水稻水分生产函数及水氮耦合模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国农业已进入一个作物产量、品质和环境保护并重的多目标时期,在“十二五”期间,东北商品粮基地大面积农业污染控制关键技术和水资源保障关键技术成为水利科技的重点研究方向,而农业氮素损失是引起面源污染的重要原因,因此,研究水稻水氮耦合的经济效益和环境效应意义重大。本文在适宜土壤水分能量调控试验、水分胁迫试验,氮素控制试验及水氮耦合正交试验的基础上研究了辽宁中部地区水稻的适宜土壤水分能量标准、需水规律、水分生产函数及其敏感指数累计曲线、干物质积累规律、氮素积累规律、品质变化、水氮耦合方式、水氮模型等内容,以求为水稻栽培的水、肥管理提供理论依据。主要结果如下:
     (1)于2010年分别在水稻分蘖前期、分蘖后期、拔节孕穗、抽穗开花、乳熟五个生育阶段进行高产土壤水分能量调控试验,结果表明各生育阶段土壤水分亏缺均有增产效果,得到的高产土壤水分标准为:分蘖前期5~10kPa,分蘖后期不超过35kPa,拔节孕穗期和抽穗开花期均为5-10kPa,乳熟期低于20kPa;分蘖前期5~10kPa的水分胁迫能使水稻产生明显的生长补偿效应,表现为复水后分蘖数、最终根干重、叶干重及产量显著超过对照;在适宜土壤水分能量调控试验基础上对水稻腾发量ET进行研究,结果表明各处理控制时期的ET与充分供水处理ET相比均有不同程度的减少,拔节孕穗和抽穗开花控水ET减少比例最小,但对产量影响最大,是水稻的需水关键期,尽量不要在这两个时期控水;分蘖后期最不敏感,可以重控。对ET典型日变化的研究表明,各处理日均腾发量主要随当日的气象因子而变化;在气象因子相同的情况下,腾发量的大小由各处理的土壤水分能量大小决定,土壤水吸力越大,腾发量就越小。ET强度的逐步回归方程表明总辐射强度、相对湿度和风速是影响腾发强度和水面蒸发强度的主要气象因子,可以解释腾发量的绝大部分变化,其他气象因子可以通过影响影响这三个主要气象因子来间接影响ET。
     (2)分别在2011及2012年对水稻分蘖期、拔节孕穗、抽穗开花、乳熟四个生育阶段进行土壤水分能量胁迫试验,对水分胁迫及复水后水稻各生育阶段腾发量ET变化规律进行探索,ET分析结果表明:单一生育阶段土壤水分能量胁迫对水稻胁迫生育阶段ET有显著影响,并可以持续到复水后若干生育阶段,距离胁迫生育阶段越近,所受影响越大;其影响时间和程度要视胁迫阶段而定,分蘖受旱对ET影响持续时间最长,拔节孕穗受旱对ET影响最严重;对于ET来讲,前期受旱(分蘖和拔节孕穗)要比后期(抽穗开花和乳熟)受旱对水稻腾发量影响大;各生育阶段的划分时间不同,可能对后续生育阶段ET的影响程度不同。本研究在此试验基础上探求不同水分胁迫程度对最终产量的影响,并讨论了五种常用水分生产函数(Jensen、Minhas、Blank、Stewart、 Singh)在辽宁中部地区的适用性,结果表明分蘖、拔节受控减产最严重,抽穗、乳熟可以受轻旱,但不能受重控;对辽宁中部地区水稻来讲,Jensen模型和Minhas模型均属合理,但最优的静态水稻水分生产函数模型为Jensen模型;重度控水程度下的水分生产率增加率可以评价产量对各生育阶段缺水的敏感程度,并解释各模型中敏感系数的排序;生长曲线式的Jensen模型敏感系数累计曲线可以用于辽宁省中部地区水稻产量的预测,并求得任意时段的水分敏感系数。
     (3)不同施氮量下的控氮试验(2012)表明:氮肥用量的增加,会增加水稻根、茎、叶、穗各器官的生物量;对不同施氮水平下水稻干物质量积累过程的分析表明,正常施氮(N1)、低氮(N0.5、N0)处理的根干重在拔节期达到峰值,但高氮(N2.5、N2、N1.5)处理在抽穗期达到峰值,说明增施氮肥可以延长根干物质积累时间;茎干重在抽穗期达到峰值;叶片对于氮肥用量的敏感性最高,在拔节期末达到峰值;穗干重由拔节期末至乳熟期末一直处于增长过程;各处理植株总干重在各时期均不断增加,至乳熟期末趋于稳定;根、茎、叶等营养器官的减少和总干物质的不断增加,表明生物量由根、茎、叶转移到了穗部。产量分析表明,施氮量对产量有极显著影响,在一定范围内,施氮量越高,产量越大;产量同最终干物质积累量之间的相关系数为0.996(P=0.001);增施氮肥促进了水稻的分蘖,进而增加了水稻产量,产量与最终分蘖数的相关系数高达0.979(P=0.001);在不同施氮水平下,各处理的分蘖峰值和出现时间均不同,N2.5、N2、N1.5峰现时间要比N1、N0.5、N0峰现时间延迟一周,且各处理峰值差异显著。不同施氮水平对水稻最终氮素吸收量也有显著影响,施氮量越多,氮素吸收量就越大;在各器官中,穗部的氮素含量最高,所对应的吸氮量也越大,且产量与穗部氮素吸收量和植株氮素吸收量呈极显著正相关关系。氮肥农学利用率与植株吸氮量、有效穗数呈显著负相关关系,而氮素谷物生产效率、偏生产率及氮素依存率均与水稻产量、干物质重量、吸氮量、有效穗数均呈极显著负相关。控氮试验(2012)品质变化表明,在低氮条下,增施氮肥可以明显提高糙米率和精米率,改善水稻碾米品质;随着施氮量的增加,蛋白质含量显著增加,但水稻的食味值明显的下降;糙米率和精米率均与蛋白含量显著正相关,与直链淀粉含量极显著负相关,与游离脂肪酸含量显著负相关;食味品质较好的稻米RVA特征指标特点为:最高粘度、崩解值高;冷胶粘度、消减值、回复值低。主成份分析表明,随着施氮量的增加,稻米综合品质成下降趋势,不施氮处理得分最高,而施2.5倍氮肥处理得分最低。
     (4)水氮耦合多因素正交试验(2012)结果表明,水稻腾发量随着各生育阶段土壤水分的降低而减小,随着施氮量的增加而增加;将氮肥的农学利用率作为氮肥生产效率的评价指标,其最优的组合方式为A2B1CxN1-2;将氮肥的表观利用率,作为水稻对氮肥回收的环境效益指标,其最优组合方式为A1B1C1N1-2;水稻产量最高的最优组合方式为A181C2N3;品质最优水氮组合方式为AxBxCxN1;评价节水灌溉方式优劣的指标是水分生产率,其较优组合为A1-2B1C2-3N3。选用以上五个指标组成综合指标,在各指标权值相同(均为0.2)的情况下,能够提高综合指标的最优组合方式为A1B1C2N2。在2012年的水分胁迫试验、氮肥控制试验及水氮耦合正交试验基础上对已用于小麦的三种水氮耦合模型进行移用修正,并对其适用性及优缺点进行比较,结果表明:水氮最终产量模型、分生育阶段模型(水氮Jensen模型)及其敏感系数累计曲线、BP神经网络模型拟合度较高,均可用于水稻产量的估算;BP神经网络模型的预测精度最高,全生育阶段模型需要资料最少,但适用性最强的是水氮Jensen模型及其水分敏感指数累计曲线。
China's agriculture has entered a multiple purpose period requiring paying equal attention to crop yield, quality and environmental protection. During "Twelve-Five" period, large-scale agricultural pollution control technology and water resources guarantee of the commodity grain bases in the Northeast area has become to be a key research direction of the water science and technology. And loss of nitrogen in agriculture is the important reason that non-point source pollution occur. It is therefore of great significance to study economic and environmental effects of water and nitrogen coupling in rice. In this passage, suitable soil moisture potential criterion, water requirement regulation, water production function, water sensitive index cumulative curve, dry matter accumulation law, nitrogen accumulation law; quality variation, water-nitrogen coupling pattern, water-nitrogen model and other contents for rice were researched based on soil moisture potential regulation and control experiment, water stress experiment, nitrogen controlling experiment and water-nitrogen coupling orthogonal experiment in central region of Liaoning province. The main results are as follows:
     (1) The experiment for high-yield soil water potential regulation were conducted during different stages of rice included tillering initial stage, tillering final stage, jointing stage, Heading stage, milk maturity stage. The results showed that soil moisture potential regulation and control was able to increase the rice yield at all growth stages after returning green, the suitable soil water potential criteria for middle-season rice at different growth stages were suggested,5~1OkPa for tillering initial stage, drought but not more than35kPa for tillering final stage,5~10kPa for jointing stage and Heading stage, not more than20kPa for milk maturity stage; re-watering post drought had obvious compensation effects to rice when soil suction potential was controlled in5-10kPa at tillering initial stage were discussed base on the results that tillers number, output, final root dry biomass and leaf dry weight were significant exceeding contrast; Based on the experiment for suitable soil water potential regulation, the paper analyses the variation of rice evapotranspiration (ET). The results showed that ET of each water controlling stage had decreases at different degree in comparison to the basin irrigation; reduce proportion of the treatment for water controlling at jointing stage and heading stage was least, but it has a most influence for yields; jointing stage and heading stage were key water requirement period, and water controlling should be implement as less as possible; tillering final stage could have a heavy drought because it was most insensitive to water. The diurnal variation law of ET in a typical day in controlling stage showed that the value of daily ET was change with the meteorological factor in the same day; ET was influenced by the value of soil water potential in the same meteorological condition, greater soil water suction comes small ET. Multiple and stepwise equations showed that global radiation intensity, relative humidity, and wind speed were meteorological factors which played a leading role in rice ET, they were main reason for ET change, and other meteorological factors could influence ET by means of affect them.2. Based on the experiment for high-yield soil water potential regulation, the paper analyses the variation of rice evapotranspiration (ET), so as to seek after the water requirement regulation of deficit irrigation for rice. The results showed that ET of each water controlling stage had decreases at different degree in comparison to the basin irrigation; reduce proportion of the treatment for water controlling at jointing stage and heading stage was least, but it has a most influence for yields; jointing stage and heading stage were key water requirement period, and water controlling should be implement as less as possible; tillering final stage could have a heavy drought because it was most insensitive to water. The diurnal variation law of ET in a typical day in controlling stage showed that the value of daily ET was change with the meteorological factor in the same day; ET was influenced by the value of soil water potential in the same meteorological condition, greater soil water suction comes small ET. Multiple and stepwise equations showed that global radiation intensity, relative humidity, and wind speed were meteorological factors which played a leading role in rice ET, they were main reason for ET change, and other meteorological factors could influence ET by means of affect them.
