新型双侧经寰枢关节螺钉及寰椎椎板钩内固定系统的设计及生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     上颈椎是由寰枕、寰枢关节组成的复合体,是连接头颅和躯干的重要结构,其解剖结构与下位颈椎差异明显:寰枕关节与寰枢关节之间没有椎间盘,通过滑膜关节相连,靠强大的韧带结构维持稳定性;黄韧带在上颈椎节段移行为寰枢后膜和寰枕后膜;寰枢椎成骨过程比下位颈椎复杂。独特的解剖结构决定了上颈椎复杂的生理功能:寰枕关节是球窝关节,由枕骨髁关节面和寰椎侧块关节面组成,主要负责矢状面上屈伸运动,运动范围约13~(?)~25~(?);寰枢关节包括外侧和中央两组,其中外侧关节由寰椎侧块下关节面和枢椎外侧上关节面组成,主要承载头颅重力;中央关节由齿状突和寰椎前弓及横韧带组成,承担约占整个颈椎50%的旋转功能。上颈椎韧带足够松弛以完成复杂的屈伸、旋转运动的同时,还要足够坚韧以保护脊髓和椎动脉、承载头颅和抵抗颈部强大的肌肉力量,所以临床上很容易发生不稳或脱位。
     创伤、炎症、肿瘤以及先天性畸形都能破坏上颈椎骨质、韧带、滑膜关节,导致其不稳或脱位,寰枢椎融合是治疗寰枢椎不稳或脱位的一种有效方法。寰枢椎融合一般分后路融合和前路融合,后路融合一方面显露容易,便于安装内固定;另一方面,颈椎生理性前凸,颈后部肌肉力量明显强于颈前方,头颅重心偏向寰枢椎前方,后路融合符合生物力学张力带原则,所以临床应用广泛。
     影响植骨融合的因素很多,除了年龄、体质、骨质状况外,主要与生物力学稳定性和植骨方式有关。即时稳定性是骨性融合的基础,坚强的内固定还可以缩短术后外固定的时间或减少外固定的使用,避免长期外固定导致的并发症。寰枢椎固定理念经历了从一点固定、两点固定、直至三点固定;从二维固定到三维固定。植骨方式现在多主张加压植骨,同时增加植骨接触面积。
     现在常用的寰枢椎固定融合技术主要有:Gallie技术和Brooks技术,Apofix椎板夹固定技术、经关节螺钉技术(Magerl技术)、钉棒和钉板固定技术(将寰椎椎弓根螺钉或侧块螺钉与枢椎椎弓根螺钉通过棒或钢板连接)、还有学者将两种内固定方式联合应用。每种内固定方式都各有其适应症和优缺点,生物力学稳定性最好的是Magerl技术联合后路钢丝或钛缆捆扎植骨块固定,属于三点固定,稳定性强,而且通过捆扎可以将植骨块加压,促进植骨融合,减少外固定时间及强度,但是此中术式操作复杂。
     倪斌等总结寰枢椎后路融合手术经验,发明了一种新型的寰枢椎后路固定融合方式——双侧经寰枢关节螺钉及寰椎椎板钩固定技术,此项技术结合了经关节螺钉技术和椎板钩技术的优点,操作相对简单,在同一系统内同时完成前后三点固定、加压植骨,充分体现了寰枢椎生物力学的三维固定理念。该内固定方式的生物力学稳定性与双侧经关节螺钉联合Gallie钛缆固定方式相似,但避免了钢丝或钛缆穿越椎板对脊髓的损伤风险。
     用此种内固定方式治疗寰枢椎不稳或脱位数十例,全部骨性融合,术后不需要坚强外固定,可早期活动,值得推广应用。但该术式所用内固定系统是采用普通颈胸椎挂钩与万向螺钉的组合,并非上颈椎专用,无法适应上颈椎特殊的解剖结构,使用中存在一定问题,比如寰椎椎板钩不贴附、安装程序繁琐、器械之间不匹配等,需要自主设计、研制一套与该术式相应的全新内固定系统。
     本课题通过干燥标本和影像学方法对国人寰枢椎解剖结构进行测量,并根据国人寰枢椎解剖学测量数据,以双侧经寰枢关节螺钉及寰椎椎板钩内固定技术为理论指导,设计并制作一种新型双侧经寰枢关节螺钉及寰椎椎板钩内固定系统。
     新型内固定系统其生物力学稳定性如何?本课题将通过离体标本的生物力学测试研究,与其他目前经典的三点固定方式进行各方向活动度的对比,对其生物力学稳定性等进行评估,以期对下一步的临床研究和应用进行理论支持。
     有限元分析方法引入生物力学领域以来的短短30几年时间里,取得了长足的发展。有限元方法可以弥补尸体生物力学实验的不足,可以定量表达人体系统内部的应力分部情况,同时具有节约成本、可重复性好、避免标本间个体差异等优点,尤其在分析器械生物力学性能方面更具有普通力学实验无法比拟的优越性。
     本课题在前期成功建立的上颈椎不稳模型基础上,将研制的新型内固定系统加载到寰枢椎不稳模型中进行研究,在接近人体真实的生理情况下评价双侧经寰枢关节螺钉及寰椎椎板钩内固定系统的生物力学特点。通过研究与离体生物力学研究结果进行对比验证,分析内固定系统各部位的应力情况,为新型内固定系统的应用与改进提供依据和指导。
     目的
     1.测量国人寰枢椎的相关径线及角度,为新型寰枢椎内固定器的设计及手术方式提供参考。以双侧经寰枢关节螺钉及寰椎椎板钩内固定技术为理论指导,以国人寰枢椎解剖学参数为基础,设计新型寰枢椎后路内固定系统。
     2.通过离体标本的生物力学测试研究,与其他目前常用的固定方式进行各方向活动度的对比,对其生物力学稳定性等进行评估。
     3.用有限单元法将双侧经寰枢关节螺钉及寰椎椎板钩固定系统加载至寰枢椎不稳模型中,分析不同工况下内固定的应力分布特点。
     方法
     1.对35套正常成人寰枢椎干燥骨标本以及40套正常成人上颈椎CT片进行测量,包括椎寰椎后弓高度、宽度,后结节高度、宽度,寰椎后弓内外侧半距,经关节螺钉钉道长度、上倾角、内倾角等。根据获得的解剖学参数及文献回顾,以双侧经寰枢关节螺钉及寰椎椎板钩内固定技术为指导,自主设计研制新型双侧经寰枢关节螺钉及寰椎椎板钩内固定系统。
     2.以新鲜冷冻尸体标本为实验对象进行新型颈椎内固定系统的生物力学研究。6具人体颈椎标本按照正常、破坏、TA+G(经寰枢关节螺钉+Gallie钛缆)、TA+H(本研究新型寰枢后路内固定系统)、C2+H(双侧枢椎椎弓根螺钉及寰椎椎板钩内固定系统)、C1+C2(寰枢椎椎弓根螺钉内固定)的顺序,分别进行前屈、后伸、左侧屈、右侧屈、左旋、右旋测试,结果进行统计学处理及分析。
     3.在前期研究已经建立的上颈椎不稳的三维有限元模型基础上,将本实验研制的新型双侧经寰枢关节螺钉及寰椎椎板钩内固定系统进行加载,分析内固定在前屈、后伸、侧屈和旋转方向上的应力分布情况,并与单纯经关节螺钉内固定进行比较。
     结果
     1.左右两侧对比无统计学差异。合并统计后,标本测量的寰椎后弓内侧半距11.74±2.47mm;外侧半距20.49±3.22mm。CT影像测量后弓高度9.5±1.6mm、宽度7.4±1.3mm。钉道长度为:39.6±3.4mm,上倾角为:52.0±4.4~0,内倾角为9.1±4.0~0。
     2.离体标本上生物力学测试显示新型双侧经寰枢关节螺钉及寰椎椎板钩内固定系统在前屈、后伸、侧屈、旋转方向测量中均获得最小的活动度,在后伸方向与经关节螺钉联合Gallie内固定有显著性差异,在旋转方向上与寰枢椎钉棒内固定有显著性差异;双侧枢椎椎弓根螺钉及寰椎椎板钩内固定在前屈、后伸和侧屈方向上的活动度与经关节螺钉联合Gallie内固定相似,无显著性差异,但在旋转方向上大于其他三点固定和钉棒内固定,有显著差异。
     3.新内固定系统在螺钉经过寰枢关节部位应力集中,前屈和侧屈工况下寰椎椎板钩应力增大;与单纯经关节螺钉内固定相比,新内固定系统中经关节螺钉承担应力在屈伸和侧屈方向明显减少。
     结论
     1.显露后弓并进入椎管或切除后弓时,不应超过内侧半距11.74±2.47mm。经关节螺钉置钉时的上倾角为52.0±4.4~0左右,内倾角为9.1±4.0~0左右,长度为39.6±3.4mm左右,枢椎椎弓根变异较大,应根据具体病情采取个体化治疗。
     2.新型寰枢椎内固定系统符合国人寰枢椎解剖要求,起到了三点固定的稳定效果,具有良好的生物力学性能,可以做为寰枢椎不稳治疗的首选。双侧枢椎椎弓根螺钉及寰椎椎板钩内固定器在前屈、后伸和侧屈方向上具有良好稳定性,可以作为寰枢椎不稳治疗的备选方式。
     3.寰椎椎板钩不但能起到后方固定、限制屈伸的作用,还能加压植骨块,促进植骨融合。寰椎椎板钩可以避免内固定系统中经关节螺钉的应力过于集中,减少了松动或断裂可能。
Background
     The upper cervical spine includes the occipitoatlantal and the atlantoaxial joint complexes.Anatomic characteristics include the absence of intervertebral discs,the absence of ligament flava,and the distinct shape of C1 and C2.The highly specialized anatomy of this region is designed to provide seemingly paradoxical attribute:loose enough to allow nearly 60%of the cervical spine axial rotation,sufficiently tight to protect the delicate structures of the spinal cord and vertebral arteries,and strong enough to resist muscle forces.Motion is coupled between the two joints which provides a relatively large range of motion between the head and the torso.Motion in the sagittal plane is the primary function at the occipitoatlantal junction and reported on average as being between 13 degrees and 25 degrees.The atlantoaxial complex is composed of two facet joints and the unique atlantodental articulation.Rotation in the atlantoaxial complex represents 50%of the entire cervical spine rotation.Articulation is provided by the synovial joints.The versatile function of the upper cervical spine necessitates numerous synovial joints,and this-together with the complexity of the region-makes it vulnerable.
