Lenke1BN型特发性脊柱侧凸有限元模型的建立及后路三维矫形生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用计算机辅助工程(computer aided engineering,CAE)软件,建立了基于志愿者个体化CT图像的完整Lenke1BN型特发性脊柱侧凸三维非线性有限元模型,并对模型进行了有效性验证;在此基础上,仿真模拟Lenke1BN型特发性脊柱侧凸后路三维矫形手术,探讨选择不同下固定椎(lowest instrumented vertebra,LIV)的矫形效果。
     第一章Lenke1BN型特发性脊柱侧凸三维有限元模型的建立
     目的应用CAE软件,建立基于志愿者个体化CT图像的Lenke1BN型特发性脊柱侧凸三维非线性有限元模型。
     方法选择1例18岁女性Lenke1BN型特发性脊柱侧凸志愿者作为研究对象。取仰卧位,应用螺旋CT从T_1上缘至尾骨以1mm间距进行连续扫描,获得Dicom格式CT图像539张。导入逆向工程软件Mimics 10.01,建立包括胸-腰-骶尾椎和胸廓等结构的完整脊柱侧凸三维几何模型。对模型进行几何清理,然后导入有限元前处理软件HyperMesh 7.0划分有限元实体网格,并参照文献添加椎间盘及韧带结构单元,生成完整的特发性脊柱侧凸三维有限元模型。参照文献赋予模型材料参数和实常数,固定约束骶骨,在T_1上表面各节点沿Y轴施加100N拉力进行初步加载,检验模型的单元、节点质量能否达到计算要求。
     结果建立了完整的Lenke1BN型特发性脊柱侧凸三维非线性有限元模型,包括胸-腰-骶尾椎、椎间盘、胸廓及脊柱所有韧带、关节结构。模型共采用4种单元类型,14种材料性质;划分节点341228个,四面体单元1409929个,壳单元163132个,线缆单元715个和杆单元149个。对模型施加100N的拉力载倚,顺利通过计算。
     结论成功构建了基于志愿者个体化CT图像的Lenke1BN型特发性脊柱侧凸三维有限元模型,模型完整、逼真地还原了被模拟对象的脊柱特点;初步运算结果显示,有限元模型网格划分质量良好。
     第二章Lenke1BN特发性脊柱侧凸三维有限元模型有效性验证
     目的通过与志愿者临床实验以及历史体外(尸体)实验对比,验证所建立的Lenke1BN特发性脊柱侧凸三维有限元模型的有效性。
     方法(1)仰卧位左右Bending实验验证:在志愿者仰卧位左右Bending全脊柱X线上,测量T_1椎体中心偏移骶骨中垂线(centersacral vertical line,CSVL)的距离,分别设为A和B。对有限元模型进行如下约束、加载,模拟仰卧位左、右Bending实验:保持骶骨水平固定,约束和骶骨在X轴上平行的两边共4根肋骨最后方节点在Y轴方向的自由度,以此来模拟患者背部和摄片床的接触;在T_1中心节点,于X或-X方向施加载荷,使T_1中心相对CSVL分别向左、向右移动A和B大小的距离。比较X线片和有限元模拟凸侧Bending位下,各个弯Cobb角大小;并对比T_1-L_5各个椎体中心相对CSVL的偏移距离。(2)站立-仰卧实验验证:志愿者分别取站立和仰卧位拍全脊柱X片,并分别测量各个弯的Cobb角。根据志愿者体重,参照文献在有限元模型上分别模拟仰卧和站立,测量2种体位下各个弯的Cobb角,并和X片测量结果进行对照。(3)分段加载实验验证:在建立的模型中提取T_(10-11)、T_(11)-L_1以及L_1-S_1三个节段,分别参照历史同类体外(尸体)实验对有限元节段模型进行约束加载,并将加载结果与各自参照的体外实验结果进行比较,验证模型的有效性。
