl R. Bioapplications for molecularly imprinted polymers[J]. Anal. Chem.,2014, 86(1):250-261.
    [170]Ozcan A, Say R, Denizli A, et al. L-histidine imprinted synthetic receptor for biochromatography applications[J]. Anal. Chem.,2006,78(20):7253-7258.
    [171]Nicholls I, Karlsson B, Olsson G, et al. Computational strategies for the design and study of molecularly imprinted materials[J]. Ind. Eng. Chem. Res.,2013,52(39): 13900-13909.
    [172]Mahendran V, Philip J. Sensing of biologically important cations such as Na+, K+, Ca2+, Cu2+, and Fe3+ using magnetic nanoemulsions[J]. Langmuir,2013,29(13):4252-4258.
    [173]Maeda M, Bartsch R. Molecular and ionic recognition with imprinted polymers:A brief overview[J].1998,703:1-8.
    [174]Liu S, Yan H, Wang M, et al. Water-compatible molecularly imprinted microspheres in pipette tip solid-phase extraction for simultaneous determination of five fluoroquinolones in eggs[J]. J. Agric. Food Chem.,2013,61(49):11974-11980.
    [175]Li X, Feng F, Zhang K, et al. Wettability of nafion and nafion/vulcan carbon composite films[J]. Langmuir,2012,28(16):6698-6705.
    [176]Kim J, Jeon T, Choi T, et al. Droplet microfluidics for producing functional microparticles[J]. Langmuir,2014,30(6):1473-1488.
    [177]Chang C, Teixeira A, Li C, et al. Enhanced molecular transport in hierarchical silicalite-1[J]. Langmuir,2013,29(45):13943-13950.
    [178]Sellergren B. Imprinted chiral stationary phases in high-performance liquid chromatography[J]. J. Chromatogr. A,2001,906(1):227-252.
    [179]Laatikainen M, Heinonen J, Sainio T. Modeling of chromatographic separation of concentrated-acid hydrolysates[J]. Sep. Purif. Technol.,2011,80(3):610-619.
    [180]Lee S, Park K, Jo S, et al. Determination of chromatographic separation parameters of tryptophan enantiomers on a Chirosil-SCA chiral stationary phase by using the inverse method based on the initial guesses estimated from elution by characteristic point method[J]. J. Chromatogr. A,2011,1218(8):1195-1202.
    [181]Wang S, Guo M, Cong J, et al. Facile optimization for chromatographic separation of liquiritin and liquiritigenin[J]. J. Chromatogr. A,2013,1282:167-171.
    [182]Sebille B. Chromatographic separations based on molecular recognition [J]. J. Am. Chem. Soc.,1998,120(51):13546-13546.
    [183]陈安,许振良,王靖宇,等.茶碱-铜(Ⅱ)离子配位分子印迹膜的制备及表征[J].高分子材料科学与工程,2012,28(3):130-133.
    [184]Marken F, Taylor J, Bonne M, et al. Voltammetric measurements at the surface of cotton:Absorption and catalase reactivity of a dinuclear manganese complex[J]. Langmuir,2007,23(4):2239-2246.
    [185]Leonhardt A, Mosbach K. Enzyme-mimicking polymers exhibiting specific substrate binding and catalytic functions[J]. Reactive Polymers, Ion Exchangers, Sorbents,1987, 6(2):285-290.
    [186]王红涛,吴玄,赵慧敏,等.分子印迹膜修饰TiO2纳米管及其光催化降解盐酸四环素[J].科学通报,2012,56(35):2965-2969.
    [187]李建平,李玉平,魏小平基于三聚氰胺膜电催化与酶催化放大的分子印迹电化学传感器测定绿麦隆[J].Acta Chim. Sinica,2012,70:1853-1857.
    [188]Davis M, Katz A, Ahmad W. Rational catalyst design via imprinted nanostructured materials[J]. Chem. Mater.,1996,8(8):1820-1839.
    [189]Lubke C, Lubke M, Whitcombe M, et al. Imprinted polymers prepared with stoichiometric template-monomer complexes:efficient binding of ampicillin from aqueous solutions[J]. Macromolecules,2000,33(14):5098-5105.
    [190]邴乃慈,许振良,杨座国,等.热聚合制备左氧氟沙星分子印迹聚合物的分子识别特性[J].应用化学,2007,23(10):1085-1089.
    [191]赵潇,秦培勇.布洛芬手性拆分分子印迹复合膜的制备与表征[J].北京化工大学学报:自然科学版,2013,40(1):5-9.
    [192]Yoshikawa M, Murakoshi K, Kogita T, et al. Chiral separation membranes from modified polysulfone having myrtenal-derived terpenoid side groups[J]. Eur. Polym. J., 2006,42(10):2532-2539.
    [193]Mathew-Krotz J, Shea K. Imprinted polymer membranes for the selective transport of targeted neutral molecules[J]. J. Am. Chem. Soc.,1996,118(34):8154-8155.