     The instability of atlantoaxial complex can result from trauma,malformation, malignancy,or inflammatory diseases such as rheumatoid arthritis.The atlantoaxial fusion is a good choice to treat C1-C2 instability.There is no doubt that the initial strength of the construct is greatest at the time of the surgery and subsequently is reduced in the process of the host response until a final fusion is achieved.Atlantoaxial fusion can be accomplished with anterior approach or posterior approach.Most surgeons prefer posterior approach because of its easy exposure and fixation;for the other hand,the muscle bulk in the neck is notably more massive posteriorly and is related to the tendency of the head to be poisoned in such a way that a center of gravity is positioned anterior to the vertical support provided by the spinal column.Thus it can be seen that atlantoaxial fusions are best served with a dorsal fusion mass.
     Osseous fusion is due to many reasons including age,health,and the quality of bone, stability,the method of bone grafting,and so on.The most important of which is stability and method of bone grafting.The surgical intervention of atlantoaxial instability developed from one-point fixation,two-point,until to three-point fixation;from two dimensional fixation to three dimensional fixation,rigid internal fixation can reduce the time of adjunctive postoperative immobilization such as a halo vest,avoids complications of external orthosis.Recently studies have showed that the highest stability is provided by the three-point fixations of the atlantoaxial complex.Two main aims of internal stabilization are immediate postoperative stability and long-term stability.The immediate postoperative stability contributes to the duration and acceptability of the postoperative treatment.The long-term stability usually is achieved by bone fusion,for which a rigid internal fixation is considered a main factor for occurrence.
     The atlantoaxial fixation method includes:Gallie and Brooks technique,Apofix or Halifax lamina clamp,bilateral C1-C2 transarticular screw fixation,direct polyaxial screw fixation to the lateral masses of C1 or the pedicle of C2.To maximize stability,the transarticular screw fixation has to be combined either a Gallie or a Brooks fusion.More recently,Brooks combined with bilateral transarticular screw fixation has become the gold standard for achieving atlantoaxial arthrodesis.But this increase the risk of neural injury caused by the passage of sublaminar wires.
     A new fixation technique for C1-C2 arthrodesis is presented by NI-bin et al.It consists of a hook construct for the posterior arch of C1 that is rigidly attached to C1-C2 transarticular screws to form an instrument that combines anterior and posterior fixation in the same construct.This bilateral atlantoaxial transarticular screws and atlas laminar hooks technique has the advantage over C1-C2 transarticular screw and Halifax which allows reliable stabilization against motion in six degrees of freedom:anterior-posterior slip as well as extension- flexion,lateral slip as well as lateral bending,and axial translation as well as rotation.Furthermore,bone graft can be compressed tightly between the posterior arch of C1 and lamina of C2 by rod between the hook and screw.The novel technique provides excellent atlantoaxial stability that is equivalent to the Magerl-Brooks construct, but it can avoid risky to place cerclage wire under the C1-C2 lamina.