     (2) Soil water potential stress experiments were conducted on tillering stage, jointing stage, heading stage, milk maturity stage of rice in2011and2012respectively, so as to explore the change of rice evapotranspiration in each stage for water stress and returning water. The analysis for ET shows that soil water potential stress on single stage had a marked impact for rice evapotranspiration, and the impact will be continue for several stages after re-watering, the more closer to controlling stage the more influence of the impact; the periods and the extent for the impact depended on the stage and the status of water potential stress, treatment for water stress at tillering stage had the longest influence period for ET, and treatment for water stress at jointing stage had the most serious influence extent for ET; the ET was effected more seriously caused by water stress in earlier stage than in later stage; the difference of time division maybe the reason for different incidence of ET in stage after re-watering. The experiments were also conducted to search for the influence of rice yield caused by different status of soil moisture potential stress, and to discuss five water production function (Jensen, Minhas, Blank, Stewart, Singh) of rice in middle Liaoning Province. The results showed that yield reduced most seriously when water stress at tillering stage and jointing stage, and heading stage, milk maturity stage could suffer light drought; for rice in central region of Liaoning province, Minhas model was all reasonable, but Jensen model was the most suitable static water production function; It was relatively suitable for yield to evaluate sensitive degree of water potential stress in each stage with increasing rate for water productivity under the serious status of soil water potential stress, and the water productivity increasing rate could also explain the order of the sensitive index for each model; Jensen model water sensitive index cumulative curve of growth curve could used for yield prediction for rice in central region of Liaoning province, and could solve sensitive index for any rice period of time.
     (3)Different nitrogen application rate experiment (2012) showed that:The increase in the amount of nitrogen fertilizer will increase the biomass of rice root, stem, leaf and spike; dry matter accumulation of rice under different nitrogen level analysis showed that root dry weight in the process of normal nitrogen (N1) and low nitrogen (NO.5, NO) peaked on jointing stage, but high nitrogen treatment (N2.5, N2, N1.5) peak on the heading stage, it was showed that the increase of the nitrogen can prolong root dry matter accumulation; Stem dry weight peak on heading stage; leaf had the highest sensitivity for nitrogen and peaked in the final jointing stage; Ear dry weight has been in the growth process from the end of the final jointing stage to milk stage; total dry weight of each treatment in each period were increasing and stabilized by the end of the milk stage period, the decrease of nutritional organs such as roots, stems and leaves and the increase of total dry matter showed that the biomass of root, stem and leaf transferred to ear. Yield analysis showed that N application rate has a significant effect on yield, within a certain range, the higher N application rate, the greater the production; The correlation coefficient between yield and the final dry matter accumulation was0.996(P=0.001); Increasing nitrogen application promoted the rice tillering, and increased the yield of rice, the correlation coefficient between yield and ultimate tiller number was up to0.979(P=0.001); under different N levels, the tiller peak and times of each treatment were different, the peak time for N2.5, N2, N1.5delayed one week to peak time for N1, NO.5, NO, and there were significant difference among the peak of each treatment. Different N levels also had a significant impact on rice final nitrogen uptake, the more nitrogen rate, the greater the amount of nitrogen uptake; among the organs, ear has the highest nitrogen content, and the corresponding nitrogen uptake more, and yield was significantly positively correlated with ear nitrogen uptake and plant nitrogen uptake. Under different N levels, nitrogen agronomic efficiency, plant nitrogen uptake and valid spikes had a significant negative correlation, and the nitrogen grain production efficiency, nitrogen partial factor productivity, soi1N dependent rate was significantly negatively correlated with yield, plant dry weight, nitrogen uptake and valid spikes. Quality change for control of nitrogen test (2012) showed that increasing nitrogen could significantly improve the milled rice rate and brown rice rate, improve the rice milling quality under low nitrogen condition; with the increase of nitrogen, protein content increased significantly, but taste value of rice decreased significantly; brown rice rate and milled rice rate were significantly positive related with protein content, extremely significant negative related with amylose content, significantly negative related with the free fatty acid content; principal component analysis showed that, with the increase of nitrogen application rate, the comprehensive quality of the rice emerged a downward trend, no nitrogen treatment get the highest score, and nitrogen applied2.5times get the lowest score. The quality changes of water stress trial (2012) indicates that, milled rice rate and brown rice rate of moderate water stress treatment were higher than the water treatment of mild and severe stress; the drought in the late stage (heading, milk stage) was not conducive to the improvement of rice quality; positive and negative correlation for taste value and RVA characteristic indicated that RVA characteristic indexes of better eating quality of rice were:peak viscosity, breakdown value high, cool paste viscosity, Setback viscosity, consistence viscosity low. Principal component anaiysis show that, the rice quality of mild drought (less than15kPa) at each growth stage, were higher than the quality of moderate drought and severe drought, in the production, milk stage mild water stress was most worthy of promotion.
