负载肿瘤抗原的树突状细胞疫苗联合CpG-ODN对膀胱肿瘤免疫治疗效应的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膀胱肿瘤是国内泌尿系最常见肿瘤,其最主要的临床特点是发病率高、复发率高。膀胱肿瘤的发生和复发主要与机体免疫功能低下、肿瘤细胞逃逸机体的免疫监视有关,如何提高膀胱肿瘤患者的免疫功能成为治疗和预防膀胱肿瘤复发的关键。
     树突状细胞(DC)是目前发现的体内功能最强,也是唯一能激活初始型T淋巴细胞的抗原递呈细胞(APC)。近年来随着人们了解的深入,基于DC的肿瘤免疫治疗方法越来越受关注。负载肿瘤抗原的DC具有疫苗的功能,故称之为树突状细胞疫苗。由于DC疫苗有较高的抗原递呈效率,正成为新一代疫苗的代表。围绕DC开展的以DC为基础的肿瘤免疫治疗正成为目前肿瘤治疗的热点。
     自从Tokunaga等发现从卡介苗(BCG)中提取的DNA片段具有抗肿瘤活性后,人们对细菌DNA的作用进行了深入研究。研究发现,细菌DNA具有强大的免疫刺激活性,其基础是以未甲基化胞嘧啶鸟嘌呤(CpG)二核苷酸为核心的六碱基序列。人工合成的含CpG序列的寡脱氧核糖核苷酸(CpG-ODN)具有与细菌DNA相同的免疫活性,与DC表面TLR-9受体特异性结合,激活DC,上调共刺激分子的表达、增强DC向T细胞递呈抗原的能力,分泌Th1型细胞因子及趋化因子,由此产生第二效应,活化NK细胞及单核细胞,发挥抗肿瘤能力。CpG-ODN使用安全,未见有明显副作用,因此CpG-ODN作为一种新的免疫佐剂有望在临床中得到应用。
     目前CpG-ODN联合抗体、细胞因子治疗肿瘤的研究已逐步展开,但联合DC疫苗的研究国内外较少,尤其是在膀胱肿瘤的研究未见报道。本研究首先探讨了膀胱移行细胞癌(BTCC)组织中浸润性DC(TIDC)的功能状态在膀胱癌免疫逃逸中的作用,然后观察了CpG-ODN诱导小鼠骨髓来源的DC成熟的作用,并制备了负载小鼠BTT739肿瘤细胞抗原的DC疫苗,研究了DC疫苗联合CpG-ODN在体内外对膀胱肿瘤细胞的免疫学效应。实验分三部分进行,主要研究内容及结果如下:
     第一部分树突状细胞在膀胱癌中的浸润及其意义
     目的探讨DC在膀胱癌中的浸润及其在膀胱癌免疫逃逸中的作用。
     方法采用免疫组织化学SP法及流式细胞仪检测36例膀胱移行细胞癌(BTCC)
Bladder tumor is the most common tumor in urinary system of domestic people, which is characterized as high incidence rate and high recurrence rate in clinic. The devolpment and recurrence of bladder tumor is related to the low immunological function of host. How to raise the immunological function of patients with bladder cancer is the key to treat and prevent recurrence of bladder tumor.
     Dendritic cells are believed to have the most powerful antigen presenting capacity and the native T cells can be only primed by DC. With the intensive understanding to the biological behaviors of DC, people pay more and more attention to the role of DC in cancer immune therapy. Dendritic cell-based vaccine manifests a good clinical applications as a representative of new vaccines
     Recent studies have shown that immunostimulatory activity of Bacillus Calmette-Guerin resides in its DNA fraction and that unmethylated CpG motifs in bacterial DNA are responsible for this activity. Synthetic oligodeoxynucleotides(ODNs) containing CpG motifs have the same activity as bacterial DNA. CpG-ODNs are recognized by specific Toll-like receptor 9 on the surface of DCs and induce an activataion phenotype of DCs characterized by the expression of costimulatory molecules, enhanced antigen presentation to T cells and secretion of T helper 1 (Th1)-promoting chemokins and cytokines, which trigger a wide range of secondary effects, such as natural killer(NK) cell and monocyte activation, which have antitumor activity. As a new immune adjuvant, CpG-ODN may be used in clinic because of high effectiveness and safety
     For immunotherapy of tumors, CpG-ODN have been successfully used in combination with tumor-specific antibodies and cytokines as a vaccine adjuvant, but is seldomly combined with DC-based vaccine, especially in baldder tumor. In the present study, we investigated firstly the functional status of tumor infiltrating dendritic cells (TIDC) in bladder cancer. Secondly, the effect of CpG-ODN on activating DCs was evaluated. After
引文
1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med, 1973, 137(5):1142-1162.
    2. Gabrilovich DI, Ciemik IF, Carbone DP, et al. Dendritic cells in antitumor immune response. I. Defective antigen presentation in tumor bearing hosts. Cell Immunol, 1996,66(9):2012-2016
    3. Maehara Y, Kabashima A, et al. Recurrences and relation to tumor growth potential and local immune response in node-negative advance gastric cancer. Oncology, 1999, 56:322-327.
    4. Ishigami S, Aikou T, et al. Prognostic value of HLA-Dr expression and dendritic cell infiltration in gastic cancer. Oncology, 1998, 55(1):65-69.
    5. Mitsuhiko I, Hisashi S, et al. Prognostic value of tumor-infiltrating dendritic cells expression CD83 in human breast carcinoma. Int J Cancer, 2003, 104(1):92-97.
    6. Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol, 1995, 154(8):3821-3835.
