寒旱区GCL防渗性能研究及相关机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水资源供需矛盾的加剧,节约利用水资源引起了各行业的高度重视,农业是用水大户,实施节水灌溉工程势在必行,其中渠道衬砌防渗工程以其施工简单、造价低等优点,得到了广泛的推广与应用。我国西北地区干旱、寒冷、盐渍化严重,渠道防渗材料的选择受到一定的限制,目前该地区渠道衬砌的主要材料为混凝土板,存在费用高、抗冻胀性能差、施工工期长、衬砌失效后固体废弃物污染环境等一系列突出问题,因此筛选新型防渗衬砌新材料是当前灌区面临的重要问题,其研究具有重要的实用价值及现实意义。
     本文通过室内实验和工程现场试验对复合土工膨润土垫(Geosynthetic Clay Liner)在寒旱盐渍化地区的防渗特性及相关机理进行如下研究:(1)测试GCL基本特性,结合研究区特点及GCL产地进行了试样筛选;(2)探讨了膨润土在不同电解质溶液中的膨胀特性、流变性、粘度、滤失量;(3)冻融循环及离子双因素耦合作用对膨润土特性及GCL防渗性能影响;(4)进行了高温、低温、高低温循环、紫外线照射、水泥砂浆浸泡、工程现场老化实验,分析GCL的力学性能变化;(5)用微观方法研究了膨润土的结构,通过微观结构参数(水力半径、形态指标、表面分维、孔隙率)分析膨润土结构变化。得到以下有价值的结论和成果:
     (1)膨润土的水化过程是分阶段进行的,电解质类型及浓度对膨润土特性有显著影响,膨润土自由膨胀体积、膨胀后的含水率、滤失量与水化液中离子浓度、化合价呈负相关,滤饼厚度、渗透系数则相反,呈正相关;水化液为黄河水时,悬浮体剪切应力增加,触变性降低。切应力的大小与膨润土颗粒分散度、细小颗粒含量呈正相关,与水化液电解质浓度呈负相关。
     (2)冻融循环改变膨润土颗粒结合方式,导致粘结性降低,分散性增强,自由膨胀体积、膨胀后的含水量、剪切应力增加,滤失量、滤饼厚度降低;水化液为蒸馏水、黄河水时,31次冻融循环后自由膨胀体积均值增加了17.8%、32.8%。含水率均值增加了9.3%、16.8%,EC值增加了32.7%、24.9%,剪切应力增加了38.0%、37.1%;滤失量均值降低了24.3%、23.4%;滤饼厚度降低了19.4%、15.4%。渗透系数约增加了1个数量级,但仍较小,仅为衬砌前渠床土壤渗透率的0.35%~0.72%。渗出过程中有膨润土颗粒滤出,滤出液EC值降低了55.3%、48.0%。
     (3) GCL应力-应变曲线呈“M”型,有两个屈服点,分四个阶段:下层织物弹性非线性变形阶段;下层织物极限断裂阶段;上层织物弹性非线性变形阶段以及极限断裂阶段。高温、低温、高-低温循环、温度-湿度耦合、紫外线照射、水泥砂浆浸泡均导致GCL的力学性能降低,影响较大的因素为高温和紫外线照射。工程现场试验表明,试验第1年力学性能降低幅度较大,随着泥沙淤积形成覆盖层,老化速度降低。
     (4)GCL应力-应变关系可用高斯双峰拟合得到的本构方程描述,经检验,有较好的相关性。其系数与不同老化因素呈指数、对数关系,使用年限预测结果表明,30年后其残余应力值可达到30%。
     (5) X荧光光谱分析结果表明:试样有良好的结晶度及层状结构,膨润土的主要成分为SiO2。黄河水水化冻融后金属氧化物的含量略有增加。膨润土SEM图像表明:电解质浓度及冻融循环影响膨润土孔隙分布、孔隙表面特征及孔隙的大小,可以通过膨润土微观结构的孔隙表面分维、孔隙率、水力半径和形态等微观结构参数描述。试样水力半径在33.18~372.11μm之间;孔隙率在6.21%~69.69%之间,表面分维在1.18~1.22之间,形态指标在0.05~0.52之间,孔隙主要以不规则板状孔隙结构为主。工程现场试验2年后膨润土孔隙率增加。
     (6)根据研究成果结合试验区特殊环境,提出了GCL在类似地区应用的工程措施。
With the intensification of supply and demand of water resources, conservation of water resources were caused great importance by various industries.it has great potential to construction to water (seepage canal lining) for agricultural water users . In the northwest of China, the special conditions of drought, cold, salinity severely restricts the application of ordinary impermeable material in the area. At present, in the region the main material for channel lining is concrete slab. But it has high cost a, poor performance against frost, construction period long, solid waste after the refractory lining failure caused by environmental and other outstanding series of problems. it is an important issue facing the current irrigated area to filtrate new impervious lining materials.