     (4) The results of water-nitrogen coupling multi-factor orthogonal test show that, rice ET reduced with soil moisture decrease and enhanced with the increase of nitrogen application rate. Nitrogen agronomic efficiency was the evaluation index for nitrogen fertilizer production efficiency, then the optimal combination was A2B1CxN1-2; regard nitrogen apparent efficiency as rice nitrogen recycling environmental efficiency indicators, then the optimal combination was A1B1C1N1-2; the optimal combination for the highest rice yield was A1B1C2N3; the optimal combination for quality water and nitrogen was AxBxCxN1; the indicator to evaluate merits of water-saving irrigation methods was water productivity, the optimum combination was A1-2B1C2-3N3. Combine the above five indexes into a comprehensive index, then under the same weights (0.2) of different index, the optimal combination to improve the comprehensive index was A1B1C2N2. Based on water stress test, nitrogen control test, water and nitrogen coupling orthogonal experiment in2012, this passage applied and modified three kinds of water and nitrogen coupling model which have been applied for wheat and compared its applicability and advantages and disadvantages, the results showed that Final production model of whole growth stage, the reproductive stages model (water nitrogen Jensen model) and its sensitive coefficient accumulative curves, and BP neural network model had higher degree of fitting, they could be used for the estimation of rice yield; The prediction accuracy of BP neural network model was the highest; the whole growth stage model needed the least data; but the most applicable model was water nitrogen Jensen model and its sensitive coefficient accumulative curves.
引文
1. 柏彦超,钱晓晴,周雄飞,等.2010.不同氮素形态和水分胁迫对水稻水分吸收及光合特性的影响[J].扬州大学学报(农业与生命科学版),1(3):50-54
    2. 鲍士旦.2002.土壤农化分析[M].北京:中国农业科学技术出版社,159.
    3. 边嘉宾,施利利,张欣,等.2012.稻米主要品质性状的相关及主成分分析[J].中国农学通报,(4).
    4. 蔡甲冰,刘钰,雷廷武,等.2005.根据天气预报估算参照腾发量[J].农业工程学报,21(11):11-15.
    5. 蔡甲冰,刘钰,雷廷武,等.2005.根据天气预报估算参照腾发量的模糊神经网络方法[J].农业工程学报,21(12):108-111.
    6. 蔡甲冰,许迪,刘钰.2010.冬小麦返青后作物腾发量的尺度效应及其转换研究[J].水利学报,41(7):862-869
    7. 蔡祖聪.1999.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报,36(4):484-491
    8. 陈国林.1996.水稻节水灌溉的生理生态效应研究[J].江西农业大学学报,18(2):160-162
    9. 陈海生,陶龙兴,王熹,等.2005.灌水方式对水稻灌浆期光合物质运转与分配的影响[J].中国农业科学,38(4):678-683.
    10.陈能,罗玉坤,谢黎虹,等.2006.我国水稻品种的蛋白质含量及与米质的相关性研究[J],作物学报,32,8:1193-1196
    11.陈涛涛,迟道才,梁茜.2012.基于矩形框几何校正的多叶面积测量方法[J].农业工程学报.28(8):206-213.
    12.陈伟,迟道才,张旭东,等.2011.不同土壤水分能量及气象因子对水稻腾发量的影响[J].沈阳农业大学学报,42(4):465-469
    13.陈先锋,舒志兵,赵英凯.2005.”弹性”BP神经网络在识别带有噪声字母中的应用[J].计算机仿真.
    14.陈晓飞,杨利,商艾华,等.2004.水稻不同节水灌溉措施对春季土壤墒情及养分状况的影响[J].沈阳农业大学学报,35(5-6):462-464
    15.陈晓远,高志红,李玉华.2008.供氮形态和水分胁迫对苗期水稻吸收氮素营养的影响[J].华北农学报,3(1):163-167
    16.程建平,曹凑贵,蔡明历,等.2008.不同土壤水势与氮素营养对杂交水稻生理特性和产量的影响[J].植物营养与肥料学报,2):199-206
    17.程旺大,赵国平,张国平,等.2002.水稻节水栽培的生态和环境效应[J].农业工程学报,1):191-194
    18.迟道才,王殿武.2003.北方水稻节水理论与实践[M].中国农业科学技术出版社
    19.迟道才,王瑄,夏桂敏,等.2004.北方水稻动态水分生产函数研究[J].农业工程学报,20(3):30-34
    20.迟道才,王瑄,张玉龙,等.2003.水稻节水高产灌溉模式及土壤水分能量调控标准研究[J].灌溉排水学报,2(4):39-42.
    21.丛振涛,周智伟,雷志栋.2002.Jensen模型敏感指数的新定义及其解法[J].水科学进展,13(6):730-735
    22.崔远来,李远华,李新建,等.1995.非充分灌溉条件下稻田优化灌溉制度的研究[J].水利学报,10:29-34
    23.崔远来,李远华,吕国安,等.2004.不同水肥条件下水稻氮素运移与转化规律研究[J].水科学进展,15(3):280-285
    24.崔远来,李远华,余峰.2001.水稻高效利用水肥试验研究[J].灌溉排水,(1)20-24.
    25.崔远来,茆智,李远华.2002.水稻水分生产函数时空变异规律研究[J].水科学进展,13(4),484-491
    26.邓飞,王丽,叶德成,等.生态条件及栽培方式对稻米RVA谱特性及蛋白质含量的影响[J].作物学报.2012(8)
    27.樊红柱,吕世华,曾祥忠.2010.移栽叶龄对水稻氮素吸收利用及~(15)N-肥料去向影响[J].核农学报,4(1):104-107
    28.方开泰.1994.匀设计与均匀设计表[M].北京:科学出版社
    29.方萍.2000.实用农业试验设计与统计分析指南[M].北京:中国农业出版社
    30.付强,王志良,梁川,等.2002.基于偏最小二乘回归的水稻腾发量建模[J].农业工程学报,18(6):9-12.
    31.付光玺,朱伟,杨露露,等.2009.节水灌溉对水稻抗逆生理性状的影响[J].中国农学通报,25(02):105-108
    32.付强,王立坤,门宝辉,等.2002.三江平原井灌水稻水分生产函数模型及敏感指数变化规律研究[J].节水灌溉,(4):1-3
    33.付强,王立坤,王兆菡.2002.井灌水稻需水量预测的人工神经网络模型研究[J].灌溉排水,21(1):29-32.
    34.龚少红,崔远来,黄介生,等.2005.不同水肥处理条件下水稻生理指标及产量变化规律[J].节水灌溉,(2):1-4.
    35.郝树荣,郭相平,王为木,等.2005.胁迫复水对水稻叶面积的补偿效应[J].灌溉排水学报,(4):19-21.
    36.郝树荣,郭相平,王文娟.2010.旱后复水对水稻生长的后效影响[J].农业机械学报,41(7):76-79.
    37.何春燕,张忠,何新林,等.2007.作物水分生产函数及灌溉制度优化的研究进展[J].水资源与水土工程学报,18(3):42-45
    38.贺冬梅,张崇玉,王丹妮,等.2008.玉米拔节期水肥耦合效应研究[J].水土保持研究,(3):164-166
    39.侯恩广,李树彬,李珂,等.2011.基于神经网络的中药黄芩药效评价方法研究[J].山东科学.24(1)
    40.侯恩广等,2011.基于神经网络的中药黄芩药效评价方法研究.山东科学,24(1)
    41.胡荣爱,王经良,李帮明,等.2007.水稻节水灌溉技术试验初报[J].农村科技通讯,12:54-55.