    7. Aso T, Ogawa Y, Naoe M, etal. Immunohistochemical analysis of CD83, CD8 and CD4 positive cells in renal cell carcinoma. Nippon Hinyokika Gakkai Zasshi, 2004,95(4):645- 650.
    8. Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol, 2003, 15(2)138-147
    9. Chen S, Akbar SM, Tanimoto K, et al. Absence of CD83-positive mature and activated dendritic cells at cancer nodules from patients with hepatocellular carcinoma: relevance to hepatocarcinogenesis.Cancer lett, 2000, 148(1):49-57
    10. Ishida T, Oyama T, Carbone DP, et al. Defective function of Langerhans cell in tumor-bearing animals is the result of defectective maturation from hemopoietic progenitors. J Immunol, 1998,161(9) :4842-4851.
    11. Ladanyi A. Function and prognostic significance of immune cells infiltrating human tumors. Magy Onkol, 2004, 48(1):49-56.
    12. Hoffmann TK, Meidenbauer N, Muller-Berghau J, et al. Proinflammatory cytokines and CD49 ligand enhance cross presentation and cross priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother, 2001,24(2):162-171.
    13. Mccoll SR. Chemokines and dendritic cells: Acrucialalliance. Immunol Cell Biol, 2002, 80(5):489-496.
    14. Troy AJ, Davidson PJT, Atkinson CH, et al. CD1a dendritic cells predominate in transitional cell carcinoma of bladder and kidney but are minimally activatated. J Urol, 1999,161(6):1962-1967.
    15. Vicari AP,Treilleux I,Lebecque S. Regulation of the trafficking of tumour infiltrating dendritic cells by chemokines. Semin Cancer Biol, 2004,14(3):161-169.
    16. Banchereau J, Stainman RM. Dendritic cells and the control of immunity. Nature, 1998,392(1):245-252.
    17. Mahnke K, Schmitt E, Bonifaz L, etal. Immature, but not inactive: the tolerogenic function of immature dendritic cells. Immunol cell Biol, 2002, 80(5):477-483.
    18. O’Brien T, Cranston D, Fuggle S,et al. Different angiogenic pathways characterized superficial and invasive bladder cancer. Cancer Res, 1997;55:510
    19. Gabrilovich DI, Chen HL, Girgis KR, etal. Production of vascular endothelial growth factor by human tumors inhibits the func tional maturation of dendritic cells. Nat Med, 1996,2(10):1096-1103.
    20. Gabrilovich D, Ishida T, Oyama T, etal. Vascular endouthelial growth factor inhibits the development of dendridic cells and dra matically affects the differentiation of multiple hematopoietic line ages in vivo. Blood, 1998, 92(11):4150-4166.
    21. Gabrilovich DI, Ishida T, et al. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell functiom.Clin Cancer Res, 1999,5:2963-2970.
    22. Takahashi A, Kono K, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells infgastric cancer. Oncology, 2002,62(1):121-127.
    23. Dorazio TJ, Niederkom JY, et al. A novel role for TGF-β and IL-10 in the induction of immune privilege. J Immumol, 1998,160(4):2089-2098.
    24. Eder IE, Stenzl A, Hobisch A, et al. Expression of transforming growth factors beta-1, beta-2 and beta-3 in human bladder carcinomas. Br J Cancer, 1997;75(12):1753-1760
    25. Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease. Physiol Rev 2002; 82(1): 97-130
    26. Actins H, Davis BR, Kirby JA, et al. Polarisation of a T-helper cell immune response by activation of dendritic cells with CpG-containing oligonucleotides: a potentiao therapeutic regime: for bladder cancer immunotherapy. Br J Cancer, 2003; 89(12):2312-2319.
    27. Inaba KM, Inaba N, Romani H, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992, 176:1693-1702.
    28. Brunner C, Seiderer J, Schlamp A, et al. Enhanced dendritic cell maturation by TNF-α or cytidine-phosphate-guanosine DNA T cellactivation in vitro and therapeutic anti-tumor immune responses in vivo. J Immunol, 2000,165(11):6278-6286.
    29. 唐华,银平章,孔令非等。冻融抗原冲击致敏的树突状细胞对结肠癌小鼠的治疗作用。中国肿瘤生物治疗杂志,2000;7(3):199-202.
    30. 高维实,闵军,褚忠华等。肝癌细胞冻融抗原负载树突状细胞瘤苗的制备与活化。中国病理生理杂志,2003;19(9):1279-1282.
    31. Silke G, Michael S, Herbert R. Dendritic cells pulsed with tumor-derived lysate augment T cell mediated tumor cell lysis. Otolaryngology Head and Neck Surgery,2004:131(2):176-177.
    32. Tokunaga T , Yamamoto H , ShimadaS , et al. Antitumor activity of deoxyribonucleric acid fraction from Mycobacterium bovis BCG I. Isolation, physicochemical characterization and antitumor activity. J Natl Cancer Inst, 1984, 72(4): 955-962.
    33. Krieg AM, Love-Homan L, Yi AK, et al. CpG DNA induces sustanined IL-12 expression in vivo and resistance to listeria monobytogenes challenge. J Immunol, 1998,161(5):2428-2434 .
    34. Chace JH, Hooker NA, Mildenstein KL, et al. Bacterial DNA induced NK cell INF-γ production is dependent on macrophage secretion of IL-12. Clin ImmunnolImmunopathol, 1997,84(2):185.