     结果(1)仰卧位左右Bending全脊柱X片上测量和有限元模拟测量,上胸弯、主胸弯与腰弯凸侧Bending位Cobb角分别为14°,26°,8°和15°,24°,7°;相比X线片测量,有限元模拟误差为8.3%。左侧Bending位X片测量,T_1-L_5各椎体中心至CSVL的平均距离为9.83±7.08cm,有限元模拟的平均距离为9.55±7.04cm,经配对t检验:t=1.77,p=0.095,按照检验水准α=0.05,判定二者没有统计学差异(P>0.05);右侧Bending位X片测量,T_1-L_5各椎体中心至CSVL的平均距离为10.15±7.34cm,有限元模拟的平均距离为10.02±7.35cm,经配对t检验:t=1.9002,p=0.0756,按照检验水准α=0.05,判定二者没有统计学差异(P>0.05)。(2)站立位下,X片测量和有限元模拟测量上胸弯、主胸弯和腰弯的Cobb角分别为37°、50°、24°和33°、51°、24°;仰卧位下,X线测量和有限元模拟各个弯的Cobb角分别为29°、43°、22°和27°、42°、22°;相比X线片,有限元模拟平均误差为3.9%。(3)T_(10-11)、T_(11)-L_1和L_1-S_1各段有限元模型加载结果与各自参照的历史体外(尸体)实验结果基本吻合。
     结论从几何外形、仰卧位左右Bending实验、站立-仰卧实验及分段加载实验,验证了所建立的Lenke1BN型特发型脊柱侧凸模型的可靠性和有效性,为下一步生物力学模拟研究奠定了基础。
     第三章Lenke1BN型特发性脊柱侧凸后路三维矫形有限元模拟研究
     目的利用建立的Lenke1BN型IS有限元模型,模拟后路三维矫形手术,并探讨选择不同下固定椎对矫形效果的影响。
     方法应用建立的Lenke1BN型IS有限元模型,模拟后路全椎弓根螺钉固定三维矫形手术。具体约束加载如下:约束骶骨整体水平固定,参照文献在T_1-L_5各椎节分别施加模拟自身重力和肌肉因素的向下载荷,在固定节段凹侧模拟植入“椎弓根螺钉”,并放入“预弯”矫形钛棒,在棒末端施加向凹侧的旋转力矩,使棒向凹侧旋转90°,模拟旋棒矫形;同时在顶椎区(T_7-T_(10))固定螺钉施加10Nm的扭矩,模拟椎体直接去旋转矫形。上固定椎选择T_4(上端椎+2),下固定椎分别选择T_(12)(中立椎)、L_1(稳定椎)和L_2(稳定椎+1),比较三种固定方案的矫形效果。
     结果顺利完成加载模拟矫形,选择T_(12)(中立椎)、L_1(稳定椎)和L_2(稳定椎+1)作为下固定椎模拟矫形后,上胸弯、主胸弯和腰分别矫正为:7.1°、7.4°、9.2°,6.4°、6.8°、8.3°和6.5°、7.2°、8.6°;矢状面胸椎后凸(T_(5-12))分别为21.3°、20.7°和20.5°;三种矫形方案,矫形效果无显著差异。
     结论首次通过有限元模拟研究表明:对于中度Lenke1BN型特发性脊柱侧凸,选择性融合主胸弯可获得满意的腰弯自发矫正;应用全椎弓根螺钉固定结合顶椎区椎体去旋转技术,可将下固定椎从稳定椎上移至中立椎,减少远端融合节段。
In current study,we established,based on CT images,and validated a complete three-dimensional finite element model of Lenke1BN idiopathic scoliosis(IS),including all thoraco-lumbar-sacral vertebrae and thoracic cage,using computer aided engineering(CAE) softwares. On the basis of above,we simulated posterior three-dimensional correction surgery using this IS finite element model to investigate correction effectiveness with different lowest instrumented vertebra.