     The following seepage properties and related mechanism was researched in the paper through the laboratory and field examination to GCL in cold, arid and saline areas: (1)The basic characteristics of GCL, fall together research region’s status and GCL’S producing area make sample selected; (2)The properties of bentonite in different electrolyte solution were researched including expansion properties, rheological characteristics, viscosity and filtration; (3)The effect of freezing and thawing cycle and ion double factors coupling on bentonite properties and GCL anti-seepage permeability; (4)Through the experiments of high temperature, low temperature, and high low temperature cycling, UV rays, soaking the cement mortar and construction site aging experiment, analyzed the changes of GCL’s mechanical properties;(5) The microstructure of bentonite was analyzed by microscopic methods, and micro-structural parameters (hydraulic radius, shape index, surface fractal dimension, porosity) reflected the structure’s changes of bentonite, to explain GCL impervious performance change mechanism .Through the above study, the valuable conclusions and results are as follows:
     (1) Bentonite hydration process is carried out in stages; the type and concentration of electrolyte solution have significant impaction on the properties of bentonite. Bentonite free expansion volume, post-expansion water content, filtration and the concentration of the ions in hydration fluid were negatively correlated. Filter cake thickness and permeability coefficient were positive correlation; Bentonite suspension body rheological research shows: system thixotropic loop was anti-clockwise and it was negative thixotropy; When hydration solution was Yellow River water, the suspension shear stress increased and thixotropy decreased. Shear stress of bentonite was positively correlated with particle size and dispersion, and it was negatively correlated with the hydration liquid electrolyte concentrations.
     (2) The freeze-thaw cycles changed the connection ways of bentonite particles, Led to adhesion and filtration decreased, and dispersion enhance, free swelling volume, post-expansion water content, shear stress increased; Filtration and the cake thickness decreases; When hydration solution was distilled water and the Yellow River water, the free expansion volume average respectively increased 17.8%, 32.8% after 31 freeze-thaw cycles. Moisture content increased 9.3%, 16.8%, EC value increased 32.7%, 24.9%, shear stress increased 38.0%, 37.1%; Filtration average had reduced 24.3%, 23.4%; Cake thickness decreased 19.4%, 15.4%. Permeability coefficient increased about 1 order of magnitude, but the permeability coefficient was still little. It was 0.35%~0.72% that before the canal lining of soil penetration. Bentonite particles filtered out in the process of exudation, and the filtrate EC value decreased 55.3%, 48.0%.
     (3) GCL stress - strain curve was "M" type, and it had two yield points in four phases: The lower stage of nonlinear deformation of elastic polyacrylamide; The lower limit of fracture stage polyacrylamide; upper polyester or polyethylene co-host of nonlinear elastic deformation stage; Polyester or polyethylene film limit fracture stage. High temperature, low temperature, high-low temperature cycling, coupling temperature and humidity, ultraviolet radiation, soaking cement could decrease mechanical properties of GCL, especially the factors of high temperature and ultraviolet radiation. Field experiments showed that the mechanical properties of the first year decreased obviously, and the aging rate decreased with the layer sediment covering.
     (4) GCL stress - strain relations could be obtained by fitting Gaussian peaks to the constitutive equation. the result had shown a good correlation. The coefficient had shown an exponential and logarithmic relationship with different aging factors. The service life prediction results showed that the value of the residual stress can reach 30% after 30 years.
     (5) The X fluorescence spectroscopy results showed that the samples had a good crystallinity and layered structure, and the main component of bentonite were SiO2. When hydration solution was the Yellow River water, the metal oxide content slightly increased with freezing and thawing cycles increased after freeze-thaw. Bentonite SEM images showed that the changes of hydration fluid and electrolyte concentration, freeze-thaw cycles had some influence on bentonite pore distribution. The pore surface characteristics and pore size. The microstructure parameters could be described by pore surface dimension, porosity, hydraulic radius and shape of bentonite microstructure. Hydraulic radius of the selected bentonite sample was between 33.18 and 372.11μm. Porosity was between 6.21% and 69.69%. The surface fractal dimension was between 1.18 and 1.22, morphological index was between 0.05 and 0.52, and pore was mainly irregular. Microstructure of bentonite showed that the gap will increase after 2 years’field experiments.
     (6) Combining with the research results and situation of test area, the measures of GCL engineering application were raised in the similar regions.
引文
1水利部农村水利司,中国灌溉排水技术开发培训中心.渠道防渗工程技术[M].北京:中国水利水电出版社,1998.
    2何武全,邢义川,蔡明科,等.渠道防渗抗冻新材料与新技术[J].节水灌溉,2003,(1):4-5,11.
    3何武全,刘群昌.我国渠道衬砌与防渗技术发展现状与趋势[J].中国农村水利水电,2009 (6):3-6.
    4周春生.膨润土防水毯在北方盐渍化地区适用性的实验研究[D].呼和浩特:内蒙古农业大学硕士学位论文,2007.
    5王丹,刘晓娟,李俊峰.抗冻胀渠道防渗的结构形式研究进展[J].水资源与水工程学报,2009,20(1):62-67.
    6程满金,步丰湖,王俊英,等.土壤固化剂新材料在衬砌渠道中的应用研究[J].节水灌溉,2010 (4):33-36.
    7周正兵,王钊.用于渠道防渗的两种新型土工复合材料[J].防渗技术,2002,(3):1-5.
    8王勇.GCL防渗性能及其在填埋场中的应用[J].环境工程,2009,27(6):98-101,108.
    9吕宏洋.膨润土防水毯(GCL)和土工膜(GM)作为危险废物填埋场复合场衬垫系统的研究[J].有色冶金设计与研究,2007,28(2~3):131-140.
    10 C. B. Lake, R. K. Rowe. Swelling characteristics of needlepunched,thermally treated geosynthetic clay liners[J].Geotextiles and Geomembranes,2000(18):77-101
    11李宪.GCL防渗特性及填埋场防渗系统的研究[D].南京:河海大学硕士学位论文,2005.