    42.嵇庆才,周明耀,张凤翔,等.2005.水培条件下水肥耦合对水稻根系形态及其活力的影响[J].水利与建筑工程学报,(3):18-21
    43.季飞,付强,王克全,等.2007.不同水分条件对水稻需水量及产量影响[J].灌溉排水学报,26(5):82-85
    44.江立庚,曹卫星,甘秀芹,等.2004.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,37(4):490-496
    45.姜军,黄耀,杨兆芳.2005.一个稻麦作物氮肥利用率的统计模型[J].南京农业大学学报.(1)
    46.蒋开锋,郑家奎,赵甘霖,等.2004.四川省新育成的杂交水稻组合的品质分析[J].中国水稻科学,18(1):80-82
    47.焦峰,吴金花,张兴梅,等.2009.不同氮肥水平影响下的水稻根系吸氮率特性分析[J].土壤通报,40(6):1353-1355
    48.缴锡云,彭世彰.2004. Jensen模型敏感指数出现负值的原因及解决方法[J].沈阳农业大学学报,35(5-6):439-422
    49.康绍忠,蔡焕杰,冯绍元.2004.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报,20(1):1-4.
    50.康绍忠.1998.新的农业科技革命与21世纪中国节水农业的发展[J].干旱地区农业研究,16(1):11-17.
    51.兰倩,李骏.2005.神经网络的函数逼近性分析[J].甘肃科学学报,17(1)
    52.李宝珍,王松伟,冯慧敏,等.2008.氮素供应形态对水稻根系形态和磷吸收的影响[J].中国水稻科学,22(5):665-668
    53.李道西,彭世彰,徐俊增,等.2005.节水灌溉条件下稻田生态与环境效应[J].河海大学学报(自然科学版),(6):27-31
    54.李会昌,沈荣开,张瑜芳.1997.作物水分生产函数动态产量模型--Feddes模型初探[J].灌溉排水,16(4):1-5
    55.李军民,周清明,唐浩.2003.氮磷钾配比对巴西陆稻产量及品质的影响.湖南农业大学学报:自然科学版,29(3):199-203
    56.李敏,张洪程,李国业,等.2012.生育类型与施氮水平对粳稻淀粉RVA谱特性的影响[J].作物学报, (2):293-300.
    57.李楠楠,张忠学.2010.黑龙江半干旱区玉米膜下滴灌水肥耦合效应试验研究[J].中国农村水利水电, (6):88-90
    58.李绍清,李阳生,吴福顺,等.2002水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J].作物学报.(1):115-120
    59.李贤勇,王元凯,王楚桃.2001.稻米蒸煮品质与营养品质的相关性分析[J].西南农业学报,14(3):21-24
    60.李亚龙,崔远来,李远华,等.2009.水肥交互作用对稻田氮素利用率和氮素平衡的影响[J].灌溉排水学报, (4):21-24
    61.李亚龙,崔远来,李远华.2006.作物水氮生产函数研究进展[J].水利学报,(6):704-710.
    62.李奕林,王兴祥.2009.肥力水平对水稻苗期生长及氮素吸收同化的影响[J].土壤,41(4):620-624
    63.李玉山.1991.渭北旱原旱作水分生产潜势与水-肥-产量关系,长武王东沟高效生态经济系统综合研究[M].北京:科学技术文献出版社
    64.李政芳,陈孟珍,吴素芳,等.2010.不同施肥量与施肥方法对优质水稻品质的影响[J].西南农业学报,23(2):424-426
    65.李宗新,董树亭,王空军,等.2008.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报,19(1):65-70
    66.梁天锋,徐世宏,刘开强,等.2010.栽培方式对水稻氮素吸收利用与分配特性影响的研究[J].植物营养与肥料学报,16(1):20-26.
    67.林海明,张文霖.2005.主成分分析与因子分析详细的异同和SPSS软件[J].统计研究.(3).
    68.凌启鸿,张洪程,戴其根,等.2005.水稻精确定量施氮研究[J].中国农业科学,38(12)2457-2467
    69.刘柏林,邢茂娟.2004.不同水层深度对水稻产量的影响[J].黑龙江水利科技,(2):176
    70.刘晗.2009.节水灌溉对水稻根系干物质量和含氮量的影响[J].山东农业科学, (3):19-21
    71.刘建,魏亚凤,夏礼如,等.2004不同氮肥水平对稻米品质和淀粉RVA谱特征的影响[J].金陵科技学院学报,(1):34-38.
    72.刘立军,徐伟,桑大志,等.2006实地氮肥管理提高水稻氮肥利用效率[J].作物学报,(7):987-994
    73.路兴花,吴良欢,庞林江.2009.不同土壤水分含量对水稻水分利用特征的影响[J].中国水稻科学,23(2):186-190.
    74.吕艳东,李红宇,郭晓红,等.2006.土壤水分对稻米外观品质的影响[J].中国农学通报,(7):238-242
    75.罗玉峰,崔远来,朱秀珍.2004.高斯-牛顿法及其在作物水分生产函数模型参数求解中的应用[J].节水灌溉,(1):1-8
    76.茆智,崔远来,李远华.2003.水稻水分生产函数及其时空变异理论与应用[M].北京:科学出版社
    77.茆智.2002.水稻节水灌溉及其对环境的影响[J].中国工程科学,4(7):8-16
    78.门中华,李生秀.2010.水培硝态氮浓度对冬小麦幼苗氮代谢的影响[J].广西植物,30(4):120-126
    79.潘圣刚,曹凑贵,蔡明历,等.2009.不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响[J].植物营养与肥料学报,15(2):283-289
    80.潘圣刚,曹凑贵,蔡明历,等.2009.氮肥运筹对水稻氮素吸收和稻田渗漏液氮素浓度影响[J].农业环境科学学报,28(10):2145-2150
    81.潘圣刚,翟晶,曹凑贵,等.2010.氮肥运筹对水稻养分吸收特性及稻米品质的影响[J].植物营养与肥料学报,16(3):522-527
    82.彭建平,邵爱军.2007.用MatLab确定土壤水分特征曲线参数[J].土壤,39(3):433-438
    83.彭少兵,黄家良,钟旭华.2002.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,35:1095-1103
    84.秦建权,唐启源,李迪秦,等.2010.抽穗后光照强度对超级杂交稻干物质生产及氮素吸收与分配的影响[J].四川农业大学学报,28(1):28-34
    85.邵东国,孙春敏,王洪强,等.2010.稻田水肥资源高效利用与调控模拟[J].农业工程学报,(12):72-78
    86.邵玺文,张瑞珍,齐春艳,等.2004.拔节孕穗期水分胁迫对水稻生长发育及产量的影响[J]. 吉林农业大学学报,26(3):237-241.
    87.沈淮东,柏彦超,茅正芳,等.2008.不同水·氮条件对水稻根系生长的影响[J].安徽农业科学,36(8):3166-3168
    88.沈荣开,王康,张瑜芳,等.2001.水肥耦合条件下作物产量、水分利用和根系吸氮的试验研究[J].农业工程学报, (5):35-38
    89.沈细中,朱良宗,崔远来,等.2001.作物水、肥动态生产函数—修正Morgan模型[J].灌溉排水,20(2):17-20
    90.舒庆尧,吴殿星,夏英武,等.1998.稻米淀粉RVA谱特征与食用品质的关系[J].中国农业科学,31(3):25-29.