     Chapter One Establishment of Three-dimensional Finite Element Model of Lenke1BN Idiopathic Scoliosis
     Objective Using CAE softwares,to build three-dimensional finite element model of Lenke1BN idiopathic scoliosis based on CT images.
     Methods A 18-year-old female Lenke1BN idiopathic scoliosis patient was included as volunteer for current study.CT transverse scanning in supine position was done from T_1 to caudal end in 1mm layer interval,to obtain 539 CT dicom images.All CT images were imported into Mimics 10.01 to form qualified IS three-dimensional geometric model after geometry clean,including all thoraco-lumbar-sacral vertebrae and thoracic cage,which was further delivered to HypherMesh 7.0 to build 3d finite element IS model by mesh partition and quality control.A variety of material parameters were given to different mesh according to references,and 100N axial tension on top surface of T_1 was loaded for preliminary loading calculation using the finite element IS model,to check model quality.
     Results A three-dimensional finite element model of Lenke1BN idiopathic scoliosis was built successfully,including all thoracolumbar -sacral spine and thoracic cage,using 4 mesh types and 14 kinds of material parameters,in consist of 341228 nodes,1409929 tetrahedron elements,163132 shell elements,715 cable elements and 149 rod elements.Preliminary loading calculation was completed smoothly.
     Conclusions A three-dimensional finite element model of Lenke1BN IS in details,was built successfully based on individual CT images.Excellent preliminary loading calculation results using the FE model,proved mesh well-partitioned.
     Chapter Two Validation of Three-dimensional Finite Element Model of Lenke1BN Idiopathic Scoliosis
     Objective To validate 3-dimensional finite element model of Lenke1BN IS built in chapter one,by contrast with in vitro studies.
     Methods(1) Left and right Bending test validation:To measure the vertical distances between T_1 and center sacral vertical line(CSVL) on left and right supine bending X-ray film,finite element IS model was constrained and loaded to simulate supine bending test,with T_1 to be moved left and right the same distances to CSVL.The convex bending Cobb's angles of proximal thoracic curve(PT),main thoracic curve(MT) and lumbar curve(L),and the average distance of T_1-L_5 to CSVL were compared between bending X-ray films and finite element simulation. (2) Erect-supine test validation:Finite element model were simulated erectly by applying corresponding downward forces to every segment for gravity and muscle actions according to references.Erect and supine Cobb's angles of PT,MT and L were measured and compared on A-P X-ray films and finite element simulation.(3) Subsection validation: Segment T_(10-11),T_(11)-L_1 and L_1-S_1 were extracted from the whole finite element model,and the three segments were respectively constrained and loaded referring to historical specimen biomechanical in vitro studies.
     Results(1) The convex bending Cobb's angles of PT,MT and L curve on X-ray films and finite element simulation were 14°,26°,8°and 15°,24°,6°respectively.The error of finite element simulation was 8.3%. The average vertical distance of T_1-L_5 to CSVL on left and right supine bending X-ray film was 9.83±7.08cm and 10.15±7.34cm,with no significant difference comparing to finite element model simulation of 9.55±7.04cm and 10.02±7.35cm correspondingly(P>0.05).(2) Erect Cobb's angles of PT,MT and L were 37°、50°、24°and 33°、51°、24°on X-ray films and by finite element simulation.Supine Cobb's angles of PT, MT and L were 29°、43°、22°and 27°、42°、22°on X-ray films and by finite element simulation.The average error of finite element simulation was 3.9%.(3) The segment simulation results were similar to their references respectively.
     Conclusions The three-dimensional finite element model of Lenke 1BN idiopathic scoliosis were well validated by geometry appearance, left and right supine bending test,erect-spuine test and segment validation,which was qualified for further biomechanical simulation study.