    35. Hartmann G, Risini DW, Ballas ZK, etal. Delineation of a CpG phophorothioate Oligosexoynucleotide for Activating primate Immune Response In vitro and In vivo. J Immunol, 2000,164(8):1617
    36. Yi AK, Chang M, Peckham DW, et al. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immumol, 1998,160(12);5898-5906.
    37. Inaba KM, Inaba N, Romani H, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med, 1992, 176:1693-1702.
    38. Gansuvd B, Hagihara M, Higuchi A, et al. Umbilical cord blood dendritic cells are a rich source of soluble HLA-DR: synergistic effect of exosomes and dendritic cells on autologous or allogeneic T-Cell proliferation. Hum Immunol 2003; 64(4): 427-439.
    39. Jang MH, Kweon MN, Hiroi T, et al. Induction of cytotoxic T lymphocyte responses by cholera toxin-treated bone marrow-derived dendritic cells. Vaccine 2003; 21(15): 1613-1619.
    40. Radcliff FJ, Caruso DA, Koina C, et al. Mobilization of dendritic cells in cancer patients treated with granulocyte colony-stimulating factor and chemotherapy. Br J Haematol 2002; 119(1): 204-211.
    41. 朱学军, 曹雪涛, 于益芝. 人外周血树突状细胞的体外扩增及鉴定. 中国肿瘤生物治疗杂志, 1997; 4(4): 302-306.
    42. Zhen X, Wong SBJ, Buck CB, et al. Direct priming and cross-priming contribute differentially to the induction of CD8+ CTL following exposure to vaccinia virus via different routes. J Immunol. 2002; 169(8): 4222 - 4229.
    43. Arina A, Tirapu I, Alfaro C, et al. Clinical implications of antigen transfer mechanisms from malignant to dendritic cells. Exploiting cross-priming. Exp Hematol. 2002; 30(12): 1355-1364.
    44. Smaroula D, Julius MC, Robert L. Function of CD80 and CD86 on monocyte and stem cell derived dendritic cells. Experimental & Molecular Pathology, 2003;75:217-227.
    45. 范国昌,王福生。树突状细胞疫苗的制备及其临床应用研究 国外医学肿瘤学分册2000;27(2):97-100.
    46. Mahyar NS, Jacques B, Joseph F, et al. Dendritic cell based tumor vaccines. Immunology Letters, 2000;74(1):5-10. 65.
    47. Zhang Y, Mukaida N, Wang J, et al. Induction of dendritic cell differentiation by granulocyte macrophage colong stimulating factor, stem cell factor, and tumor necrosis factor a in vitro from linesge phenotypes negative c- kit+ murine hematopoietic progentitor cells. Blood, 1997,90(12):4842-4853.
    48. Son YI, Egawa S, Tatsumi T, et al. A novle bulk culture method for generating mature dendritic cells from mouse bone marrow cells. J Immunol Methods, 2002,262(12):145-157.
    49. Lutz MB, Kukutsch N, Ogilvie A, et al. An advanced culture method for generating large quantitier of highly pure dendritic cells from mouse bone marrow. J Immunol Methods , 1999,223(1):77-92.
    50. Weiner GJ, Liu HM, Wooldrige JE, et al. Immunostimulatory oligodeoxynucletotides containing the CpG motif are effective as adjuvants in tumor antigen immunization. Proc Natl Acad Sci USA. 1997, 94(20):10833-10837.
    51. Hoshino K, Kaisho T, Iwabe T, et al. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol, 2002;14(10):1225-1231.
    52. Brightbill HD, Modlin RL. Toll-like receptors: molecular mechanisms of the mammalian immune response. Immunology, 2000;101(1):1-10.
    53. Asada H, Kishida, Tsunao et al. Significant antitumor effects obtains by autologous tumor cell vaccine engineered to secrete Interleukin(IL)-12 and IL-8 by means of the EBV/lipoplex. Mol Ther, 2001;5(5Pt 1):609-616.
    54. Kalady MF, Onaitis MW, Emani S, et al. Sequential delivery of maturation stimuli increases human dendritic cell IL-2 production and enhances tumor antigen-specific immunogencity. J Surg Res, 2004;116(1):24-31.
    55. Kalinski P, Hilkens CM, Snijders A, et al. IL-12-deficient dendritic cells, generated in the presence of prostaglandin E2, promote type 2 cytokine production in maturing human na?ve T helper cells. J Immunol, 1997;159(1):28-35.
    56. Trinchieri G. Immunobiology of Interleukin-12. Immunol Res, 1998;17(1-2):269-278.
    57. Corini S, Chiarantini L, Dominici S, et al. Erythrocytes deliver Tat to interferon-gamma-treated human dendritic cells for efficient initiation of specific type 1 immune response in vitro. J Leukoc Biol, 2002;71(4):652-658.
    58. Vollmer J, Weeratna R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol, 2004,34(1):251-262.
    59. Kawarada Y, Ganss R, Garbi N, et al. NK- and CD8(+) T cell-mediated eradication of established tumors by peritumoral injection of CpG-containing oligodeoxynecleotides. J Immunol, 2001;167(9):5245-5253.
    60. Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cell in cancer theraphy. Lancet Oncol,2001,2:343-353.
    61. Gabrilovich DI. Dendritic cell vaccines for cancer treatment. Curr Opin Mol Ther,2002;167:2408-2412.
    62. Uehori J, Matsumoto M, Tsuji S, et al. Stimultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guerin peptidoglycan. Infect Immun, 2003;71(8):4238-4249.
    63. Karlowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigen. J Exp Med, 2001;194(6):863-869.
    64. Cheadle EJ, Selby PJ, Jackson AM. Mycobacterium bovis bacillus Calmette-Guerin-infected dendritic cells potently antivate autologous T cells via B7 and IL-12-dependent mechanism. Immunology, 2003;108(1)79-88.