    12朱国平,刘晓东,罗太安.内蒙古高庙子膨润土热学性能研究[J].资源环境与工程,2005,19 (3):220-222.
    13窦宝松,鲍维猛,王长保.土工合成材料在渠道防渗工程中的应用与存在问题探讨[J].水利水电技术,2009,40(4):27-29.
    14 K. D. Park1, I.R. Fleming. Evaluation of a geosynthetic capillary barrier [J]. Geotextiles and Geomembranes,2006(24):64-71.
    15周正兵,王钊,王俊奇.离子交换对GCL防渗能力的影响[J].长江科学院院报,2002,19 (3):39-42.
    16周春生,史海滨,于健,等.复合土工膨润土垫用于寒旱区渠道衬砌的实验研究[J].节水灌溉,2011,3:47-53.
    17朝明礼.蒙脱石层间化合物的制备、表征及其液相吸附特性研究[D].武汉:武汉理工大学博士学位论文,2004.
    18赵连强,晏发明,陈济美,等.钠化膨润土作为防水材料的试验研究[J].资源环境与工程,2010,24 (1):82-84.
    19刘学贵,邵红,刘长风,等.膨润土土工合成材料的研究[J].建筑材料学报,2007,10 (6):749-753.
    20 A.Bouazza, T.Vangpaisal. An apparatus to measure gas permeability of geosynthetic clay liners [J].Geotextiles and Geomembranes,2003(21):85-101.
    21白庆中,刘阳生,李强,等.新型人工合成膨润土防渗卷材的研制及其渗透性能[J].环境科学,2000,21(6):56-60.
    22施有志,马时冬.垃圾填埋场中的土工聚合物膨润土衬垫[J].华侨大学学报,2002,23 (2):151-156.
    23冉龙.城市生活垃圾的压缩和渗透特性及填埋场水力特性研究[D].杭州:浙江大学硕士学位论文,2005.
    24黄二良.膨润土预处理城市垃圾渗滤液研究[D].西安:长安大学硕士学位论文,2008.
    25屈智慧.改性膨润土作为防渗材料的可行性研究[D].长春:吉林大学硕士学位论文,2008.
    26周春生,史海滨,于健,等.GCL用于寒旱区渠道防渗的实验研究[J].中国农村水利水电.(收录,2011.3刊出)
    27杨洋,姚海林,陈守义.广西膨胀土的孔隙结构特征[J].岩土力学,2006,27(1):155-158.
    28 Kolstad D C, Benson C H, Edil T B. Hydlic Conductivity and Swell of Nonprehydrated Geosynthetic Clay Liners Permeated with Multispecies Inorganic Solutions. Journal of Geotechnical and Geoenvironmental Engineering[J].ASCE,2004,130(12):1236-1349.
    29 Abdelmalek Bouazza, Stephan Jefferis, Thaveesak Vangpaisal.Investigation of the effects and degerr of calcium exchange on the Atterberg limits and swelling of geosynthetic clay liners when subjected to wet-dry cycles[J].Geotextiles and Geomembranes,2007(25):170-185.
    30 A.K.Mishra, L,Li, T. H. Junboum. Effect of salt of various concentrations on liquid limit and hydraulic conductivity of different soil-bentonite mixtures [J]. Environ Geol,2009(57):1145-1153.
    31 Jae-M. Lee, C. D. Shackelford. Correlating Index Properties and Hydraulic Conductivity of Geosynthetic Clay Liners [J].Journal of geotechnical and geoenvironmental engineering, 2005(15):1319-1329.
    32 Lee, S.Charles, C.J.Soon, et al.Dependency of Compatibility Termination Criteria on Perhydration and Bentonite Quality for Geosyntheric Clay Liners[N].Jour,2004.
    33刘建国,王洪涛,聂永丰.多孔介质中溶质有效扩散系数预测的分形模型[J].水科学进展, 2004,15(4):458-462.
    34 C. H. Benson1, H. Y. Jo, T. Abichou.Forensic analysis of excessive leakage from lagoons lined with a composite GCL [J].Geosynthetics International, 2004,11(3): 242-252.
    35 Mesri G, Olson R E. Mechanisms controlling the permeability of clays[J].Clays and Clay Minerals,1971(19):151-158.
    36何俊,施建勇,廖志强,等.膨润土中离子扩散特征试验研究[J].岩土力学,2007,28(4): 831-835.
    37 Petrov R J, Rowe R K, Quigley R M.Selected factors influencing GCL hydraulic conductivity. Joumal of Geotechnical and Geoenvironmental Engineering [J].ASCE, 1997, 123(8):683-695.
    38 LEE J M,SHACKELFORD C D. Concentration dependency of the prehydration effect for a geosynthetic clay liner [J]. Soils and Foundations,2005,45(4):27–41.
    39 D Cazaux, G Didier. Field evaluation of hydraulic performances of geosynthetic clay liners by small and large-scale tests [J].Geotextiles and Geomembranes,2000(18): 163-178.
    40李志斌,徐超.竖向应力作用下GCL的膨胀特性和渗透性能[J].岩土工程学报,2007,29(12): 1876-1880.
    41 Reddil N, Thangavadivelu S. Representation of compacted clay minifabric using random networkd[J].Journal of Geotechnical Engineering,1996,122(11):906-913.