     The NI-bin technique obtained satisfied treatment effectiveness in clinical application. But the now available instruments have some problems and are not suitable for Chinese population.For example,the now available laminar hooks are made for thoracic laminar originally and not suitable for atlas posterior arch,the hook and the screw are very difficult to connect,et al.A novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks needs to be designed to meet the technique and anatomy property of Chinese population.
     The study measured linear and angular parameters of atlas and axis in Chinese population and provide morphological basisi for the fixator design.A novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks was designed and manufactured.
     An in vitro biomechanical study using cadaveric model were performed to investigate the novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks by comparing with other three different contemporary posterior atlantoxial fixations.
     Finite element method grown greatly since it was first used for biomechanics study more than 30 years before.It's an invaluable tool that can supplement experimental research in understanding the clinical biomechanics of the upper cervical spine. Furthermore,because of its reproducibility and repeatability,a fully validated model can be used to analyze detailed parametric studies of novel instrumentation,allowing for the avoidance of otherwise costly experimentation.
     The destabilized three-dimensional finite element model of the upper cervical spine (C0-C3) established by Doctor Ren is available.The novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks were solid modeled, using commercially available design software,imported to the destabilized model and meshed.The instrumented models were run in flexion,extension,and lateral bending and axial rotation for evaluating the biomechanical properties and the stress of transarticular screw and hook.
     Objectives
     1.To measure linear and angular parameters of atlas and axis in Chinese population and provide morphological basisi for the design of the novel posterior atlantoaxial fixator. To design a novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks.
     2.To investigate the acute stability afforded by the novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks by comparing with other three different contemporary posterior atlantoxial fixations.
     3.To investigate the stress distributions of the destabilized models with the novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks under quasistatic loading in flexion,extension,lateral bending and rotation.
     Materials and Methods
     1.Thirty-five sets of normal adult dry atlas and axis vertebral samples and 40 sets of normal adult CT images of the upper cervical spine were measured.The parameters include posterior atlantal arch width,height,length,inside semi-diameter,outside semi-diameter,the transarticular screw path length,the transarticular screw path angle in the transverse plane and in the sagittal plane.A novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks was designed.
     2.In this study,6 fresh-frozen human candaveric cervical spines with occiput(C0-C5) were used.Osteoligamentous specimens were tested in their intact condition and destabilizetion via transverse-alar-apical ligament disruptions and were analyzed by the three dimensional motion testing system.The reconstructions tested were TA+G(the transarticular screw-wiring fixations),TA+H(the transarticular screw-C1 hooks fixations), C2+H(the C2 Pedicle screws-C1 hooks fixations),C1+C2(C1-C2 screw and rod fixations).
     3.The novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks were solid modeled,using commercially available design software, imported to the destabilized three-dimensional finite element model of the upper cervical spine(C0-C3) and meshed.The instrumented models were run in flexion,extension,and lateral bending and axial rotation for evaluating the biomechanical properties and the stress of transarticular screw and hook.The study also evaluated the change of stress of transarticular screws after the atlas laminar hooks were imported.
     Results
     1.There was no statistical significance between the left and right side data.The outside semi-diameter was(20.49±3.22)mm.The inside semi-diameter was (11.74±2.47)mm.The image measurements show the posterior atlantal arch width was (7.4±1.3)mm.The transarticular screw path length was(39.6±3.4)mm.The transarticular screw path angle in the transverse plane was(52.0±4.4)~0.The transarticular screw path angle in the sagittal plane was(9.1±4.0)~0.
     2.The data indicate that destabilization via transverse-alar-apical ligament disruptions significantly increase C1-C2 motion.The ROM values of TA+H were lower than other fixations in all directions.The p values were less than 0.05 for TA+H versus TA+G in extension and for TA+H versus C1+C2 in axial rotation.The ROM values of C2+H were higher than other fixations in al directions.There were no p values less than 0.05 for C2+H versus TA+G in flexion,extension and lateral bending.But the P values were less than 0.05 for C2+H versus TA+H,TA+G and C1+C2 in axial rotation.
     3.The finite element model predicted that the maximum von Mises stress was in the region where screws penetrated the atlantoaxial facet joints,and the second was located at the junction of the rod and screw.The stress of C1 hook increased in flexion and lateral bending.The stress of transarticular screws decreased in flexion/extension and lateral bending after the atlas laminar hooks were imported.
     Conclusions
     1.Exposure range during operation is limited in order to avoid damage of vertebral artery.The transarticular screw should be(39.6±3.4)mm long and be inserted(52.0±4.4)~0 cephalad and(9.1±4.0)~0 lateral.The axis pedicle varied largely and therapy should be individualized treatment.
     2.The novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks provides the best biomechanical stability.Although the the fixator composed of bilateral C2 Pedicle screws and C1 hooks is not as stable as traditional three-point fixtions,it provides the similar stability with other fixations in flexion, extension and lateral bending.
     3.The atlas laminar hook add a posterior fixation point,and at the same time which can compress bone graft between the C1 posterior arch and C2 lamina.The atlas laminar hooks fixation can reduce the stress of the transarticular screws.The novel posterior atlantoaxial fixator composed of bilateral transarticular screws and C1 laminar hooks is consistent with the three-dimensional fixation theory and provides excellent atlantoaxial stability.
引文
1.Magerl F,seeman PS.Stable posterior fusion of the atlas and axis by transarticular screw fixatior[M].In:KehrP,WeidnerA,eds.Cervical Spineo Chap4thed.New York:Springer Verlag,1985.322-327.
    2.Grob D,Jeanneret B,Aebi M,et al.Atlantoaxial fusion with transarticular screw fixation.J Bone Jiont Surg Br,1991,73:972-976.
    3.Stiiierman CB,Wilson JA.Atlantoaxial stabilizable with posterior transarticular screw fixation:Technical dcscryiption and report of 22 cases.Neurosurgery,1993,32:948-955.
    4.倪斌,陈华江,郭翔,等.双侧寰椎椎板挂钩及经寰枢椎关节间隙螺钉固定术.中华外科杂志,2005,43:1358-1359.
    5.郭翔,倪斌,陶春生,等.经寰枢关节间隙螺钉和寰椎椎板钩内固定的力学稳定性.中华骨科杂志,2007,27(3):202-206.