    65. Patard JJ, Muscatelli-Groux B, Saint F, et al. Evaluation of local immune response after intravesical bacilli Calmette-Guerin treatments for superficial bladder cancer. Br J Urol, 1996;78(5):709-714.
    66. Saint F, Patard JJ, Muscatelli-Groux B, et al. Evaluation of cellular tumor rejection mechanisms in the peritumoral bladder wall after bacilli Calmette-Guerin treatment. BJU Int, 2001;88:602-610.
    67. Esuvaranathan K, Alexandroff AB, Mcinture M, et al. Interleukin-6 production bybladder tumors is upregulated by BCG in immunotherapy. J Urol, 1995; 154(2):572-575.
    68. de Reijke TM, de Boer EV, Kurth KH, et al. Urinary cytokines during during intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer: processing, stability and prognostic value. J Urol, 1996;155(2):477-482.
    69. Riemensberger J, Bohle A, Brandau S. IFN-gamma and IL-12 but not IL-10 are required for local tumour surveillance in a syngeneic model of orthotopic bladder cancer. Clin Exp Immunol, 2002(1);127: 20–26.
    70. Nadler R, Luo Y, Zhao W, et al. Interleukin 10 induced augmentation of delayed-type hypersensitivity (DTH) enhances Mycobacterium bovis bacillus Calmette–Guerin (BCG) mediated antitumour activity. Clin Exp Immunol 2003;131(2):206–216。
    71. 武文森,尹克铮,韩月明等。小鼠可移植性膀胱移行细胞癌(BTT739)的建立及实验研究。中国肿瘤临床,1996;23(10):751-756
    72. 武文森,尹克铮. BBN 诱发小鼠膀胱癌和可移植性膀胱癌株(BTT739)的建立及其特性研究。南京铁道医学院学报,1992;11(1):12-14. 106(84).
    73. Heckelsmiller K, Beck S, Rall K, et al. Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. Eur J Immunol, 2002,32:3235-3245.
    74. 杜宇琛,林苹,张洁,等. CpG-ODN 加强树突状细胞疫苗抗 Lewis 肺癌的研究.中华肿瘤杂志,2005;27(1):1-5.
    75. 108. Dallal R, Christakos P, Lee K, et al. Paucity of dendritic cells in pancreatic cancer. Surgery, 2002;131(2):135-138.
    76. Vabulas RM, Pircher H, Lipford GB, et al. CpG-DNA activates in vivo T cell epitope presenting dendretic cells to trigger protective antiviral cytotoxic T cell response. J Immunol, 2000, 164(5):2372-2378.
    77. Davila E, Celis E. Repeated administration of cytosinephosphorothiolated guanine-containing oligonucleotides together with peptide/protein immunization results in enhanced CTL responses with anti-tumor activity. J Immunol, 2000,165(1):539-547.
    78. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998,392(19):245-252.
    79. Janssen EM, Lemmens EE, Wolfe T, et al. CD4+ T cells are required foe secondary expansion and memory in CD8+ T lymphocytes. Nature, 2003, 421(20):852-856.
    80. Gao FG, Khammanivong V, liu WJ, et al. Anti-specific CD4+ T-cell help is required to activate a fully functional tumor killer cell. Cancer Res, 2002,62(22):6438-6441.
    81. Davila E, Velez MG, Heppelmann CJ, et al. Creating space: an antigen-undependent, CpG-induced peripheral expansion of na?ve and memory T lymphocytes in a full T-cell compartment. Blood, 2002, 100(7):2537-2545.
    82. Beloeil L, Tomkowiak M, Angelov G, et al. In vivo impact of CpG1826 oligodeoxynucleotide on CD8 T cell primary responses and survival. J Immunol, 2003,171(6):2995-3002.
    83. Lu J, Giuntoli RL, Omiya JR, et al. Interleukin 15 promotes antigen-independent in vitro expansion and long-term survival of antitumor cytotoxic T lymphocytes. Clin Cancer Res, 2002, 8(12):3877-3884.
    84. Mattei F, Schiavoni G, Belardelli F, et al. IL-15 is expressed by dendritic cells in response to type Ⅰ IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol, 2001, 167(3):1179-1187.
    85. Cho HJ, Hayashi T, Datta SK, et al. IFN-αβ promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunosimulatory DNA-based vaccines. J Immunol, 2002, 168(10):4907-4913
    1. Krieg AM,Yi AK, Matson S et al. CpG motifs in bacterial DNA trigger direct B cell activation. Nature, 1995,374(6):546-549
    2. Tokunaga T, Yamamoto H, ShimadaS, et al. Antitumor activity of deoxyribonucleric acid fraction from Mycobacterium bovis BCG I. Isolation, physicochemical characterization and antitumor activity. J Natl Cancer Inst, 1984,72(4):955-962.