    91.苏祖芳,周培南,许乃霞,等.2001.密肥条件对水稻氮素吸收和产量形成的影响[J].中国水稻科学,15(4):281-2861
    92.隋炯明,李欣,严松,等.2005.稻米淀粉RVA谱特征与品质性状相关性研究[J].中国农业科学, (4):657-663.
    93.孙锡发,涂仕华,秦鱼生,等.2008.免耕条件下川香优9838氮磷钾吸收规律与氮肥合理施用研究[J].西南农业学报,21(1):110-113
    94.孙永健,孙园园,李旭毅,等.2009.水氮互作下水稻氮代谢关键酶活性与氮素利用的关系[J].作物学报,35(11):2055-2063
    95.田宝国,姜璐,谷可.2001.基于神经网络的Lyapunov指数谱的计算[J].系统工程理论与实践,21(8):9-13.
    96.田禹,王宝贞,周定.1998.基于BP人工神经元网络的臭氧生物活性炭系统建模研究[J].中国给水排水,14(3):24-27.
    97.汪恕诚.2010.中国水资源安全问题及对策[J].电网与清洁能源,(9):1-3.
    98.王成瑷,王伯伦,张文香,等.2006.土壤水分胁迫对水稻产量和品质的影响[J].作物学报,32(1):131-137.
    99.王成瑷,王伯伦,张文香,等.2007.不同生育时期干旱胁迫对水稻产量与碾米品质的影响[J].中国水稻科学,21(6):643-649
    100.王德建,张刚,汪军,等.2010.水稻基肥尿素干施与湿施对氮素损失及水稻氮素吸收的影响[J].土壤学报,47(3):483-489
    101.王国强,周静,崔键,等.2008.不同水肥组合对红壤地区早稻产量及氮肥利用率的影响[J]土壤, (3):392-398
    102.王景伟,朱铁林,王海泽.2007.水肥耦合对大豆生长发育的正交设计实验研究[J].大豆通报, (6):17-20
    103.王康,沈荣开,沈言俐,等.2002.作物水分与氮素生产函数的实验研究[J].水科学进展,(3):308-312
    104.王康,沈荣开,王富庆.2002.作物水分-氮素生产函数模型的研究[J].水科学进展,13(6):736-740
    105.王克全,付强,季飞,等.2008.查哈阳灌区水稻水分生产函数模型及其应用试验研究[J].灌溉排水学报,27(3):9-11
    106.王米,杨京平,徐伟,等.2009.分次施氮对单季稻氮素利用率及生态经济适宜施氮量的影响[J].浙江大学学报(农业与生命科学版),35(1):71-76
    107.王平荣,邓晓建,高晓玲,等.2004.干旱对稻米品质的影响研究[J].中国农学通报,20(6):282-284.
    108.王巧兰,吴礼树,赵竹青,等.2010.氮水平对水稻植株氮素损失的影响[J].植物营养与肥料学报,16(1):14-19
    109.王秋菊,李明贤,迟力勇,等.2009.控水灌溉对水稻产量及品质的影响[J].东北农业大学学报,40(10):5-8
    110.王若涵.2009.水肥耦合对杂交中稻生理特性及氮肥利用率的影响[D].华中农业大学.
    111.王维,蔡一霞,张祖建,等.2005.结实期低土水势对水稻强弱势粒灌浆特性及主要米质性状的影响[J].中国农学通报,21(9):170-173,183
    112.王卫,谢小立,谢永宏,等.2010.不同施肥制度对双季稻氮吸收、净光合速率及产量的影响[J].植物营养与肥料学报,16(3):752-757
    113.王熹,陶龙兴,黄效林,等.2004.灌溉稻田水稻旱作技术要素及产量形成.中国农业科学,37(4):502-509
    114.王艳,崔晶,王小波,等.2010.施肥对中日水稻品系土壤养分及食味品质的影响[J].中国生态农业学报,18(2):286-289
    115.王仰仁,雷志栋,杨诗秀.1997.冬小麦敏感指数累积函数研究[J].水利学报, (5):28-35.
    116.王仰仁,荣丰涛,李从民,等.1997.水分敏感指数累积曲线参数研究[J].山西水利科技,(4):20-24
    117.王仰仁,周青云,孙新忠,等.2010.时段划分对棉花作物水模型的影响与改进[J].农业工程学报,26(10):9-14
    118.王莹,彭世彰,焦健,等.2009.不同水肥条件下水稻全生育期稻田氮素浓度变化规律[J].节水灌溉,(9):12-16
    119.韦鹤平.1993.环境系统工程[M].上海:同济大学出版社.183.
    120.魏海燕,张洪程,张胜飞,等.2008.不同氮利用效率水稻基因型的根系形态与生理指标的研究[J].作物学报,34(3):429-436
    121.魏永华,何双红,徐长明.2010.控制灌溉条件下水肥耦合对水稻叶面积指数及产量的影响[J].农业系统科学与综合研究,(4):500-505
    122.巫东堂,李红梅,焦晓燕,等.2001.旱地麦田水肥关系及对产量的影响试验研究[J].农业工程学报,(5):39-42
    123.吴长明.2002.稻米品质遗传研究进展与改良策略探讨[J].中国农学通报,18(6):66-72
    124.吴芳,高迎旭,宋娜,等.2008.氮素形态及水分胁迫对水稻根系生理特性的影响[J].南京农业大学学报,31(1):63-66
    125.谢桂先,刘强,荣湘民,等.2008.不同施氮量对饲料稻糙米蛋白质含量的影响及其机理[J].生态环境,17(4):1619-1623
    126.谢黎虹,陈能,段彬伍,等.2006.稻米中蛋白质对淀粉RVA特征谱的影响[J].中国水稻科学,20(5),524-528.
    127.谢迎新,熊正琴,赵旭,等.2008.富营养化河水灌溉对稻田土壤氮磷养分贡献的影响——以太湖地区黄泥土为例[J].生态学报,28(8):3618-3625
    128.徐绍辉,刘建立.2003.土壤水力性质确定方法研究进展[J].水科学进展,14(4):494-501
    129.徐振剑,华珞,蔡典雄,等.2007.农田水肥关系研究现状[J].首都师范大学学报(自然科 学版),(1):83-88
    130.徐正进,韩勇,邵国军,等.2010.东北三省水稻品质性状比较研究[J].中国水稻科学,24(5):531-534
    131.徐正进,王嘉宇,张世春,等.2008.水稻穗不同部位籽粒品质性状差异的比较[J].华北农学报,23(1):96-100
    132.许振柱,周广胜.2004.植物氮代谢及其环境调节研究进展[J].应用生态学报,15(3):511-516
    133.薛琳,李勇,周毅,等.2009.旱作条件下不同覆盖方式对水稻氮素和干物质转移利用的影响[J].南京农业大学学报,32(2):70-75
    134.晏娟,尹斌,张绍林,等.2008.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,14(5):835-839
    135.杨建昌,王志琴,朱庆森.1996.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究[J].中国农业科学,(4):59-67
    136.杨昆,张金华,胡铁松.2002.遗传算法在水分生产函数参数率定中的应用[J].中国农村水利水电,(8):10-13
    137.叶利庭,宋文静,吕华军,等.2010.不同氮效率水稻生育后期氮素积累转运特征[J].土壤学报,47(2):303-310
    138.叶全宝,张洪程,魏海燕,等.2005.不同土壤及氮肥条件下水稻氮利用效率和增产效应研究[J].作物学报,31(11):1422-1428
    139.叶胜海,季芝娟,刘丙新,等.2011.蒸煮营养品质性状在水稻籼粳交DH群体中的表现及其相关性分析[J].中国粮油学报,26(1):25-29
    140.殷春渊,张庆,魏海燕,等.2009.不同氮肥水平下粳稻产量、氮素吸收差异及其基因型分类评价[J].江西农业大学学报,31(6):975-984
    141.殷晓燕,徐阳春,沈其荣,等.2004.直播旱作和水作水稻的氮素吸收利用特征研究[J].土壤学报,41(6):983-986
    142.尹光华,刘作新,等.2005.辽西半干早区春小麦氮磷水耦合产量效应研究[J].农业工程学报,21(1):41-45
    143.于婵,朝伦巴根,高瑞忠,等.2009.作物需水量模拟计算结果有效性检验[J].农业工程学报,25(12):13-21
    144.余灿,王直华,张家亮,等.2009.水稻半期旱作的节水效果及其对产量和品质的影响[J].华中农业大学学报,28(2):136-140
    145.郁志华,倪梅娟.2008.不同水分条件下铵态氮对汕优63水稻硝态氮吸收的影响[J].农业环境与发展,(3):125-128
    146.曾勇军,石庆华,潘晓华,等.2008.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报,34(8):1409-1416
    147.翟丙年,李生秀.2002.冬小麦产量的水肥耦合模型[J].中国工程科学,(9):69-74
    148.翟晶,曹凑贵,潘圣刚,等.2008.水肥耦合对水稻生长性状及产量的影响[J].安徽农业科学,(29):12632-12635
    149.张辰明,徐烨红,赵海娟,等.2011.不同氮形态对水稻苗期氮素吸收和根系生长的影响[J].南京农业大学学报,34(3):72-76
    150.张凤翔,周明耀,周春林,等.2006.水肥耦合对水稻根系形态与活力的影响[J].农业工程学报,(5):197-200
    151.张国发,崔玉波,尤娟,等.2010.钾肥用量对寒地水稻产量和品质的影响[J].土壤通报,41(2):413-416.