    6.曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及临床意义.中国临床解剖学杂志,2000,18(4):299-301.
    7.沙勇,张绍祥,刘正津,等.后路经寰枢关节螺钉内固定的枢椎解剖学测量.中国临床解剖学杂志,2002,20(3):172-175.
    8.瞿东滨,金大地,朱志红,等.国人寰枢椎经关节螺钉固定术的解剖学研究.中国矫形外科杂志,2000,7(11):1117-1119.
    9.孔庆毅,李家顺,贾连顺,等.寰枢椎经关节螺钉固定的临床解剖学测量.中国矫形外科杂志,2002,11(10):1328-1330.
    10.陈庄洪,余伦红,黄继锋,等.寰枢椎后路经关节螺钉固定新定位标志透视参数的解剖学研究.中国临床解剖学杂志,2005,23(5):463-466.
    11.陈庄洪,蔡贤华,黄继锋,等.寰枢椎后方经关节螺钉内固定的应用解剖与临床研究.中华实验外科杂志,2005,22(2):159-160.
    12.朱海波,贾连顺,孙启全,等.寰椎测量及临床意义.解剖学杂志,1997,20(6):517-520.
    13.李启华,刘仰斌,盛瑶环,等.寰椎的应用解剖学研究.赣南医学院学报,2003,23(4):363-367
    14.Kaplan EB.Surgical approaches to the neck.Cervical spine and upper extremity.London;Saunders,1966:246.
    15.Paramore CG,Dickman CA,Sonntag VKH.The anatomical suitabilityof the C1-2 complex for transarticular screw fixatior.J Neurosurg,1996,85:221-224.
    16.Madawi AA,Casey TH,Solanki GA,et al.Radiologieal and anatomical evaluation of the atlantoaxial transarticttlar screw fixation technique.J Neurosurg,1997,86:961-968
    17.Mareotte P,Dickman CA,So nntag VKH,et al.Posterior atlantoaxial facet screw fixation.Neurosurg,1993 79:234-237
    18.Solanki GA,Crockard HA.Peroperative determination of safe superior transarticular screw trajectory through the lateral mass.Spine,1999,24:1477-1482.
    19.Ebraheim NA,Misson JR,Xu R,et al.The optimal transarticular C1-2 Screw length and the location of the hypoglossal nerve.Surg Neurol 2000,53(3):208-210
    20.Gebhard JS,Schimmer RC,Jeannerel B.Safty and accuracy of transarticular screw fixation C1-C2 using an aiming device:an anatomic study.Spine,1998,23:2185-2189.
    21.Wright NW,Lauryssen C.Vertebral artery injury in C1-2 transarticular screw fixation:results of survey of the AANS/CNS section on disorders of the spine and peripheral nerves.J Neurosurg,1998,88(4):634-640.
    22.Igarashi T,Kikuchi S,Sato K,et al.Anatomic study of the axis for surgical planning of transarticular screw fixation.Clinical Orthoppaedics and related research.2003,(408):162-6.
    23.倪斌,陶春生,郭翔,等.双侧寰椎椎板钩及枢椎椎弓根内固定在寰枢椎融合术中的初步应用,脊柱外科杂志,2007,5(3):129-131.
    24.Harms J,Melcher RP.Posterior C1-C2 fusion with polyaxial screw and rod fixation.Spine,2001,26(22):2467-2471.
    25.Fuji T;Oda T;Kato Y,et al.Accuracy of atlantoaxial transarticular screw fixation.Spine,2000,25(14):1760-1764.
    26.Madawi A,Solanki G,Casey AT,et al.Variation of the groove in the axis vertebra for the vertebral artery:Implications for instrumentation.J Bone Joint Surg Br,1997,79:820-823.
    27.Tan M,Wang H,WangY,et al.Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass.Spine,2003,28(9):888-895.
    1.Magerl F,seeman PS.Stable posterior fusion of the atlas and axis by transarticular screw fixatior[M].In:KehrP,WeidnerA,eds.Cervical Spine.Chap 4th ed.New York:Springer Verlag,1985.322 -327.
    2.Grob D,Jeanneret B,Aebi M,et al.Atlantoaxial fusion with transarticular screw fixation.J Bone Jiont Surg Br,1991,73:972-976
    3.Stiiierman CB,Wilson JA.Atlantoaxial stabilizable with posterior transarticular screw fixation:Technical dcscryiption and report of 22 cases.Neurosurgery,1993,32:948-955
    4.Harms J,Melcher RP.Posterior C1-C2 fusion with polyaxial screw and rod fixation.Spine,2001,26(22):2467-2471.
    5.Tan M,Wang H,WangY,et al.Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass.Spine,2003,28(9):888-895.
    6.倪斌,陈华江,郭翔,等.双侧寰椎椎板挂钩及经寰枢椎关节间隙螺钉固定术.中华外科杂志,2005,43:1358-1359
    7.倪斌,陶春生,郭翔,等.双侧寰椎椎板钩及枢椎椎弓根内固定在寰枢椎融合术中的初步应用,脊柱外科杂志,2007,5(3):129-131.
    8.Gallie WE.Fractures and dislocations of cervical spine.Am J Surg,1939,46:495-499.
    9.Brooks AL,Jenkins EB.Atlanto-axial arthrodesis by the wedge compression method.J Bone Joint Surg Am,1978,60:279-284.
    10.Tucker HH.Technical report:method of fixation of subluxed or dislocated cervical spine below C1-C2.Can J Neuroj Sci,1975,2(4):381-382.
    11.金大地,江建明,瞿东滨,等.介绍一种新的颈椎后路内固定装置—APOFIX系统.中国脊柱脊髓杂志,1999,9(5):280-281.
    12.马向阳,尹庆水,刘景发,等.寰椎侧块螺钉与寰椎椎弓根螺钉的解剖与生物力学对比研究.中国骨与关节损伤杂志,2005,20:361-363.
    13.谭明生,移平,王文军,等.经寰椎“椎弓根”螺钉内固定技术的临床应用.中国脊柱脊髓杂志,2006,16:336-340.
    14.孔庆毅,李家顺、贾连顺,等.寰枢椎经关节螺钉固定的临床解剖学测量.中国矫形外科杂志,2002,11(10):1328-1330.
    15.Paramore CG,Dickman CA,Sonntag VKH.The anatomical suitabilityof the C1-2 complex for transarticular screw fixatior.J Neurosurg,1996,85:221-224.