    3. Yamamoto S, Yamamoto T, Kataoka T et al. Unique paliniromic sequences in synthetic oligodeoxynucleotides are required to induce INf and augment INF-mediated natural killer activity. J Immunol, 1992;148(12):4072- 4076
    4. Krieg AM, Love-Homan L, Yi AK, et al. CpG DNA induces sustanined IL-12 expression in vivo and resistance to listeria monobytogenes challenge. J Immunol, 1998,161(5):2428-2434
    5. Yi AK, Kliman DM, Martin TL. Rapid immune activation by CpG-ODN motifs in bacterial DNA. J Immunol, 1996,157(12):5394-5402
    6. Daniela V, Ken JI, Mayda G, etal. Human peripheral Blood Cells Differentially Recognize and Respond To two distinct CpG motifs. The Jonurnal of Immumology, 2001, 166(12):2372
    7. Verthelyi D,Ishii KJ, Gursel M, et al. Human peripheral blood cells differentially recognize and respond to two distinct CpG motifs. J Immunol, 2001,166(12):2372
    8. Krieg AM. From A to Z on CpG.. Trends Immunol, 2002,23(2):64-65
    9. Krieg AM, Wu T, Weeratna R, et al. Sequence motifs in adnoviral DNA block immune activation by stimulatory CpG motifs.Proc Natl Acad Sci USA, 1998,95(21):12631-12636
    10. Stunz L, Lenert P, Peckham D, et al. Inhibitory ologodeoxynucleotides specifically block effects of stimulatory CpG ologodeoxynucleotides in B cells. Eur J Immunol,2002,32(5):1212-1222
    11. Lenert P,StunzL, Yi AK, et al. CpG stimulation of primary mouse B cells is blocked by inhibitory oligodeoxynucleotides at a site proximal to NF-κB activation. Antisense Nucleic Acid Drug Dev, 2001,11:247
    12. Lenert P, Yi AK,Krieg AM, et al.Inhibitory oligoxynucleotides block the induction of AP-1 transcription factor by stimulatory CpG oligoxynucleotides in B cells. AntisenseNucleic Acid Drug Dev, 2003,13:143
    13. Behboudi S, Chao D, Klenerman P, et al. The effects of DNA containing CpG motif on dendritic cells. Immunol, 2000,99(3):361-366.
    14. Sparwasser T, Vabulas RM, Villmow B, et al. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytoxic T cell responses to soluble proteins. Eur J Immunol, 2000,30(12):3591-3597.
    15. Schattenberg D, Schott M, Reindl G, et al. Response of human monocyte-derived dendritic cells to immunostimulatory DNA. Eur J Immunol, 2000,30(10):2824-2831.
    16. Guzylack-Piriou L, Balmelli C, McCullough KC,et al. Type-A CpG oligonucleotides activate exclusively porcine natural interferon-producing cells to secrete interferon-alpha, tumor necrosis factor-alpha and interleukin-12. Immunology, 2004,112(1):28-37.
    17. Marshall JD, Fearon K, Abbate C, et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol, 2003,73(6):781-792.
    18. Vollmer J, Weeratna R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities. Eur J Immunol, , 2004,34(1):251-262.
    19. Hartmann G, Weiner GJ, Krieg AM, et al. CpG DNA: A potent signal for growth, activation, and maturation of human dendritic cells. Proc Natl Acad Sci, 1999,96(16):9305-9310.
    20. Datta SK, Redecke V, Prillman KR, et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol, 2003,170(8):4102-4110.
    21. Yi AK. CpG oligodzoxyribonucleotides rescue mature spleen B cells from spontaneous apoptosis and promote cell cyle entry. J Immunol, 1998;160(12):5898-5906.
    22. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activating in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol, 1996;157(5):1840-1845
    23. Iho s, Yamamoto T, Takahashi T, et al. Oligodeoxynucleotides containing palindrane sequences with interal 5’-CpG-3’ act directly on human natural killer and activated T cells; to induce IFN-γ production in vitro. J Immunol, 1999;163(7):3642-3652.
    24. Tascon RE, Ragno S, Lowrie DB, et al. Immunostimulatory bacterial DNA sequences activate dendritic cell and promote priming and differentiation of CD8+ T cells. Immunology, 2000;99(1):1-7
    25. Chu RS, Askew D, Noss EH, et al. CpG oligodeoxynucleotides down-regulate marcrophage class Ⅱ MHC antigen processing. J Immunol, 1999;163(3):1188-1194.
    26. Bauer M, Heeg K, Wagner H, et al. DNA activates human immune cells through a CpG sequence-dependent manner. Immunology, 1999;97(4)699-705.
    27. Hoshino K, Kaisho T, Iwabe T, et al. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol, 2002,14(10):1225-1231.
    28. Hemmi H, Takeuchi O, Kawai T, et al. A toll-like receptor that recognizes bacterial DNA. Nature, 2000,408(6813):740-745.
    29. Vollmer J, Weeratna R, Payette P, et al. Characterization of three CpG oligodeoxynucleotide classes with distinct immunostimulatory activities.Eur J Immunol, 2004,34(1):251-262.
    30. Burns K, Martinon F, Esslinger C, et al. MyD88, an adapter protein involved in interleukin-1 signaling. J Biol Chem, 1998,273(20):12203-12209.
    31. Hemmi H, Kaisho T, Takeda K, et al. The roles of Toll-like receptor9, MyD88, and DNA-dependent protein kinase catalytic subunit in the effects of two distinct CpG DNAs on dendritic cell subsets. J Immunol, 2003,170(6):3059-3064.
    32. Hacker H, Mischak H, Miethke T, et al. CpG-DNA-specific activation of antigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation. EMBO, 1998,17(21):6230-6240.
    33. Yi AK, Tuetken R, Redford T, et al. CpG motif om bacterial DNA activate leukocytes through the pH-dependent generation of reactive oxygen species. J Immunol, 1998,160(10):4755-4761.
    34. Underhill DM. Toll-like receptors: networking for success. Eur J Immunol, 2003,33(7):1767-1775.
    35. Kumaraguru U, Pack CD, Rouse BT. Toll-like receptor ligand links innate and adaptive immune responses by the production of heat-shock proteins. J Leukoc Biol, 2003,73(5):574-583.