    152.张俊国,张三元,杨春刚,等.2010.不同施氮水平对水稻主要食味品质性状影响的研究[J].吉林农业科学,35(4):29-33
    153.张礼军,张恩和,郭丽琢,等.2005.水肥耦合对小麦/玉米系统根系分布及吸收活力的调控[J].草业学报,(2):102-108
    154.张丽华,赵洪祥,谭国波,等.2010.水肥耦合对大豆光合特性及产量的影响[J].大豆科学,(2):268-271
    155.张凌云,2009.单一介质模拟火区土槽试验研究.工程地质计算机应用,1:7.
    156.张龙步,董克,徐正进,等.1993.水稻田间试验方法与测定技术[M].沈阳:辽宁科学技术出版社.230-241
    157.张文霖.2005.主成分分析在SPSS中的操作应用[J].市场研究, (12):31-34.
    158.张亚洁,林强森,孙斌,等.2005.种植方式对水稻和陆稻氮素吸收利用的影响[J].中国水稻科学,19(6):539-544
    159.张亚丽,樊剑波,段英华,等.2008.不同基因型水稻氮利用效率的差异及评价[J].土壤学报,45(2):267-273
    160.张依章,张秋英,孙菲菲,等.2006.水肥空间耦合对冬小麦光合特性的影响[J].干旱地区农业研究,(2):57-60
    161.张玉顺,路振广,张湛.2003.作物水分生产函数Jensen模型中有关参数在年际间确定方法[J].节水灌溉,(6):4-6
    162.张岳芳,陈培峰,张传胜,等.2010.不同氮素累积量类型籼稻品种氮素吸收与分配特点[J],江苏农业学报.(5):904-909
    163.张岳芳,王余龙,张传胜,等.2006.籼稻品种间氮素吸收利用的差异及其对产量的影响[J].江苏农业学报,22(4):318-324
    164.赵瑞龙,周明耀,顾玉芬,等.2005.水稻水肥耦合技术的生态环境效应和最佳模式研究[J],水利与建筑工程学报,(4):20-22
    165.郑桂萍,郭晓红,陈书强,等.2005.水分胁迫对水稻产量和食味品质抗旱系数的影响.中国水稻科学,19(2):142-146
    166.郑永美,丁艳锋,王强盛,等.2007.起身肥改善水稻根际土壤氮素分布与利用的研究[J].中国农业科学,40(2):314-321
    167.中华人民共和国水利部.2012.2011年中国水资源公报[N]中国水利报.
    168.周江明,姜家彪,姜新有,等.2008.不同肥力稻田晚稻水氮耦合效应研究[J].植物营养与肥料学报,14(1):28-35
    169.周毅,郭世伟,高迎旭,等.2006.供氮形态和水分胁迫耦合作用对磷在苗期-分蘖期水稻植株不同部位含量与分配的影响[J].中国水稻科学,20(5):505-511
    170.周智伟,尚松浩,雷志栋.2003.冬小麦水肥生产函数的Jensen模型和人工神经网络模型及其应用[J].水科学进展,(3):280-284
    171.朱成立,张展羽.2003.灌溉模式对稻田氮磷损失及环境影响研究展望[J].水资源保护, (6):56-58
    172.朱文材,2012.遗传神经网络在轴系故障诊断中的应用.机电工程[J],29(2)
    173.朱文材,胡海刚,朱鸣鹤,等.2012.遗传神经网络在轴系故障诊断中的应用[J].机电工程,29(2).
    174.朱荫湄.1994.施肥与地面水富营养化[C].施肥与环境学术讨论会论文集.北京:中国农业科技出版社,40-44
    175.邹长明,秦道珠,徐明岗,等.2002.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南京农业大学学报,25(4):6-10
    176. Ahmad A R, Zulkefli M, Ahmed M, et al.1996. Environmental impact of Agricultural inorganic Pollution on ground water source of the Kelantan Plain, Malaysia. In:Aminuddin BY, Sharma M L, and Willett IR ed. Agricultural impacts on groundwater quality. ACIAR Proeeedings,61:8-21
    177. Alison S B, Simon D K, et al.2007. Nitrogen isotope composition of organically and conventionally grow n crops [J]. J Agric Food Chem,55:2664-2670
    178. American Association of Cereal Chemistry (AACC).1995. Methods 61-02 for RVA.9th ed. St. Paul, MN:AACC
    179. An H, Shangguan Z P.2006. The nitrogen cycling of plants and its physiological mechanism of root-zone environment [J]. Res Soil Water Conservation,13:83-85
    180. andhu K S, Arora V K, Chand R, et al.2000. Optimizing time distribution of water supply and fertilizer nitrogen rates in relation to targeted wheat yields [J]. Exp-agric,36(1):115-125
    181. Arth I, Frenzel P, Conrad R.1998.Denitrification coupled to nitrification in the rhizosphere of rice [J]. Soil Biology and Biochemistry,30:509-515
    182. Ashraf M, Shamsi S R A, Sajjad M I, et al.1997. Nitrogen losses from tops of three rice varieties grown in nutrient culture solution. Pakistan J Bot,29:319-322
    183. Azam F, Muller C,Weiske A, et al.2002. Nitrification and denitrification as sources of atmospheric nitrous oxide:Role of oxidizable carbon and applied nitrogen [J]. Biology and Fertility of Soils,35:54-61
    184. Baggs E M, Cadisch G, Verchot LV, et al.2002. Environmental impacts of tropical agricultural systems:N2O emissions and organic matter management [M]. Thailand, international Union of Soil Sciences,1-11
    185. Beheraa S K,Panda R K.2009. Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region [J]. Agriculture, Ecosystems and Environment,130(3/4):141-155
    186. Belder P, Bouman B A M, Cabangon R et al.2004. Effect of water saving irrigation on rice yield and water use in typical lowland conditions in Asia [J]. Agric. WaterManag.,65:193-210
    187. Buresh R J, De Datta S K.1990. Denitrification losses from puddled rice soils in the tropics[J]. Biology and Fertility of Soils,9:1-13
    188. Cai G X,Freney J R,Humphreys E, et al.1988. Use of surface films to reduce ammonia volatilization from flooded rice fields. Fert Res,10:203-215
    189. CAI J B, MU J X.2005. Estimation of daily reference evapotranspiration from weather forecast messages [C]//Proceeding CD of ICID 21st European Regional Conference. Frankfurt (Oder) and Sluice Germany and Poland,15-19.