    42 Komine H. Theoretical equations for evaluating hydraulic conductivities of bentonite based buffer and backfill[C].Proceeding of the 16th International Conference on Soil Mechanics and Geotechnical Engineering.2005:2289-2292.
    43何俊,施建勇.膨润土中饱和渗透系数的计算[J].岩石力学与工程学报,2007,26 (2): 3920-3925.
    44 Shan H Y, Daniel D E. Results of laboratory tests on a geotextile/bentoniet liner material. Processing Geosynthetics [J].Industrial Fabrics Association International,1991(34):517-535.
    45 Gleason M H, Daniel D E, Eykholt G R. Calcium and sodium bentonite for hydraulic containment applications. Journal of Geotechnical and Geoenvironmental engineering [J].ASCE.1997,123(32):438-445.
    46 Petrov R J,Rowe R K. Quigley R M.Comparison of laboratory-measured GCL hydraulic conductivity based on three permeameter types,Geotechnical Testing Journal[S]. ASTM,1997,20(1):89-94.
    47 Petrov R J,Rowe R K. Geosynthetic clay liner(GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance[J].Canadian Geotechnical Journal,1997(34):863-885.
    48刘光法,苗锡庆.粘土矿物水化膨胀影响因素分析[J].石油钻探计算,2009,37(5):81-84.
    49 Jo H Y, Kstsumi T, Benson C H,et al. Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. Joumal of Geotchnical and Geoenvironmental Engineering [J].ASCE, 2005(25):405-417.
    50 LaGatta M D, Boardman B T, Cooley B H, et al. Geosynthetic clay lines subjected to differential settlement[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997,123(5):863-885.
    51 Lake C K, Rowe R K. Diffusion of sodium and chloride through geosyntheric clay liners [J]. Geotextiles and Geomembranes, 2000(18):103-131.
    52介玉新,彭涛,傅志斌,等.土工合成材料黏土衬垫的渗透性研究[J].土木工程学报, 2009, 42(2):92-98.
    53陈生水,郑澄锋,杨明昌.新型防渗材料膨润土垫的试验研究[J].水利水运工程学报,2006,(3):34-38.
    54陈小红,王协群.土工合成材料膨润土垫性能探讨[J].长江科学院院报,2007,24(4):53-56.
    55陈小红.GCL室内剪切试验研究及在垃圾填埋场的应用[D].武汉:武汉理工大学硕士学位论文, 2007.
    56 P. J. Fox, D. J. De Battista, D. G. Mast. Hydraulic performance of geosynthetic clay liners under gravel cover soils [J].Geotextiles and Geomembranes, 2000(18):179-201.
    57 S.Dickinson, R.W.I Brachman. Deformations of a geosynthetic clay liner beneath a geomembrane wrinkle and coarse gravel [J].Geotextiles and Geomembranes, 2006 (24):285-298.
    58 H.Y Shan, R H Chen. Effect of gravel subgrade on hydraulic performance of geosynthetic clay liner [J].Geotextiles and Geomembranes, 2003(21):339-354.
    59林伟岸,詹良通,陈云敏,等.GCL/GM界面膨润土挤出机理研究[J].岩土工程学报,2010, 32(6):832-837.
    60李淑萍,侯万国,孙德军,等. Fe-Al-Mg-MMH/钠质蒙脱土分散体系触变性研究[J].高等学校化学学报,2001,22(7):1173-1176.
    61刘崇宇,陈泉水,郑举功,等.Fe-Al-Mg-MMH/溪膨润土分散体系触变性研究[J].东华理工大学学报(自然科学版),2009,32(2):167-171.
    62陈泉水,刘媛.金溪膨润土的流变性研究[J].化工矿物与加工,2006,(6):28-30.
    63隋跃华,吕振华,成效华. MMH-钠膨润土复合体稳定性的研究[J].石油钻探技术,1999,27(1): 28-30.
    64孙志明,于健,郑水林,等.离子种类及浓度对土工合成黏土垫用膨润土保水性能的影响[J].硅酸盐学报,2010,38(9):1826-1831.
    65 J.M.Lee,C.D.Shackelford.Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners[J].Journal of Geotechnical and Geoenvironmental engineering,2005,131(1):64-77
    66戴肖南,侯万国,李淑萍,等.Mg-Al-MMH-高岭土分散体系触变性研究[J].高等学校化学学报,2001,22(9):1578-1580.
    67戴肖南,侯万国,李淑萍,等.pH值对Mg-Al-MMH-高岭土分散体系触变性的影响[J].中国科学,2001(5):438-443.
    68谢静思,甘学锋.高岭土降粘试验研究[J].中国非金属矿工业导刊,2007(3):28-31.
    69戴肖南,侯万国,李淑萍.无机电解质及聚合物对Mg-Al-混合金属氢氧化物-高岭土分散体系触变性的影响[J].应用化学,2002,19(4):338-341.
    70刘承帅,万洪富,侯梅芳,等.我国主要产地膨润土颗粒组成和蒙脱石含量研究[J].非金属矿,2005, 28(1):40-43.
    71李运康,陈德芳,王重.膨润土胶溶过程的研究[J].西安交通大学学报,2000,34(8):108-110.
    72王运新.洗涤对高岭土粘浓度的影响[J].非金属矿,2003,26(5):41-42.
    73邱俊,宋吉勇,吕宪俊.蒙脱石矿物凝胶流变性能变化规律研究[J].非金属矿,2007,30 (3):1-3,11.