    36. Yi AK, Krieg AM. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol, 1998,161(9):4493-4497.
    37. Chace JH, Hooker NA, Mildenstein KL, et al. Bacterial DNA induced NK cell INF-γ production is dependent on macrophage secretion of IL-12. Clin Immunnol Immunopathol, 1997,84(2):185
    38. Hartmann G, Risini DW, Ballas ZK, et al. Delineation of a CpG phophorothioate Oligosexoynucleotide for Activating primate Immune Response In vitro and In vivo. J Immunol, 2000,164(8):1617
    39. Whitmore MM, DeVeer MJ, Edling A, et al. Synergistic activation of innate immunity by double-stranded RNA and CpG DNA promotes enhanced antitumor activity. Cancer Res, 2004;64(16):5850-5860.
    40. Heckelsmiller K, Rall K, Beck S, et al. Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol, 2002;169:3892-3899.
    41. Milas L, Mason KA, Ariga H, et al. CpG oligodeoxynucleotide enhances tumor response to radiation. Cancer Res, 2004;64:5074-5077
    42. Ninalga C, Loskog A, Klevenfeldt M, et al. CpG oligonucleotide therapy cures subcutaneous and orthotopic tumors and evoke protective immunity in murine bladder cancer. J Immunother. 2005;28(1):20-27.
    43. Kim TG, Kim CH, Won EH, et al. CpG-ODN-stimulated dendritic cells act as a potent adjuvant for E7 protein delivery to induce antigen-specific antitumour immunity in a HPV 16 E7-associated animal tumour model. Immunology. 2004;112(1):117-125.
    44. Hiraoka K,Yamamoto S, Otsurs S, et al. Enhanced tumor-specific long-term immunity of hemaggluttinating virus of Japan-mediated dendritic cell-tumor fused cell vaccination by coadministration with CpG-ODN oligodeoxynucleotides. J Immunol, 2004;173:4297-4307
    45. Heckelsmiller K, Beck S, Rall K, et al. Combined dendritic cell- and CpG oligonucleotide-based immune therapy cures large murine tumors that resist chemotherapy. Eur J Immunol, 2002,32:3235-3245
    46. Chagnon F, Tanguay S, Ozdal OL, et al. Potentiation of a dendritic cell vaccine for murine renal cell carcinoma by CpG oligonucleotides. Clin Cancer Res, 2005;11(3):1302-1311
    47. Pratesi G, Petrangolini G, Tortoreto M, et al. Therapeutic synergism of gemcitabine and CpG-oligodeoxynucleotides in an orthotopic human pancreatic carcinoma xenograft.Cancer Res. 2005;65(14):6388-6393.
    48. Meng Y, Carpentier AF, Chen L, et al. Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer. 2005 Oct 10;116(6):992-7.
    49. Lefeber DJ, Benaissa-Trouw B. Th1 directing adjuvants increase the immunogenicity of oligosaccharide-protein conjugate vaccines related to Streptococcus pneumoniae type 3. Infect Immun, 2003,71(12):6915-6920.
    50. Peng HJ, Tsai LC. Comparison of different adjuvants of protein and DNA vaccination for the prophulaxis of IgE antibody formation.Vaccine, 2004,22(5/6):755-761.
    51. Jiang W, Baker HJ, Smith BF. Mucosal immunization with Helicobacter, CpG DNA, and Cholera toxin is protective. Infect Immun, 2003,71(1):40-46.
    52. Wefer J, Harris RA, Lobell A. Protective DNA vaccination against experimental autoimmune encephalomyelitis is associated with induction of IFN beta. J Neuroimmunol, 2004,149(1/2):66-76.
    53. Sato Y, Roman M, Tighe H, et al. Immunostimulatory DNA sequences necessary for effective intradermal gene immunization. Science, 1996,273(5273):352-354.
    54. McCluskie MJ, Weeratna RD, Krieg AM, et al. CpG DNA is an effective oral adjuvant to protein antigens in mice. Vaccine, 2000, 19(7-8):950-957
    55. Britigan BE, Lewis TS, Waldschmidt M, et al. lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. J Immunol, 2001,167(5):2921-2928
    56. Arthur MK, Ae-kyung Y, Gunther H. Mechanisms and therapeutic applications of immune stimulatory CpG DNA Pharmacology and Therapeutica,1999,84(1):113
    1. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice.I. Morphology, quantition, tissue distribution. J Exp Med, 1973;137(5):1142 1162.
    2. Schuler G, Steinman RM, Strome SE, et al. Dendritic cells as adjuvants for immune-mediated resistance to tumor. J Exp med, 1997;186(8):1183-1187.
    3. Levin D, Constant S, Pasqualini T, et al.Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol,1993;151:6742
    4. Cella M, Sallusto F, Lanzavecchia A. Origin and antigen fuction of dendritic cells. Curr Opin Immunol, 1997, 9:10-16.[3]Nourishirazi M, Banchereay J, Fay J, et al. Dendritic cell based tumor vaccines. Immunol Lett, 2000,74:5-10.
    5. Hapuis F, Rosenzwajg M, Yagello M, et al. Differentiation of human dendritic cell from monocytes in vitro. Eur J Immunol, 1997,27(2):431-436.