    190. Cao L K, Chen G J, Lu Y T.2005. Nitrogen leaching in vegetable fields in the suburbs of Shanghai [J]. Pedosphere,15(5):641-645
    191. Cassman K G, Peng S, Olk D C, et al.1998. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems [J]. Field Crops Res,56:7-39
    192. Chen N C, Yoshitome Y, Inanaga S.2005. Release of nitrogenous compounds from wheat leaves//Li C J, Zhang F S, Dobermann A, et al. Plant Nutrition for Food Security, Human Health and Environmental Protection. Beijing:Tsinghua University Press:192-193
    193. Chi Daocai, Wang Xuan, Zhu Tingyun, et al.2001. Water saving and high yield irrigation models of rice and soil moisture potential control criteria[J]. Transactions of the CSAE, 17(2):59-64
    194. Cho J Y.2003.Seasonal runoff estimation of N and Pin a paddy field of central Korea[J]. Nutrient Cycling in Agroecosystems,65:43-52
    195. Dang T H, Cai G X, Guo S L et al.2006.Effect of nitrogen management on yield and water use efficiency of rainfed wheat and maize in northwest China[J]. Pedosphere,16(4):495-504
    196. Dobermann A, Witt C, Dawe D, et al.2002.Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research,74:37-66
    197. Dunn T S, Fitzgerald M A, Batten GD.2000. A panicle culture system to manipulate protein in rice grain [J]. Proceeding of 11th Cereals and Bread Congress, Rice Satellite Symposium.15
    198. Eneji A E, Yamamo to S, Honna T.2001. Rice growth and nutrient uptake as affected by livestock manure in four Japanese soils [J]. Journal of Plant Nutrition,24 (2):333-343
    199. Evers T, Millart S.2002. Cereal grain structure and development:some implications for quality [J]. Journal of Cereal Science,36,261-284
    200. FAO.2004. Statistical databases [M/OL]. Food and Agriculture Organization (FAO) of the United Nations, Rome, http://www. Fao. Org.
    201. Fedes R A, Kowalik P J, Zaradny H.1978. Simulating of Field use and crop yield [M]. Simulation Monograph,PUDOC,Wageningen,36-45
    202. Fedes R A.1987. Simulating water management and crop production with the SWACRO —MODEL [A].3rd international Work shop on L and Drainage, Columbus, Ohio State University,7-11
    203. Fischer KS.1998. Toward increasing nutrient use efficiency in rice cropping systems:the next generation of technology [J]. Field Crops Res,56:1-6
    204. Gany T,Lafond G P,Mayw E.2000. Grain yield and water use:Relative performance of winter vs. spring cereals in east-central Saskat chewan [J]. Canadian Journal of Plant Science,80: 533-541
    205. George T, Magbanua R, Roder W, et al.2001. Upland rice response to phosphorus fertilization in Asia.Agron J,93:1362-1370
    206. Gomez K A.1979.Effect of environment on rice grain quality [C].Chemical aspects of rice grain quality. Los Bafios, Laguna, Philippines:IRRJ,59-65
    207. Gowing J W, J Ejieji C J.2001. Real time scheduling of supplemental irrigation for potatoes using a decision model and short-term weather forecasts [J].Agricultural Water Management, 47:137-153.
    208. Groot J J R, Verberne E L J.1991. Response of wheat to nitrogen fertilization, a data set to validate simulation models for nitrogen dynamics in crop and soil[J]. Fertilizer Research,27: 349-383
    209. Guindo D, Norm an R J, Wells B R.1994. Accumulation of fertilizer nitrogen) 15 by rice at different stages of development. Soil Sci Soc Am J,58:410-415
    210. Hecht-Nielsen R.1989.Theory of the back propagation neural network[C]. IEEE.
    211. Horie H, Shiraiwa T, Homma K. et al.2005. Can yields of lowland rice resume the increases that they showed in the 1980s? [J]. Plant Prod. Sci.,8:257-272
    212. Hu R F, Cao J M, Huang J K et al.2007. Farmer participatory testing of standard and modified site-specific nitrogen management for irrigated rice in China [J]. Agric Syst,94:331-340
    213. Huang J L, He F, Cui K H et al.2008. Determination of optimal nitrogen rate for rice varieties using a chlorophy 11 meter [J]. Field Crops Res.,105:70-80
    214. Hussain A A, Maurya D.M, Vaish C. P.1987. Study on quality status of indigenous upland rice (Oryza sativa L.) [J]. Indian Journal of Genetics,47(2):145-150
    215. Ideto U, Shigekazu Y.1997. Nitrogen dynamics in paper mulched paddy field fertilized with controled release coated urea by 15N method. Tokyo,Japan:Kluwer Acad emic Publishers,539-540.
    216. IFA.2002. Fertilizer Use by Crop,5th edn [M/OL]. International fertilizer industry association (IFA), International Fertilizer Development Center (IFDC),International Potash and Phosphate Institute (PPI),and Food and Agriculture Organization (FAO), http:/www.Fertilizer.org/ifa/ statistics.asp.
    217. Inthapanya P, Sihavong P, Sihathep V, et al.2000. Genotypic performance under fertilized and non-fertilized conditions in rain fed low land rice [J]. Field Crops Research,65:1-14
    218. Inthapanya P, Sipaseuth, Sihavong P, et al.2000. Genotype differences in nutrient uptake and utilization for grain yield production of rain fed lowland rice under fertilised and non-fertilised conditions [J]. Field Crops Res,65:57-68
    219. James R F, James J C.1995.Water and nitrogen effects on winter wheat in the southeastern coastal plain, grain yield and kernel traits[J]. Agron J,(87):521-526
    220. Jing Q, Bouman B A M, Hengsdijk H, et al.2007. Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China. Eur J Agron,26:166-177
    221. Kirk G J D.2001. Plant mediated processes to acquire nutrients:Nitrogen uptake by rice plants [J].P1 ant and Soil,232:129-134