    74胡忠诚,肖人卓,时钧.高岭土悬浮液的流变性质[J].化工学报,1992,43(2):242-246.
    75梁虎南,龙柱,皮成忠等.阴离子分散剂对酸化膨润土流变性的影响[J].高等学校化学学报,2009,30(3):549-552.
    76 R.M.Koerner, Te-Yang Soong,G R. Koernerc,et al. Creep testing and data extrapolation of reinforced GCLs[J].Geotextiles and Geomembranes,2001(19):413-425.
    77孙其永.缝合连接三维编织复合材料弯曲性能研究[D].天津:天津工业大学硕士学位论文, 2007.
    78卢再华,陈正汉,蒲毅彬.原状膨胀土损伤演化的三轴CT试验研究[J].水利学报,2002(6): 106-112.
    79徐超,黄亮.影响土工织物膨润土垫水力和力学特性的因素[J].新型建筑材料,2006, (11):42-46.
    80 Y. Grace Hsuan. Approach to the study of durability ofreinforcement fibers and yarns in geosyntheticclay liners [J],Geotextiles and Geomembranes,2002(20):63-76.
    81 J.M.Southen, R.Kerry Rowe. Modelling of thermally induced desiccation of geosynthetic clay liners[J].Geotextiles and Geomembranes,2005(23):425-442.
    82王殿武,曹广祝,仵彦卿.土工合成材料力学耐久性规律研究[J].岩土工程学报,2005,27 (4):398-400.
    83余玲,赵文昌,闵令民.PVC复合土工膜老化性能初探[J].水力水电技术,1996(11):59-62
    84李艳琴.复合土工膜蠕变性能的研究[D].山东大学硕士学位论文,2006.
    85刘景军,李效玉.高分子材料的环境行为与老化机理研究进展[J].高分子通报,2005 (3):62-69.
    86郑智能.土工合成材料的耐久性试验研究[D].重庆交通学院硕士学位论文,2003.3.
    87 BakerT I. Long-term relationship ofoutdoor exposure toXenonArc test apparatus [A]. Proceedings of the Geosynthetics[C], IFAI, St.Pau, 1997(1):177-199.
    88 KoernerG R, Hsuan G Y, KoernerR M. Photo-initiated degradation of geotextiles. Journal Geotechnical and Geoenvironmental Engineering [J].ASCE,1998,124(12): 1159-1166
    89 P.Kent, V.Maubeuge, J.Witte,et al. Installation and monitoring of a geosynthetic clay liner as a canal liner in a major waterway [J].Geotextiles and Geomembranes, 2000(18):263-271.
    90于志强.土工织物耐久性及堤坝加筋机理的研究[D].天津:博士学位论文,天津大学,2005.
    91王微.公路土工合成材料防排水性能研究[D].硕士学位论文,东北林业大学,2004.
    92林伟岸.复合衬垫系统剪力传递、强度特性及安全控制[D].杭州:浙江大学博士学位论文, 2009.
    93 Hewitt, Robert D, Daniel, et al. Hydraulic conductivity of geosynthetic clay liners after freeze-thaw[J].ASCE,Journal of Geotechnical and Geoenvironmental Engineering.1997(123):305-313.
    94李宪.GCL防渗特性及填埋场防渗系统的研究[D].硕士学位论文,河海大学,2005.
    95彭涛,李耀刚,武威,等.干湿与冻融循环条件下膨润土防水毯的防水性能[C].山西云冈,2005.294-302.
    96 Rowe R K, Mukunoki T, Li M H, et al.Effect of freeze-thaw on the permeation of arctic diesel through a GCL[J].Journal of ASTM International,2004,2(1):1-13.
    97介玉新,彭涛,傅志斌,等.土工合成材料黏土衬垫的渗透性研究[J].土木工程学报,2009,42(2):92-98.
    98林伯韬,张澄博,冯彦.卫生填埋场防渗黏土衬垫层的温度效应研究进展[C].第二届全国岩土与工程学术大会论文集,2005,425-432.
    99陈生水,郑澄锋,杨明昌.新型防渗材料膨润土垫的试验研究[J].水利水运工程学报,2006,(3):34-38.
    100包卫星,李志农.喀什地区不同盐渍土冻融变形特性试验[J].长安大学学报(自然科学版), 2008,28(2):26-30.
    101马文生,张俊烽.化学成分和微结构对冻融土力学性质的影响[J].安徽地质,2007,17(1): 60-62.
    102 L H Li,Q Wang, N X Wang,et al. Vacuum dewatering and horizontal drainage blankets: a method for layered soil reclamation [J].Bull Eng Geol Environ,2009(68):277-285.
    103彭丽云,刘建坤,田亚护.粉质粘土的冻胀特性研究[J].水分地质工程地质,2009(62):62-67.
    104陈炜韬,王鹰,王明年,等.冻融循环对盐渍土黏聚力影响的试验研究[J].岩土力学,2007,28(11):2343-2347.
    105杨平,张婷.人工冻融土物理力学性能研究[J].冰川冻土,2002,24(5):665-667.
    106 R K Podgorney, J E Bennett. Evaluating the Long-Term Performance of Geosynthetic ClayLiners Exposed to Freeze-Thaw [J].Journal of geotechnical and geoenvironmental engineering, 2006, 132(2):265-272.
    107何俊,施建勇.膨润土微观结构SEM观察中的表观孔隙率[J].河海大学学报,2007,35 (2):220-224.