    6. 曹俊霞,段继香,张绍祖。胸腺树突状细胞。国外医学免疫学分册,1999;224(4):200-202
    7. Richards J, Le Naour F, Hanash S, et al. Integrated genomic and proteomic analysis of fianaling pathways in dendritic cell differentiation and maturation. Ann NY Acad Sci, 2002;975:91-100
    8. Bourguignon LYZ, Gunja-smith N, Zhu L, et al. CD44v (3,8-10) is involved in cytoskeleton mediated tumor cell migration and matrix metalloproteinase(MMP-9) association in metastatic breast cancer cells. J Cell Phys, 1998,176:206-215.
    9. Yu Q, Stamenkovic I, Wilcox R, et al. Cell surface localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes De V, 2000,14:163-171.
    10. Rouard H, Leon A, Klonjkowski B et al. Adenoviral transduction of human ‘clinical grade’ immuature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity
    11. Hoffmann TK, Meidenbauer N, Muller-Berghau J, et al. Proinflammatory cytokines and CD49 ligand enhance cross presentation and cross priming capability of human dendritic cells internalizing apoptotic cancer cells. J Immunother, 2001,24(2):162-171.
    12. Brendon C, Susanne H. CD1a in human cancers: a new role for an old molecule. Trends in Immunology, 2004;25(5):242-248
    13. Hill DM, Kasliwal T, Schwarz E, et al. A dominant negative mutant beta 2-microglobulin blocks the extracellular folding of a major histocompatibility complex classⅠheavy chain. J Biol Chem, 2003;278(8)5630-5638
    14. Walker MR, Mannie MD. Acquistion of functional MHC classⅡ/petide complexes by T cells during thymic development and CNS-directed pathogenesis. Cell Immunol, 2002;218(1-2)13-25
    15. MasanoriA, Fazle A, Bunzo M, et al. Defective antigen-presenting capacity of murine dendritic cells during starvation. Nutrition, 2002;19(3):265-269
    16. Degen E. Efficient dissociation of the p88 chaperone from major his tocompatibility complex class I molecules requires both B2-Microglobulin and peptide. J Exp Med,1992,175(10):1653
    17. Jacques JN. Cell biology of antigen prosentationin. Curr Opin Immunol, 1993;5(1):27.
    18. Anderson NS, Milier J. Invariant chain can function as chaper one protein for class major histo compatibility complex molecules. Prol Natl Acad Sic USA, 1998;89(20):2282.
    19. Okada H, Tahara H, Shurin MR et al. Bone marrow-derived den dritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranialn eoplasms. Int J Cancer, 2000,78(2):196-201
    20. Gansuvd B, Hagihara M, Higuchi A, et al. Umbilical cord blood dendritic cells are a rich source of soluble HLA-DR: synergistic effect of exosomes and dendritic cells on autologous or allogeneic T-Cell proliferation. Hum Immunol 2003; 64(4): 427-439.
    21. Jang MH, Kweon MN, Hiroi T, et al. Induction of cytotoxic T lymphocyte responses by cholera toxin-treated bone marrow-derived dendritic cells. Vaccine 2003; 21(15): 1613-1619
    22. Radcliff FJ, Caruso DA, Koina C, et al. Mobilization of dendritic cells in cancer patients treated with granulocyte colony-stimulating factor and chemotherapy. Br J Haematol 2002; 119(1): 204-211
    23. 朱学军, 曹雪涛, 于益芝. 人外周血树突状细胞的体外扩增及鉴定. 中国肿瘤生物治疗杂志, 1997; 4(4): 302-306
    24. Karsho T, Akira S. Dendritic cell function in Toll-like receptor and Myd88-knockout mice. Trends Immunol, 2001;22(1):78-83.
    25. Uehori J, Matsumoto M, Tsuji S, et al. Stimultaneous blocking of human Toll-like receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette-Guerin peptidoglycan. Infect Immun, 2003;71(8):4238-4249 .
    26. Kadowaki N, Ho S, Antonenko S, et al. Subsets of human dendritic cell precursors express different toll-like receptors and repond to different microbial antigen. J Exp Med, 2001;194(6):863-869.
    27. Cheadle EJ, Selby PJ, Jackson AM, Mycobacterium bovis bacillus Calmette-Guerin-infected dendritic cells potently activate autologous T cells via a B7 and interleukin-12-dependent mechanism. Immunology, 2003;108(1)79-88
    28. Jansen JH, Wientjens GJ, Fibbe WE, et al. Inhibition of human macrophage colony formation by interlerkin 4. J Exp Med, 1998;170(2):577-582
    29. Kalinski P, Smits HH, Schuitemaker JH, et al. IL-4 is mediator of IL-12 P70 induction by human Th2 cells: reversal of polarized Th2 phenotype by dendritic cells. J Immunol, 2000;165(4):1977-1881
    30. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells in maintained by granulocyte/macrophage colony stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med, 1994;179(4):1109-1118
    31. Caux C, Vanbervliet B, Massacrier C et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to GM-CSF+TNF alpha. J Exp Med, 1996;184(2):695-706
    32. Inaba K, Inaba M, Romani N, et al. Generation of large number of dendritic cell from mouse bone marrow cultures supplemented with granulocyte/macrophage colony stimulating factor. J Exp Med, 1992,176(6):1693-1702.
    33. Bernhard H, Disis ML, Heimfeld S, et al. Generation of immunostimulatory dendritic cell from human CD+34 hematopoitic progenitor cells of the bone marrow and peripheral blood. Cancer Res, 1995,55(5):1099-1104.
    34. Romani N, Gruner S, Brang D, et al. Proliferation dendritic cell progenitors in humanblood. J Exp Med, 1994,180(1):83-93.
    35. Dadabayev AR, Sandel MH, Menon AG, etal. Dendritic cells in colorectal cancer correlate with other tumor infiltrating immune cells[J]. Cancer Immunol Immunother, 2004,53(11):978-986.