    16.Madawi AA,Casey TH,Solanki GA,et al.Radiologieal and anatomical evaluation of the atlantoaxial transarticttlar screw fixation technique.J Neurosurg,1997,86:961-968
    17.Mareotte P,Dickman CA,So nntag VKH,et al.Posterior atlantoaxial facet screw fixation.Neurosurg,1993,79:234-237
    18.Gebhard JS,Schimmer RC,Jeannerel B.Safty and accuracy of transarticular screw fixation C1-c2 using an aiming device:an anatomic study.Spine,1998,23:2185-2189.
    19.Wright NW,Lauryssen C.Vertebral artery injury in C1-2 transarticular screw fixation:results of survey of the AANS/CNS section on disorders of the spine and peripheral nerves.J Neurosurg,1998,88(4):634-640.
    20.Madawi A,Solanki G,Casey AT,et al.Variation of the groove in the axis vertebra for the vertebral artery:Implications for instrumentation.J Bone Joint Surg Br,1997,79:820-823.
    21.Fuji T;Oda T;Kato Y,et al.Accuracy of atlantoaxial transarticular screw fixation[J].Spine,2000,25(14):1760-1764.
    22.郭翔,倪斌,陶春生,等.经寰枢关节间隙螺钉和寰椎椎板钩内固定的力学稳定性,中华骨科杂志,2007,27(3):202-206.
    23.Naderi S,Crawford NR,Song GS,et al.Biomechanical comparison of C1~C2 posterior fixations:cable,graft,and screw combinations.Spine,1998,23(18):1946-1956.
    24.陈庄洪,余伦红,黄继锋,等.寰枢椎后路经关节螺钉固定新定位标志透视参数的解剖学研究.中国临床解剖学杂志,2005,23(5):463-466.
    25.Kaplan EB.Surgical approaches to the neck.Cervical spine and upper extremity.London;Saunders,1966:246.
    26.曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及临床意义.中国临床解剖学杂志,2000,18(4):299-301.
    27.朱海波,贾连顺,孙启全,等.寰椎测量及临床意义.解剖学杂志,1997,20(6):517-520.
    28.Clark CR,Devon GD,Menezes AH.Arthrodesis of the cervical spine in rheumatoid arthritis.J Bone Joint Surg Am,1989,71:381-392.
    29.Coyne TJ,Fehlings MG,Wallace MC,et al.C1-C2 posterior cervical fusion:long-term evaluation of results and efficacy.Neurosurgery,1995,37(4):688-693.
    30.Farey ID,Nadkarni S,Smith N.Modified Gallie technique versus transarticular screw fixation in C1-C2 fusion.Clin Orthop,1999,359:126-135.
    31.Fried LC.Atlanto-axial fracture dislocations.J Bone Joint Surg Br,1973,55:490-496.
    32.Fielding JW,Hawkins R J,Ratzan SA.Spine fusion for atlanto-axial instability.J Bone Joint Surg Am,1976,58:400-407.
    33.Griswold DW,Albright JA,Schiffman E,et al.Atlanto-axial fusion for instability.J Bone Joint Surg Am, 1992, 60: 285-292.
    34. Aldrich EF, Weber PB. Halifax interlaminar clamp for posterior cervical fusion: a long term follow-up review. J Neurosurg, 1993, 74: 185-189.
    35. Statham P, O'Sullivan M, Russel T, et al. The Halifax interlaminar clamp for posterior cervical fusion: initial experience in the United Kingdom. Neurosurgery, 1993, 32: 396-399.
    36. Grob D, Crisco JJ, Panjabi MM, et al. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine, 1992,17(5): 480-490.
    37. Wilke HJ, Fischer K, Kugler A, et al. In vitro investigations of internal fixation systems of the upper cervical spine, II: stability of posterior atlanto-axial fixation techniques. Euro Spine J, 1992,1:191-199.
    38. Melcher RP, Puttlitz CM, Kleinstueck FS, et al. Biomechanical testing of posterior atlantoaxial fixation techniques. Spine, 2002, 27: 2435-2440.
    1.Gallie WE.Fractures and dislocations of cervical spine.Am J Surg,1939,46:495-499.
    2.Brooks AL,Jenkins EB.Atlanto-axial arthrodesis by the wedge compression method.J Bone Joint Surg Am,1978,60:279-284.
    3.Tucker HH.Technical report:method of fixation of subluxed or dislocated cervical spine below C1-C2.Can J Neuroj Sci,1975,2(4):381-382.
    4.金大地,江建明,瞿东滨,等.介绍一种新的颈椎后路内固定装置—APOFIX系统.中国脊柱脊髓杂志,1999,9(5):280-281.
    5.Magerl F,seeman PS.Stable posterior fusion of the atlas and axis by transarticular screw fixatior[M].In:KehrP,WeidnerA,eds.Cervical Spine.Chap4thed.New York:Springer Verlag,1987.322-327.
    6.Grob D,Jeanneret B,Aebi M,et al.Atlantoaxial fusion with transarticular screw fixation.J Bone Jiont Surg Br,1991,73:972-976.
    7.Stiiierman CB,Wilson JA.Atlantoaxial stabilizable with posterior transarticular screw fixation:Technical dcscryiption and report of 22 cases.Neurosurgery,1993,32:948-955
    8.Harms J,Melcher RP.Posterior C1-C2 fusion with polyaxial screw and rod fixation.Spine,2001,26(22):2467-2471.
    9.Tan M,Wang H,WangY,et al.Morphometric evaluation of screw fixation in atlas via posterior arch and lateral mass.Spine,2003,28(9):888-895.
    10.Neil R.Crawford,Hurlbert RJ,Choi WG,et al.Differential biomechanical effects of injury and wiring at C1-C2.Spine 1999;24:1894-902
    11.Richter M,Schmidt R,Claes L,et al.Posterior atlantoaxial fixation:biomechanical in vitro comparison of six different techniques.Spine,2002,27:1724-1732.
    12.倪斌,陈华江,郭翔,等.双侧寰椎椎板挂钩及经寰枢椎关节间隙螺钉固定术.中华外科杂志,2005,43:1358-1359
    13.倪斌,陶春生,郭翔,等.双侧寰椎椎板钩及枢椎椎弓根内固定在寰枢椎融合术中的初步应用,脊柱外科杂志,2007,5(3):129-131.
    14.Panjabi MM,Dvorak J,Duranceau J,et al.Three-dimensional movements of the upper cervical spine.Spine,1988,13:726-730.
    15.Panjabi MM,Crisco JJ,Vasavada A,et al.Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves.Spine,2001,26:2692-2700.
    16.Panjabi MM,Dovrak J,Oxland TR,et al.Multidirectional instabilities of traumatic cervical spine injuries in a porcine model.Spine,1989,14:1111-1115.