    108 Krohn K P. New conceptual models for the resaturation of bentonite [J], Applied Clay Science, 2003, 23(1):25-33.
    109 Ichikawa Y, Kawamura K, Fujii N, et al. Microstructure and micro/macro-diffusion behavior of tritium in bentonete[J].Applied Clay Science,2004,26(1):75-90.
    110郁陈.非饱和高庙子膨润土的体变特征及其微观机理[J].上海:同济大学硕士学位论文, 2006.
    111 Yong R N. Overview of modeling of clay microstructure and interactions for prediction of waste isolation barrier performance [J]. Engineering Geology, 1999, 54(1):83-91.
    112代晓娟.粘土防渗层微观结构变化对其防渗性能影响研究[D].吉林大学硕士学位论文,2007.
    113 Katti D R, Shanmugsaundaram V. Influence of swelling on the microstucture of expansive clays [J]. Canadian Geotechnical Journal, 2001, 38(1):175-192.
    114毛天尔,夏林.鄂北膨胀土的微组构特征试验研究[J].华中科技大学学报,2010,27(2):48-52
    115 Guyonnet D, Gaucher E, Gaboriau H,et al. Geosynetetic clay liner interaction with leachate:correlation between permeability, microstructure and surface chemistry. Journal of Geochnical and Geoenvironmental Engineering[J],ASCE,2005,131(6): 740-748.
    116 Lloret A, Villar M V, Sanchez M, et al. Mechanical behaviour of heavily compacted bentonite under high suction changes[J].Geotechnique,2003,53(1):27-40.
    117靖向党,于波,谢俊革,等.城市垃圾填埋场防渗浆材的实验研究[J].环境工程,2009,27(1): 70-73.
    118刘志彬,施斌,王宝军.改性膨胀土微观孔隙定量研究[J].岩土工程学报,2004,26 (4):526-530.
    119何俊.基于微观分析的填埋场GCL中运移规律的理论研究[D].博士学位论文,河海大学, 2006.
    120刘温霞,王松林,李建文.蒙脱石的结构形态及钠化方法与其微粒助留作用[J].中国造纸学报,2004, 19(1):97-103.
    121李志斌,徐超,黄亮.水化后GCL中膨润土的微观结构研究[C].第一届中国水利水电岩土力学与工程学术讨论会论文集,970-972.
    122 Kozaki T, Inada K, Sato S,et al. Diffiusion mechanism of chloride ions in sodium montmorillonete[J],Journal of Contaminant Hydrology,2001,47(2):159-170.
    123李培勇.非饱和土的理论探讨及膨润土加砂混合物的试验研究[D].大连理工大学博士学位论文,2007.
    124姚志华,陈正汉.膨胀土增湿和干燥过程中的细观结构变化研究[J].水利与建筑工程学报,2009,7 (3):1-4,26.
    125卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的CT试验研究[J].岩土力学,2002,23 (4):417-422.
    126刘月妙,陈璋如.内蒙古高庙子膨润土作为高放废物处置库回填材料的可行性[J].矿物学报,2001,21(3):541-543.
    127刘滔.土工合成材料黏土垫的性能及其测试方法研究[D].北京:北京工业大学硕士学位论文,2007.
    128杨扶银.粗粒土泥浆渗透特性及泥皮抗渗性研究[D].西安:西安理工大学硕士学位论文, 2007.
    129 B Min Woo Seo, Jun Boum P, Inn Joon P, et al. Modeling of Interface Shear Behavior between Geosynthetics [J].Geotechnical Engineering, 2003, 7(1):9-16.
    130徐超,李志斌.针刺GCL内部剪切强度的试验研究[J].同济大学学报(自然科学版),2010,38 (5):639-643.
    131孙训海.土工合成材料界面特性研究[D].天津:天津大学硕士学位论文,2005.
    132钟建政.丙纶在非织造布工业中的应用现状及前景[J].合成纤维工业,1999,22(6):24-26.
    133闫发荣.地下防水工程施工质量控制[J].建筑施工,2010,(11)157-158.
    134刘艳春.腈纶等离子体抗静电处理[D].上海:东华大学博士学位论文,2005.
    135李锐.城市生活垃圾卫生填埋场防渗材料的力学性能研究[D].上海:上海交通大学硕士学位论文,2008.
    136陈彤,黄琦.新型防水产品-膨润土防水毯[J],建材技术,2005.23-25.
    137沈承秀.新型环保防渗材料-钠基膨润土防水毯在城市生态水利工程中的应用[J].水利水电技术,2007.
    138 P. Hurst, R.K. Rowe. Average bonding peel strength of geosynthetic clay liners after short-term exposure to water and jet fuel[J].Geotextiles and Geomembranes,2006 (24):58–63.
    139李中林.土的工程性质[M].华南理工大学出版社,2005.
    140李倩.新型阳离子聚合物/膨润土复合吸附材料的制备、表征及其吸附性能研究[D].济南:山东大学博士学位论文,2008.
    141杨魁.蒙脱石吸水膨胀规律的分析及应用[J].四川建筑科学研究,2008,34(5):152-154.
    142温淑瑶.膨润土改性机理及其表面性质研究[D].中国科学院南京土壤研究所博士学位论文,2000.
    143王春雷,姜崇喜,谢强,等.析晶过程中盐渍土的微观结构变化[J].西南交通大学学报,2007, 42(1):66-69.