    36. Lespagnard L, Gancberg D, Rouas G, etal. Tumor infiltrating dendritic cells in adenocarcinomas of the breast: a study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. Int J Cancer,1999,84(3):309-314.
    37. Coventry BJ, Morton J. CD1a positive infiltrating dendritic cell density and 5 year survival from human breast cancer[J]. BR J Cancer, 2003,89(3):533-538.
    38. Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily[J]. J Immunol,1995,154(8):3821-3835.
    39. Mccoll SR. Chemokines and dendritic cells: A crucial alliance[J]. Immunol Cell Biol, 2002,80(5):489-496.
    40. Mclellan AD, Heiser A, Hart DN. Induction of dendritic cell costimulator molecule expression is suppressed by T cells in the absence of antigen specific signalling: role of cluster formation, CD40 and HLA class II for dendritic cell activation[J]. Immunol,1999;98(2):171-180.
    41. Ridge JP. A conditional dendritci cell can be a temporal bridge between a CD4+-T-helper and a T-killer cell. Nature, 1998;393:474-478
    42. Kono K, Takasha A, Sugai H, et al. Dendritic cells pulsed with HER-2/neu derived peptides can induce specific cell responses in patient with gastric cancer, Clin Cancer Res, 2002,8(11):3394-3400.
    43. Akiyama K, Ebihara S, Yada A,et al. Targeting apoptotic tumor cells to FcγR provide sefficient and versatile vaccination against tumors by dendritic cells. J Immunol, 2003,170.1641-1648.
    44. Guo J, Wang B, Zhang M, et al. Macrophage derived chemokine gene transfer results in tumor regression in murine lung carcinoma model through efficient induction of antitumor immunity. Gene Ther, 2002,9(12):793-803.
    45. Nair SK, Morse M, Boczkowski D, et al. Induction of tumor specific cytotoxic T lymphocytes in cacer patients by antologous tumor RNA transfected dendritic cells. Ann Surg, 2002,235(4):540-549.
    46. Song JA. Tumor immunology: the glass is half full. Immunity, 1998,9(5):757-763.
    47. Caux C, Massacrier C, Dubois B, et al. Respective involvement of TGF-β and IL-4 in the development of Langerhans cells and non-Langerhans dendritic cells from CD34+ progenitors. J Leukoc Biol, 1999,66(5):781-791.
    48. Heiser A, Coleman D, Dannul J, et al. Autologous dendritic cells transfected with prostate specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest, 2002,109(3):409-417.
    49. Zhou Y, Bosch ML, Salgaller ML. Current methods for loading dendritic cells with tumor antigen for the induction of antitumor immunity. J Immunol, 2002,25(4):289-303.
    50. Chatteraoon MA, Kim JJ, Yang JS, et al. Targeted antigen delivery to antigen presenting cells including dendritic cells by engineerd Fas mediated apoptosis. Nat Biotechnol, 2000,18(9).974-979.
    51. Merad M, Sugie T, Engleman EQ, et al. In vivo manipulation of dendritc cells to induce therapeutic immunity. Blood, 2002,99(5):1676-1682.
    52. Miller PW, Sharma S, Stolina M, et al. Intratumoral administration of adenoviral interleukin 7 gene-modified dendritic cells augments specific antitumor immunity and achieves tumor eradication. Hum Gene Ther, 2000;11(1)53-65.
    53. Cao X, Zhang W, He L, et al. Lymphotactin gene-modified bone marrow dendritic cells act as more potent adjuvants for peptide delivery to induce specific antitumor immunity. J Immunol, 1998;161:6238-6244
    54. Rousseau RF, Hirschmann JC, Takahashi S, et al. Cancer vaccines. Hematol Oncol Clin North Am, 2001,15(4):741-743.
    55. Hsu FJ, Benike C, Fagnoni F et al.Vaccination of patients with B cell lymphoma using autologous antigen pulsed dendritic cells. Nat Med, 1996,2(1):52-58.
    56. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate- pulsed dendritic cells. Nat Med, 1998,4(3):328-332.
    57. Marchand M, Vanbaren N, Weynants P, et al. Tumor regressions observed in patients with matestatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1. Int J Cancer, 1999,80:219-230.
    58. Kugler A, Stuhler G, Walden P, et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids.Nat Med,2000,6(3):332-336.
    59. Holtl L, Zelle-Rieser C, Gander H, et al. Immunotherapy of metastatic renal cell caricinoma with tumor lysate-pulsed autologous dendritic cells. Clin Cancer Res, 2002,8(11):3369 3376.
    60. Fong L, Brokckstedt D, Benike C, et al. Dendritic cell based xenoantigen vaccination for prostate cancer immunotherapy. J Immunol, 2001,167(12):7150-7156.
    61. Strome SE, Voss S, Wilcox R, et al. Strategies for antigen loading of dendritic cells to enhance the antitumor immune response. Cancer Res, 2002,62(6):1884-1889.
    62. Morse MA,Coleman RE, Akabani, et al. Migration of human dendritic cells after injection in patients with metaststic malignancies. Cancer Res, 1999,59(1):56-58.
    63. Lambert LA, Gibson GR, Maloney M, et al. Intranodal immunization with tumor lysate pulsed dendritic cells enhances ptotective antitumor immunity. Cancer Res, 2001,61(2):641-646.
    64. Triozzi PL, Khurram R, Aldrich WA, et al. Intratumoral injection of dendritic cells derived in vitro in patients with metastatic cancer. Cancer, 2000;89(12)2646-2654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700