    [194]Abdolahi A, Georas S, Brenna J, et al. The effects of aspirin and fish oil consumption on lysophosphatidylcholines and lysophosphatidic acids and their correlates with platelet aggregation in adults with diabetes mellitus[J]. Prostaglandins Leukot. Essent. Fatty Acids,2014,90(2-3):61-68.
    [195]Jung J, Moon S, Ahn J, et al. Controlled supramolecular assembly of helical silica nanotube-graphene hybrids for chiral transcription and separation[J]. ACS Nano,2013, 7(3):2595-2601.
    [196]Kanamura K, Mitsui T, Munakata H. Preparation of composite membrane between a uniform porous silica matrix and injected proton conductive gel polymer[J]. Chem. Mater.,2005,17(19):4845-4851.
    [197]Ma X, Lin B, Wei X, et al. Gamma-alumina supported carbon molecular sieve membrane for propylene/propane separation[J]. Ind. Eng. Chem. Res.,2013,52(11): 4297-4305.
    [198]Qiu X, Yu H, Karunakaran M, et al. Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes[J]. ACS Nano,2013,7(1):768-776.
    [199]Zhou Y, Ming J, Deng L, et al. Effect of Pichia membranaefaciens in combination with salicylic acid on postharvest blue and green mold decay in citrus fruits[J]. Biol. Control, 2014,10.1016/j.biocontrol.2014.03.007.
    [200]Alsyouri H, Langheinrich C, Lin Y, et al. Cyclic CVD modification of straight pore alumina membranes[J]. Langmuir,2003,19(18):7307-7314.
    [201]McNatt J, Morgan J, Farkas N, et al. Sonication assisted growth of fluorophosphate films on alumina surfaces[J]. Langmuir,2003,19(4):1148-1153.
    [202]Powell Q, Fotou G, Kodas T, et al. Synthesis of alumina-and alumina/silica-coated titania particles in an aerosol flow reactor[J]. Chem. Mater.,1997,9(3):685-693.
    [203]Whitcombe M, Rodriguez M, Villar P, et al. A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting:synthesis and characterization of polymeric receptors for cholesterol[J]. J. Am. Chem. Soc,1995, 117(27):7105-7111.
    [204]Ma C, Baker N, Joseph S, et al. Binding of aminoglycoside antibiotics to the small ribosomal subunit:a continuum electrostatics investigation[J]. J. Am. Chem. Soc.,2002, 124(7):1438-1442.
    [205]Ceolin G, Navarro-Villoslada F, Moreno-Bondi M, et al. Accelerated development procedure for molecularly imprinted polymers using membrane filterplates[J]. J. Com. Chem.,2009,11(4):645-652.
    [206]Wang H, Zhu Y, Yan X, et al. A Room Temperature ionic liquid (RTIL)-mediated, non-hydrolytic sol-gel methodology to prepare molecularly imprinted, silica-based hybrid monoliths for chiral separation[J]. Adv. Mater.,2006,18(24):3266-3270.
    [207]Dietlin C, Podgorska-Golubska M, Andrzejewska E. The efficiency of photoinitiators in ionic liquids[J]. J. Photochem. Photobiol., A,2014,281:8-17.
    [208]Garcia A, Gonzalez R, Hernandez B, et al. Ionic liquids as a neat lubricant applied to steel-steel contacts[J]. Tribol. Int.,2014,72:42-50.
    [209]Marzec A, Laskowska A, Boiteux G, et al. The impact of imidazolium ionic liquids on the properties of nitrile rubber composites[J]. Eur. Polym. J.,2014,53:139-146.
    [210]Mehta A, Rao J, Fathima N. Effect of ionic liquids on the different hierarchical order of type 1 collagen[J]. Colloids Surf, B,2014,117:376-382.
    [211]Han M, Kane R, Goto M, et al. Discriminate surface molecular recognition sites on a microporous substrate:a new approach[J]. Macromolecules,2003,36(12):4472-4477.
    [212]Gleiter H. Nanostructured materials:basic concepts and microstructure[J]. Acta Mater., 2000,48(1):1-29.
    [213]Margulis-Goshen K, Magdassi S. Organic nanoparticles from microemulsions: Formation and applications[J]. Curr. Opin. Colloid Interface Sci.,2012,17(5):290-296.
    [214]Koo J, Kim S, Jeon S, et al. Characteristics of Al2O3 thin films deposited using dimethylaluminum isopropoxide and trimethylaluminum precursors by the plasma-enhanced atomic-layer deposition method[J]. J Korean. Phys. SOC.,2006,48(1): 131-136.
    [215]Dingemans M, Dewulf J, Braeckman L,Van Langenhove H, Friess K, Hynek V, Sipek M, et al. Mass transfer characteristics for VOC permeation through flat sheet porous and composite membranes:The impact of the different membrane layers on the overall membrane resistance [J]. J. Membre. Sci.,2008,332(1):234-242

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700