    17.Hanley EN Jr,Harvell JC Jr.Immediate postoperative stability of the atlantoaxial articulation:a biomechanical study comparing simple midline wiring and the Gallie and Brooks Procedures.J Spinal Disord,1992,5:306-310.
    18.Kandziora F,Kerschbaumer F,Starker M,et al.Biomechanical assessment of transoral plate fixation for atlantoaxial instability.Spine,2000,25:1555-1561.
    19.Grob D,Crisco JJ,Panjabi MM,et al.Biomechanical evaluation of four different posterior atlantoaxial fixation techniques.Spine,1992,17(5):480-490.
    20.Hanson PB,Pasquale MX,Sharkey NA,et al.Anatomic and biomechanic assessment of transarticular screw fixation for atlantoaxial instability.Spine,1991,16:1141-1145.
    21.Wilke HJ,Fischer K,Kugler A,et al.In vitro investigations of internal fixation systems of the upper cervical spine,Ⅱ:stability of posterior atlanto-axial fixation techniques.Euro Spine J,1992,1:191-199.
    22.Olerud S,Olerud C.The C1 claw device:a new instrument for C1-C2 fusion.Euro Spine J,2001,10:345-347.
    23.Coyne TJ,Fehlings MG,Wallace MC,et al.C1-C2 posterior cervical fusion:long-term evaluation of results and efficacy.Neurosurgery,1995,37(4):688-693.
    24.马维虎,徐荣明,阮永平.Magerl技术联合Apofix夹治疗Ⅱ型齿状突骨折.脊柱外科杂志,2005,3(1):26-28.
    25.Melcher RP,Puttlitz CM,Kleinstueck FS,et al.Biomechanical testing of posterior atlantoaxial fixation techniques.Spine,2002,27:2435-2440.
    26.马向阳,尹庆水,刘景发,等.寰椎侧块螺钉与寰椎椎弓根螺钉的解剖与生物力学对比研究.中国骨与关节损伤杂志,2005,20:361-363.
    27.谭明生,移平,王文军,等.经寰椎“椎弓根”螺钉内固定技术的临床应用.中国脊柱脊髓杂志,2006,16:336-340.
    28.倪斌,贾连顺,刘洪奎,等.陈旧性齿突骨折并寰枢椎脱位的手术治疗.中华骨科杂志,2000,20(8):457-460.
    29.Wright NW,Lauryssen C.Vertebral artery injury in C1-2 transarticular screw fixation:results of survey of the AANS/CNS section on disorders of the spine and peripheral nerves.J Neurosurg,1998,88(4):634-640.
    30.Madawi A,Solanki G,Casey AT,et al.Variation of the groove in the axis vertebra for the vertebral artery:Implications for instrumentation.J Bone Joint Surg Br,1997,79:820-823.
    1.Goel VK,Panjabi MM,Patwardhan,AG,et al.Test protocols for evaluation of spinal implantats.J Bone Joint Surg Am,2006,88:103-109.
    2.Belytschko T,Andriacchi TP,Schultz AB,et al.Analig studies of forces in the human spine computational techniques.J Biomech,1973,6:361-371.
    3.Yoganadan N,Kumaresan S,Voo L,etal.Finite element applications in human cervical spine modeling(Review).Spine,1996,21(15):1824-1834.
    4.Panjabi MM.Cervical spine models for biomechanical research.Spine,1998,23(24):2684-2700.
    5.Puttlitz CM,Goel VK,Traynelis VC,et al.A finite element investigation of upper cervical instrumentation.Spine,2001,26:2449-2455.
    6.任中武,倪斌,张美超,等.上颈椎三维非线性有限元模型的建立及其有效性验证.脊柱外科杂志,2007,5(3):159-162.
    7.倪斌,陈华江,郭翔,等.双侧寰椎椎板挂钩及经寰枢关节间隙螺钉固定术.中华外科杂志,2005,43:1358-1359.
    8.郭翔,倪斌,陶春生,等.经寰枢关节间隙螺钉和寰椎椎板钩内固定系统的力学稳定性.中华骨科杂志,2007,27:202-206.
    9.Magerl F,Seeman PS.Stable posterior fusion of the atlas and axis by transarticular fixation.In:Kehr P,Weidner A,eds.Cervical spine.NewYork,NY:Springer-Verlag,1987,322-327.
    10.Grob D,Crisco JJ,Panjabi MM,et al.Biomechanical evaluation of four different posterior atlantoaxial fixation techniques.Spine,1992,17(5):480-490.
    11.Hanson PB,Pasquale MX,Sharkey NA,et al.Anatomic and biomechanic assessment of transarticular screw fixation for atlantoaxial instability.Spine,1991,16:1141-1145.
    12.Wilke HJ,Fischer K,Kugler A,et al.In vitro investigations of internal fixation systems of the upper cervical spine,Ⅱ:stability of posterior atlanto-axial fixation techniques.Euro Spine J,1992,1:191-199.
    13.Olerud S,Olerud C.The C1 claw device:a new instrument for C1-C2 fusion.Euro Spine J,2001,10:345-347.
    14.Grob D,Jeanneret B,Aebi M,et al.Atlantoaxial fusion with transarticular screw fixation.J Bone Jiont Surg Br,1991,73:972-976.
    15.Coyne TJ,Fehlings MG,Wallace MC,et al.C1-C2 posterior cervical fusion:long-term evaluation of results and efficacy.Neurosurgery,1995,37(4):688-693.
    16.Griswold DW,Albright JA,Schiffman E,et al.Atlanto-axial fusion for instability.J Bone Joint Surg Am,1992,60:285-292.
    17.Brooks AL,Jenkins EB.Atlanto-axial arthrodesis by the wedge compression method.J Bone Joint Surg Am,1978,60:279-284.
    18.Gallie WE.Fractures and dislocations of cervical spine.Am J Surg,1939,46:495-499.
    19.倪斌,陶春生,郭翔,等.双侧寰椎椎板钩及枢椎椎弓根内固定在寰枢椎融合术中的初步应用,脊柱外科杂志,2007,5(3):129-131.
    20.Fraser AB,Sen C,Casden AM,et al.Cervical transdural intramedullary migration of a sublaminar wire:A complication of cervical fixation.Spine,1994,19:456-459.
    21.Goll SR,Balderston RA,Stambough JL,et al.Depth of intraspinal wire penetration during passage of sublaminar wires.Spine,1988,13:503-509.
    22.Lieponis JV,Bunch WH,Lonser RE,et al.Spinal cord injury during segmental sublaminar spinal instrumentation:An animal model.Orthop Trans,1984,8:173.