    144姜桂兰,张培萍.膨润土加工与应用[M].化学工业出版社,2005.
    145侯梅芳,夏钟文,高原雪,等.我国各地膨润土的热性质[J].岩矿测试,2003,22(4):263-268.
    146 J.M. Southen, R. Kerry Rowe. Evaluation of the water retention curve for geosynthetic clay liners[J].Geotextiles and Geomembranes,2007(25):2–9.
    147王锦荣,周汉文,吴继光,等.高岭土粒度分布对黏浓度的实验研究[J].费金属矿,2010,33 (4):5-8,33.
    148戴肖南.LDHs/kaolinite分散体系流变学研究[D].济南:山东大学博士学位论文,2005.
    149申俊峰,贺少辉,李胜荣,等.膨润土防水毯水化的膨胀应力[J].硅酸盐学报,2006,34 (7):887-890.
    150孔维安,郑水林,白春华,等.膨润土在水溶液中的膨胀性能研究[J].非金属矿,2010,33 (1):42-44.
    151周小军.填埋场土工防渗系统变形机理及数值模拟研究[J].武汉:武汉工业学院硕士学位论文,2009.
    152 Shan H Y, Lai Y J. Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners [J].Geotextiles and Geomembranes, 2002(20):19-38.
    153李志斌.土工织物膨润土垫防渗有效性研究及相关机理分析[D].同济大学博士学位论文,2007.
    154腾新荣.表面物理化学[M].化学工业出版社,2009.
    155周春生,史海滨,于健,等.GCL用于内蒙古河套灌区渠道防渗的实验研究[J].现代节水高效农业与生态灌区建设,3010.477-487.
    156侯梅芳,高原雪,夏钟文.我国各地膨润土的水理特性[J].生态环境,2003,12(2):166-169.
    157齐伟军,夏春.稳定剂水泥浆流变机理研究[J].混凝土,2005(9):6-10,17.
    158 Van Olphen H. An Introduction to Clay Colloid Chemistry [M].Wiley: New York,1977.
    159 Miano F , Rabaioli M R. Rheological Scaling of Montmorillonite Suspension the Effect of Electrolytes and Polyelectrolytes[J], Colloids and Surf,1994(84):229-237
    160孙德军,侯万国,韩书华,等.电解质和阳离子表面活性剂对MMH/粘土体系胶体性能的影响[J].高等学校化学学报,1998,19(2):252-256.
    161戴肖南.LDHs/kaolinite分散体系流变学研究[D].山东大学博士学位论文,2005.
    162陈泉水,刘媛.金溪膨润土的流变性研究[J].化工矿物与加工,2005(6):28-30.
    163戴肖南,侯万国,李淑萍,等. pH值对Mg-Al-MMH-高岭土分散体系触变性的影响[J].中国科学,2001(5):438-443.
    164谢静思,甘学锋.高岭土降粘试验研究[J].中国非金属矿工业导刊,2007(3):28-31.
    165王运新.洗涤对高岭土粘浓度的影响[J].非金属矿,2003,26(5):41-42.
    166周晶晶,金鹰,冯卫兵.电解质与粘性细粒泥沙絮凝的关系[J].武汉理工大学学报,2007,31 (6):1071-1074.
    167周春生,史海滨,于健.GCL用于内蒙古河套灌区渠道防渗的适用性研究[J].内蒙古农业大学学报,2010,31(2):251-259.
    168侯梅芳,马北雁,李芳柏,等.膨润土的交换性阳离子组成及其属性分析[J].华南地质与矿产,2003,1:60-64.
    169刘建国,聂永丰.填埋场粘土衬里破坏机理分析[J].城市环境与城市生态,2000,13(6):51-53
    170王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土,1996,18 (2):184-188.
    171程满金,步丰湖,王俊英,等.膨润土防水毯新材料在衬砌渠道中的应用研究[J].2010, 5:46-49.
    172齐吉琳,张建明,朱元林.冻融作用对土结构性影响的土力学意义[J].岩石力学与工程学报,2003,22增2:2690-2694.
    173何俊.膨润土水化膨胀行为简化计算[J].河海大学学报(自然科学版),2006,34(3):299-301.
    174邓友生,何平,周成林,等.含盐土渗透系数变化特征的试验研究[J].冰川冻土,2006,28 (5):772-775.
    175李红升,朱元林.冻土断裂力学及其应用[M].海洋出版社,2002.
    176宋春霞.冻融作用对土物理力学性质影响的试验研究[D].西安:西安理工大学硕士学位论文,2007.
    177程满金,步丰湖,王俊英,等.土壤固化剂新材料在衬砌渠道中的应用研究[J].节水灌溉,2010, (4):33-36.
    178刘学军,陆立国,洪卫国.宁夏引黄灌区渠道防渗衬砌技术研究[J].西北水资源与水工程,2003,14 (4):17-20.
    179徐超,李志斌,高彦斌.溶液特征对GCL膨胀和渗透特性的影响[J].同济大学学报,2009, 37 (1):36-40.
    180邱俊,张言贵,吕宪俊.膨润土浆体流变性的变化规律研究[J].有色矿冶,2006,22增: 158-160.
    181匡韶华,蒲晓林,罗兴树,等.超高密度有机盐钻井液流变性和滤失量控制技术[J].石油钻采工艺,2010,32(2):30-33.