    222. Kumar R, Sarawgi A.K, Ramos C, et al.2006. Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Research,98:1-11.
    223. Ladha J K, Kirk G J D, Bennett J, et al.1998. Opportunities for increased nitrogen use efficiency from improved lowland rice germplasm. Field Crops Res,83:41-71
    224. Li u X J, Ai Y W, Zhang F S et al.2005.Crop production, nitrogen recovery and water use efficiency in rice-wheat rotation as affected by non flooded mulching cultivation (NFMC) [J]. Nutr. Cycl. Agroecosyst,71:289-299
    225. Lin X Q, Zhou W J, Zhu D F et al.2006.Nitrogen accumulation, remobilization and partitioning in rice (Oryza sativa L.) under an improved irrigation practice[J]. Field Crops Res,96:448-454
    226. Mandal K, Saravanan R, S Maiti.2008. Effect of different levels of N,P and K on downy mildew Peronospora plantaginis and seed yield of siabgol (Plantago ovata) [J]. Crop Protection, 27(6):988-995
    227. Martin M, Fitzgerald M A.2002. Proteins in rice grains influence cooking properties. Journal of Cereal Science,36:85-294
    228. Matson P A, Naylor R, Ortiz-Monasterio I.1998. Integration f environmental, agronomic and economic aspects of fertilizer management[J]. Science,280:112-115
    229. Matsui T, Omasa K, Horie T.2000. High temperature at flowering inhibits swelling of pollen grains,a driving force for thecae dehiscence in rice (Oryza sativa L.) [J]. Plant Production Science, (3):430-434
    230. Ni W Z, Zhu Z L.2004. Evidence of N2O emission and gaseous nitrogen losses through nitrification-denitrification induced by rice plants (Oryza sativa L.). Biol Fert Soils,40:211-214
    231. Ntanos D A, Koutroubas S D.2002. Dry matter and N accumulation and translocation for indica and japonica rice under Mediterranean conditions. Field Crops Res,74:93-101
    232. Ohnishia M, Horiea T, Hommaa K.1999. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand [J]. Field Crops Research,64-.109-120
    233. Parton W J, Mosier A R,Ojimad S, et al.1996. Generalized model for N2 and N2O production from nitrification and denitrification [J]. Global Biogeochemical Cycles,10(3):401-412
    234. Peng S, Bures h R J, Huang J, et al.2005. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China [J]. Field Crops Res,96(1):37-47
    235. Peng Shaobing, Roland J Buresh, Huang Jianliang, et al.2006. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China [J]. Field Crops Research, 96:37-47
    236. Piha M I.1993. Optimizing fertilizer use and practical rainfall capture in a semi arid environment with variable rainfall [J]. Exp-agric,29 (4):405-415
    237. Przulj N, Momcilovic V.2001. Genetic variation for dry matter and nitrogen accumulation and translocation in two rowed spring barley Ⅱ. Nitrogen translocation. European Journal of Agronomy,15:255-265
    238. Rakesh Banwasi, Bajpai R K, Banwasi R.2001. Effect of integrated nutrient management on root growth of wheat in a rice-wheat cropping system [J]. Agricultural Science Digest,21 (1): 1-4
    239. Rakhika R K, Subrananian R, Aakiuddin S A, et al.1994.Viscolastic properties of rice-flour pastes and their relation ship to amylase content and rice quality [J]. Cereal chemistry, (71):548-552.
    240. Ramirez L M A, Claassen N, Ubiera A A, et al.2002. Effect of phosphorus, potassium and zinc fertilizers on iron toxicity in wet land rice (Oryza sativa L.) [J]. Plant and Soil,239 (2):197-206
    241. Reeves T G, Waddington S R, Ortiz-Monasterio I, et al.2002. Removing nutritional limits to maize and wheat production:A developing country perspective [M]. Australia, Rural Industries Research And Development Corporation.11-36
    242. Romeo J, Cabangon R J, To Phuc Tuong et al.2004.Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient use efficiencies in typical lowland rice conditions in China [J]. Paddy Water Environ,2:195-206
    243. Rsseng R, Ritchie J T, Smucker A J M, et al.1998. Root growth and water uptake during water deficit and recovering in Triticumaestivum [J]. Plant and soil,201:265-273
    244. Saigusa M, Hanak i M, Ito T.1999. Decom position pattern of rice straw in poorly drained paddy soil and recovery rate of straw nitrogen by rice plan t in no-tillage transplanting cultivation. Japan J Soil Sci Plant Nutr,70:157-163
    245. Samonte S O P B, Wilson L T, Medley J C, et al.2006. Nitrogen utilization efficiency: Relationships with grain yield, grain protein, and yield- related traits in rice[J]. Agronomy Journal,98(1):168-176
    246. Sang Sun Lim, Woo Jung Cho, Jin-Hyeob Kwak, et al.2007. Nitrogen and carbon isotope responses of Chinese cabbage and chrysanthemum to the application of liquid pigmanure [J]. Plant and Soi,295:67-77
    247. Scowcroft P G, Haraguchi J E, Hue N V.2004. Reforestion and topography affect mountain soil properties, nitrogen pools, and nitrogen transformations in Hawaii [J]. Soil Sci. Soc. Am. J.,68 (3):959-968
    248. Sharma A R, Ghosh A.1999. Effect of combined use of organic manure and nitrogen fertilizer on the performance of rice under flood-prone lowland conditions [J]. The Journal of Agricultural Science,132(4):461-465
    249. Sharma B D, Jalota S K, Kar S, et al.1992. Effect of nitrogen and water use on yield of wheat [J]. Fertilizer Research,31:5-8
    250. Sharma B D, Kar S, Cheema S S.1990. Yield, water use and nitrogen up take for different water and N levels in winter wheat [J]. Fert. Res.,22:119-127
    251. Shi Y, Shen Q - R,Mao Z - S, et al.2002. Ti me and horizontal spatial variations of NH4+-N and NO3--N of rhizospheric soil with rice cultivation upland condition mulched with half decomposed rice straw [J]. Scientia Agricultura Sinica,35(5):520-524.
    252. Singh A K, Amgain L P, Sharma S K.2000. Root characteristics, soil physical properties and yield of rice (Oryza sativa) as influenced by integrated nutrient management in rice2 wheat (Triticum aestivum) system [J]. The Indian Journal Agronomy,45 (2):217-222
    253. Singh U, Ladha J K, Castillo E G,et al.1998. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice [J]. Field Crops Research,58(1):35-53
    254. Singh V K, Dwivedia B S, Shukla Arvind K, et al.2005. Diversification of rice with pigeon pea in a rice-wheat cropping system on a Typic Ustochrept:effect on soil fertility, yield and nutrient use efficiency. Field Crops Res,92:85-105
    255. Skinner R H, Hanson J D, Benjamin J G.1998. Root distribution following spatial separation of water and nitrogen supply in furrow irrigated corn [J]. Plant and soil,199:187-194
    256. Takahashi S, Yagi A.2002. Losses of fertilizer derived N from transplanted rice after heading. Plant & Soil,242:245-250
    257. Takeda S.1979.Researches on the protein content of rice. Proceedings of the Crop Science Society of Japan,48:17-524
    258. Terrya Hoowell.2001. Enhanging water use efficiency in irrigated agriculture [J]. Agronomy Journal,93:281-289
    259. Vance C P, Uhde-Stone C, Allan D L.2003. Phosphorus acquisition and use:Critical adaptations by plants for securing a nonrenewable resource. New Phytologist,157:423-447
    260. Varavinit S, Shobsngob S, Warunee V.2003. Effect of amylase content on gelatinization, rerogradation and pasting properties of flours from different cultivars of Thai rice [J]. Starch/Starke,55(9):410-415
    261. Vogeler I, Rogasik J, Funder U, et al.2009. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake [J]. Soil and Tillage Research, 103(1):137-143
    262. Wang H, McCaig T N, Depauw R M et al.2003. Physiological characteristics of recent Canada Western Red Spring wheat cultivars:components of grain nitrogen yield [J]. Can. J. Plant Sci, 83(4):699-707
    263. Xie Y X, Xiong Z Q, Xing G X, et al.2007. Assessment of nitrogen pollutant sources in surface water of Taihu Lake region. Pedosphere,17(2),200-208
    264. Xing G X, Zhu Z L.2000. An assessment of N loss from agricultural fields to the environment in China [J]. Nutrient Cycling in Agroecosystems,57:67-73
    265. Yoshida H, Horie T, Shiraiwa T.2006. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia [J]. Field Crops Res,97:337-343
    266. Zhang W, Tian Z, Zhang N, et al.1996. Nitrogen pollution of groundwater in the Northern China [J]. Agriculture, Ecosystems and Environment. 59(3):223-231
    267. Zheng X H, Wang M X, Wang Y S, et al.2000. Impacts of soil moisture o n nitro us oxide emission from croplands:a case study on the r ice- based agro ecosystem in Southeast China [J]. Chemosphere-Global Change Sci.2:207-224
    268. Zhu J G, Yan Y, Shao X H, et al.2000. Nitrogen in percolation water in paddy fields with a rice-wheat rotation [J]. Nutrient Cycling in Agroecosystems,57:75-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700