    23.Lundy DW,Murray HH.Neurological deterioration after posterior wiring of the cervical spine.J Bone Joint Surg Br,1997,79:948-951.
    24.Nicastro JF,Hartjen CA,Traina J,et al.Intraspinal pathways taken by sublaminar wires during removal:An experimental study.J Bone Joint Surg Am,1986,68:1206-1209.
    25.Zindrick MR,Knight GW,Bunch WH,et al.Factors influencing the penetration of wires into the neural canal during segmental wiring.J Bone Joint Surg Am 1989,71:742-750.
    26.Dickman CA,Crawford NR,Paramore CG.Biomechanical characteristics of C1-C2 cable fixations.J Neurosurg,1996,85:316-322.
    27.倪斌,贾连顺,刘洪奎,等.陈旧性齿突骨折并寰枢椎脱位的手术治疗.中华骨科杂志,2000,20(8):457-460.
    1.Brolin K,von Hoist H.Cervical injury in Sweden:a national survey of patient data from 1987 to 1999.Inj Control Saf Promot Borttaget,2003,9:40-52
    2.Panjabi MM.Cervical spine models for biomechanical research.Spine,1998,23(24):2684-2700.
    3.Dickman CA,Crawford NR,et al.Morphology and kinematics of the baboon upper cervical spine.A model of the atlantoaxial complex.Spine,1994,19:2518-2523.
    4.Panjabi MM,Dvorak J,Duraneeau J,et al.Three-dimensional movements of the upper cervical spine.Spine,1988,13(7):726-732.
    5.卢一生,贾连顺,丁祖泉,戴力扬;寰枢关节三维运动规律及其测量;中华创伤杂志;1995,01:4-6+81
    6.袁文,贾连顺,李家顺.寰椎横韧带断裂对寰枢关节三维运动的影响.中国临床解剖学杂志,1996,14(1):61-63
    7.袁文,贾连顺,李家顺.齿状突骨折对寰枢关节稳定性的影响.中国矫形外科杂志,1997,4(3):174-175
    8.Neil R.Crawford,Hurlbert RJ,Choi WG,et al.Differential biomechanical effects of injury and wiring at C1-C2.Spine 1999;24:1894-902
    9.Melcher RP,Puttlitz CM,Kleinstueck FS,et al.Biomechanical testing of posterior atlantoaxial fixation techniques.Spine,2002,27:2435-2440.
    10.Grob D,Crisco JJ,Panjabi MM,et al.Biomechanical evaluation of four different posterior atlantoaxial fixation techniques.Spine,1992,17(5):480-490.
    11.Hartl R,Chamberlain RH,Fifield MS,et al.Biomechanical comparison of two new atlantoaxial fixation techniques with C1-2 transarticular screw-graft fixation.J Neurosurg Spine,2006,5:336-342.
    12.Richter M,Schmidt R,Claes L,et al.Posterior atlantoaxial fixation:biomechanical in vitro comparison of six different techniques.Spine,2002,27:1724-1732.
    13.Karin B,Peter H,Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.Spine,2004,29(4):376-385
    14.付裕,阮狄克.颈椎生物力学中的三维有限元分析.中国脊柱脊髓杂志,2004,14(10):632-634
    15.Yang KH,Zhu F,Luan F,et al.Development of a finite element model of the human neck..Proceeding of the 42~(nd) Stapp Car Crash Conference.SAE983157,1998,1-11
    16.Jost R,Nurick GN.Development of a finite element model of the human neck subjected to high g level deceleration,lnt J Crashworthiness,2000,5:259-267.
    17.Puttlitz CM,Goel VK,Traynelis VC,et al.A finite element investigation of upper cervical instrumentation.Spine,2001,26:2449-2455.
    18.任中武,倪斌,张关超,等.上颈椎三维非线性有限元模型的建立及其有效性验证.脊术外科杂志,2007,5(3):159-162.
    19.Teo EC,Ng HW.First cervical vertebra(atlas) fracture mechanism studies using finite element method.J Biomech,2001,34:13-21
    20.Bozkus H,Karakas A,Hanci M,et al.Finite element model of the Jefferson fracture:comparison with a cadaver model.Eur Spine J,2001,10:257-263
    21.Puttlitz CM,Geol VK,Clark CR,et al.Pathomechanisms of failures of the odontoid.Spine,2000,25:2868-2876
    22.钮心刚,贾连顺,丁祖泉.翼状韧带断裂对寰枢关节稳定性影响的生物力学实验研究[J];中国临床解剖学杂志;1999,03:76-77
    1.Gallie WE.Fractures and dislocations of cervical spine.Am J Surg,1939,46:495-499.
    2.Brooks AL,Jenkins EB.Atlanto-axial arthrodesis by the wedge compression method.J Bone Joint Surg Am,1978,60:279-284.
    3.Clark CR,Devon GD,Menezes AH.Arthrodesis of the cervical spine in rheumatoid arthritis.J Bone Joint Surg Am,1989,71:381-392.
    4.Coyne TJ,Fehlings MG,Wallace MC,et al.C1-C2 posterior cervical fusion:long-term evaluation of results and efficacy.Neurosurgery,1995,37(4):688-693.
    5.Farey ID,Nadkarni S,Smith N.Modified Gallie technique versus transarticular screw fixation in C1-C2 fusion.Clin Orthop,1999,359:126-135.
    6.Fielding JW,Hawkins R J,Ratzan SA.Spine fusion for atlanto-axial instability.J Bone Joint Surg Am,1976,58:400-407.
    7.Fried LC.Atlanto-axial fracture dislocations.J Bone Joint Surg Br,1973,55:490-496.
    8.Montesano PX,Juach EC,Anderson PA,et al.Biomechanics of cervical spine internal fixation.Spine,1991,16(suppl3):S10-S16.
    9.Griswold DW,Albright JA,Schiffman E,et al.Atlanto-axial fusion for instability.J Bone Joint Surg Am,1992,60:285-292.
    10.Tucker HH.Technical report:method of fixation of subluxed or dislocated cervical spine below C1-C2.Can J Neuroj Sci,1975,2(4):381-382.
    11.Aldrich EE Weber PB.Halifax interlaminar clamp for posterior cervical fusion:a long term follow-up review.J Neurosurg,1993,74:185-189.
    12.Statham P,O'Sullivan M,Russel T,et al.The Halifax interlaminar clamp for posterior cervical fusion:initial experience in the United Kingdom.Neurosurgery,1993,32:396-399.
    13.金大地,江建明,瞿尔滨,等.介绍一种新的颈椎后路内固定装置——APOFIX系统.中国脊柱脊髓杂志,1999,9(5):280-281.