    182王效宾,杨平,王海波,等.冻融作用对黏土力学性能影响的试验研究[J].岩土工程学报, 2009,31(11):1768-1772.
    183王芳,杨明昌,严丽雪,等.土工合成材料膨润土垫渗透性能的试验研究[C].第一届中国水利水电岩土力学与工程学术讨论会论文集,2006,973-974.
    184徐红,龚时红,赵树旗,等.GCL柔性壁渗透仪测试过程中相关问题的探讨[J].灌溉排水学报, 2007,26(1):37-40.
    185周春生,史海滨,于健,等.冻融作用对复合土工膨润土垫膨胀特性影响研究[J],农业工程学报(审稿中).
    186付伟.单轴压缩与冻融作用下粉质粘土电阻率特性试验研究[D].中国科学院研究生院博士学位论文,2009.
    187王成海,刘金刚,陈麒.高岭土分散液流变性的初步研究[J].中国造纸,2007,26(10):9-11.
    188蒙飞宇.铁矿球团用膨润土性效关系及作用机理研究[D].中南大学硕士学位论文,2010.
    189 Peter B Laxton, John C Berg. Relating clay yield stress to colloidal parameters[J]. Journal of Colloid and Interface Science,2006(296):749-755.
    190邓友生,薄毅彬,周成林.冻结过程对盐渍土结构变化的试验研究[J].冰川冻土,2008,30 (4):632-640.
    191邴慧,何平.冻融循环对含盐土物理力学性质影响的试验研究[J].岩土工程学报,2009,31 (12):1958-1962.
    192包卫星,杨晓华,谢永利.典型天然盐渍土多次冻融循环盐胀试验研究[J].岩土工程学报,2006,28(11):1991-1995.
    193周蓉.松散介质约束下土工织物的拉伸力学行为[D].上海市:东华大学博士学位论文,2007.
    194周蓉,刘逸新.土工合成材料拉伸性能模拟及模型分析[J].青岛大学学报,2004,19 (2):47-50.
    195高丽亚.垃圾填埋场沿底部衬垫界面失稳破坏及土工膜拉力研究[J].上海:同济大学博士学位论文,2007.
    196李俊伟,黄宏伟.土工格室HDPE片材拉伸应变率相关特性[J].建筑材料学报,2008,11 (1):47-51.
    197张敬,叶国良.土工织物耐久性及影响因素分析[J].中国港湾建设,2005(1):1-5.
    198史继诚.高分子材料的老化及防老化研究[J].合成材料老化与应用,2006,35(1):27-30.
    199沈长松,黎军峰,孙学智.复合土工膜自然老化特性及抗拉强度变化规律研究[J]. 2011,25 (6):45-48.
    200蒋文凯,王钊,姚焕玫.土工合成材料光老化试验的研究[J].路基工程,2006(2):37-40.
    201郑智能.土工合成材料的耐久性试验研究[D].重庆交通学院硕士学位论文,2003.
    202杨恋.双轴向经编织物拉伸试验[D].上海:东华大学硕士学位论文,2007.
    203严柳芳.双轴向经编增强织物风和工艺对符合材料力学性能影响的研究[D].上海:东华大学硕士学位论文,2006.
    204周大纲.土工合成材料光氧老化与防老化技术[J].产业用纺织品.1999(11):15-19.
    205杨旭东,邱文灿,丁辛,等.紫外线辐射强度对聚丙烯长丝光氧化的影响[J].纺织学报,2009,30(8):8-12.
    206陈志成,李海涛,王云宝.基于土工织物在抗冻耐久性和抗碱老化的研究[J].黑龙江水利科技,2006,34(1):33-34.
    207金春花.缝合复合材料的力学性能研究[D].南京:南京航空航天大学硕士学位论文,2006.
    208杨旭东.聚丙烯土工织物的使用寿命预测[D].上海市:东华大学博士学位论文.2005.
    209杨旭东,丁辛,薛育龙,等.自然环境下聚丙烯土工织物的老化行为[J].东华大学学报.2007,33 (1):57-61.
    210包伟国,薛育龙,杨旭东.航道用聚丙烯土工织物的老化性能研究[J].产业用纺织品.2004, 167:22-25.
    211周剑平.精通Origin 7.0[M].北京:北京航空航天大学出版社,2004.
    212代晓娟.黏土防渗层微观结构变化对其防渗性能影响研究[D].长春:吉林大学硕士学位论文.2007.
    213吁磊.复合土工防渗韧性垫材料研究[D].南昌:南昌大学硕士学位论文,2008.
    214徐永福.我国膨胀土的分形结构的研究[J].河海大学学报,1997,25(1):18-23.
    215何开胜.结构性粘土的微观变形机理和弹粘塑损伤模型研究[D].南京:南京水利科学研究院土工研究所博士学位论文,2001.
    216张季如,黄丽,祝杰,等.微观尺度上土壤孔隙及其分维数的SEM分析[J].土壤学报,2008,45 (2):207-214.
    217张红霞,陈雪善,刘芙蓉,等.蜂窝状微孔结构纤维表面形态观察及其统计分析[J].纺织学报,2009,30(2):13-17,23.
    218唐朝生,施斌,王宝军.基于SEM土体微观结构研究中的影响因素分析[J].岩土工程学报,2008, 30(4):560-565.
    219 Gimenez D, Allmaras R R, Nater E A,et al. Fractal dimendions for volume and surface of interaggregate pores-scale effects [J].Geoderma,1997,77(1):19-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700