    14.Magerl F,Seeman PS.Stable posterior fusion of the atlas and axis by transarticular fixation.In:Kehr P,Weidner A,eds.Cervical Spine.NewYork,NY:Springer-Verlag,1987,322-327.
    15.Montesano PX,Jauch E,Jonsson H Jr.Anatomic and biomechanical study of posterior cervical plate arthrodesis:an evaluation of two different techniques of screw placement.J Spinal Disord,1992,5:301-305.
    16.Smith MD,Kotzar G,Yoo J,et al.A biomechanical analysis of atlantoaxial stabilization methods using bovine model.C1-C2 fixation analysis.Clin Orthop Relat Res,1993,290:285-295.
    17.Grob D,Jeanneret B,Aebi M,Markwalder T-M,et al.Atlantoaxial fusion with transarticular screw fixation, 1991, 73: 972-976.
    18. Stillerman CB, Wilson JA. Atlanto-axial stabilization with posterior transarticular screw fixation: technical description and report of 22 cases. Neurosurgery, 1993, 32: 948-955.
    19. Grob D, Crisco JJ, Panjabi MM, et al. Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine, 1992, 17(5): 480-490.
    20. Hanson PB, Pasquale MX, Sharkey NA, et al. Anatomic and biomechanic assessment of transarticular screw fixation for atlantoaxial instability. Spine, 1991, 16: 1141-1145.
    21. Wilke HJ, Fischer K, Kugler A, et al. In vitro investigations of internal fixation systems of the upper cervical spine, II: stability of posterior atlanto-axial fixation techniques. Euro Spine J, 1992, 1: 191-199.
    22. Guiot B, Fessler RG. Complex atlantoaxial fractures. J Neurosurg: Spine, 1999, 91: 139-143.
    23. Wright NM, Lauryssen C. Vertebral artery injury in C1-2 transarticular screw fixation: results of a survey of the AANS/CNS section on disorders of the spine and peripheral nerves. J Neurosurg, 1998, 88: 634-640.
    24. Sherk HH, Snyder B. Posterior fusions of the upper cervical spine: indications, techniques, and prognosis. Orthop Clin North Am, 1978, 9: 1091-1099.
    25. McGuire RA, Harkey HL. Modification of the technique and results of atlantoaxial transfacet stabilization. Orthopedics, 1995,18:1029-1032.
    26. Madawi AA, Solanki G, Casey AT, et al. Variation of the groove in the axis vertebra for the vertebral artery: implications for instrumentation. J Bone Joint Surg Br, 1997, 79: 820-823.
    27. Mandel IM, Kambach BJ, Petersilge CA, et al. Morphologic considerations of C2 isthmus dimensions for the placement of transarticular screws. Spine, 2000, 25: 1542-1547.
    28. Paramore CG, Dichman CA, Sonntag VK, et al. The anatomic suitability of the C1-C2 complex for transarticular screw fixation. J Neurosurg, 1996, 85: 221-224.
    29. Melcher RP, Ruf M, Harms J. The direct posterior C1-C2 fusion technique with polyaxial-head screws. 28~(th) Annual Meeting of the Cervical Spine Research Society, Charleston, South Carolina, 2000.
    30. Harms J, Melcher RP. Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine, 2001, 15: 2467-2471.
    31. Christensen D, Lynch J, Currier B, et al. C1 anatomy and dimensions relative to lateral mass screw placement. In: 28~(th) Annual Meeting of the Cervical Spine Research Society, Charleston, South Carolina, 2000.
    32. Ebraheim N, Rollins JR, Xu R, et al. Anatomic consideration of C2 pedicle screw placement. Spine, 1996,21:691-695.
    33.Melcher RP,Puttlitz CM,Kleinstueck FS,et al.Biomechanical testing of posterior atlantoaxial fixation techniques.Spine,2002,27:2435-2440.
    34.Yoshida M,Neo M,Fujibayashi S,et al.Comparison of the anatomical risk for vertebral artery injury associated with the C2-pedicle screw and atlantoaxial transarticular screw.Spine,2006,31(15):E513-7.
    35.马向阳,尹庆水,刘景发,等.寰椎侧块螺钉与寰椎椎弓根螺钉的解剖与生物力学对比研究.中国骨与关节损伤杂志,2005,20:361-363.
    36.谭明生,移平,王文军,等.经寰椎“椎弓根”螺钉内固定技术的临床应用.中国脊柱脊髓杂志,2006.16:336-340.
    37.Marcus Richter,Rene Schmidt,Lutz Claes,et al.Posterior atlantoaxial fixation:biomechanical in vitro comparison of six different techniques.Spine,2002,27:1724-1732.
    38.倪斌,陈华江,郭翔,等.双侧寰椎椎板挂钩及经寰枢关节间隙螺钉固定术.中华外科杂志,2005.43:1358-1359.
    39.党耕町,王超,闫明,等.后路寰枢椎侧块钉板固定植骨融合术的初步探讨.中国脊柱脊髓杂志,2003,13:7-10.
    40.Sen MK,Steffen T,Beckman L,et al.Atlantoaxial fusion using anterior transarticular screw fixation of C1-C2:technical innovation and biomechanical study.Euro Spine J,2005,14:512-518.
    41.Reindl R,Sen M,Aebi M.Anterior instrumentation for traumatic C1-C2 instability.Spine,2003,28:E329-333.
    42.Hoppenfeld S,deBoer P.Surgical exposures in orthopaedics.Lippincott,Philadelphia.1994.
    43.尹庆水,艾福志,夏红,等.寰枢椎前路复位钢板系统的研制及生物力学.中华创伤骨科杂志,2004.6:170-173.
    44.Kerschbaumer F,Kandziora F,Klein C,et al.Transoral decompression,anterior plate fixation,and posterior wire fusion for irreducible atlantoaxial kyphosis in rheumatoid arthritis.Spine,2000,25:2708-2715.
    45.郭翔,倪斌,陶春生,等.经寰枢关节间隙螺钉和寰椎椎板钩内固定系统的力学稳定性.中华骨科杂志,2007,27:202-206.
    46.Matsubara T,Mizutani J,Fukuoka M,et al.Safe atlantoaxial fixation using a laminar screw(intralaminar screw) in a patient with unilateral occlusion of vertebral artery:case report.Spine,2007,32(1):E30-3.
    47.Hartl R,Chamberlain RH,Fifield MS,et al.Biomechanical comparison of two new atlantoaxial fixation techniques with C1-2 transarticular screw-graft fixation.J Neurosurg Spine,2006,5:336-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700