     Chapter Three Three-dimensional Finite Element Simulation of Posterior Surgical Correction of Lenke1BN idiopathic scoiliosis
     Objective To simulate posterior correction surgery using Lenke 1BN IS finite element model and investigate correction effectiveness with different lowest instrumented vertebra(LIV).
     Methods Posterior pedicle screws on concave side and pre-bent rod placed were placed on IS finite element model,constraints and loadings were applied at the same time as follows:sacrum constrained horizontally,corresponding downward forces applied to every segment for gravity and muscle actions according to references,10Nm torsion moment against convex applied to apical zone,and proper torsion moment applied to rod to rotate 90 degrees backward.The upper instrumented vertebra(UIV),was selected to T_4 and LIV down to T_(12) (NV),L_1(SV) and L_2(SV+1) respectively,with comparison of correction effectnesses among the three LIV choices.
     Results After simulations of posterior correction,Cobb's angles of proximal curve,main thoracic curve,lumbar curve and T_(5-12) in sagittal plane,fusion down to T_(12),L_1 and L_2 were 7.1°,7.4°,9.2°,21.3°;6.4°6.8°,8.3°,20.7°and 6.5°,7.2°,8.6°,20.5°respectively.Correction rates were insignificantly different among the three LIV choices.
     Conclusion Selective thoracic curve fusion can lead to satisfactory spontaneous correction of lumbar compensatory curve for Lenke1BNIS. When all pedicle screws instrumentation and direct vertebra rotation of apical zone are used,fusion extended down to neutral vertebra(NV) is enough,with less segments fused than traditionally down to stable vertebra(SV).
引文
[1]Weinstein SL.Natural history.Spine,1999,24(24):2592-2600.
    [2]Lonstein JE.Scoliosis:Surgical Versus Nonsurgical Treatment.Clin Orthop Relat Res,2006,443:248-259.
    [3]Longstein JE.Adolescent idiopathic scoliosis.Lancet,1994,344(8934):1407-1412.
    [4]Carr AJ.Adolescent idiopathic scoliosis in identical twins.J Bone Joint Surg (Br),1990,72(6):1077.
    [5]Kesling KL,Reinker KA.Scoliosis in twins.A meta-analysis of the literature and report of six cases.Spine,1997,22(17):2009-2015.
    [6]Giampietro PF,Raggio CL,Blank RD.Synteny-defined candidate genes for congenital and idiopathic scoliosis.Am J Med Genet,1999,83(3):164-177.
    [7]Qiu XS,Tang NL,Yeung HY,Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis.Spine.2008,33(20):2204-2207.
    [8]Qiu XS,Tang NL,Yeung HY,et al.Melatonin receptor 1B(MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis.Spine,2007,32(16):1748-1753.
    [9]Qiu XS,Tang NL,Yeung HY,et al.Genetic association study of growth hormone receptor and idiopathic scoliosis.Clin Orthop Relat Res.2007,462:53-58.
    [10]Sadat-Ali M,al-Habdan I,al-Othman A.Adolescent idiopathic scoliosis.Is low melatonin a cause? Joint Bone Spine,2000,67(1):62-64.
    [11]Normelli H,Sevastik JA,Akrivos J.The length and ash weight of the ribs of normal and scoliotic person.Spine,1985,10:590-592.
    [12]He Y,Qiu Y,Zhu F,et al.Quantitative analysis of types Ⅰ and Ⅱ collagen in the disc annulus in adolescent idiopathic scoliosis.Stud Health Technol Inform.2006;123:123-128.
    [13]Machida M,Dubousset J,Imamura Y,et al.An experimental study in chickens for the pathogenesis of idiopathic scoliosis.Spine,1993,18(12):1609-1615.
    [14]Brodner W,Krepler P,Nicolakis M,et al.Melatonin and adolescent idiopathic scoliosis.J Bone Joint Surg(Br),2000,82(3):399-403.
    [15]Stokes IA,Laible JP.Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmeric growth.J Biomech,1990,23:589-595.
    [16]Azegami H,Murachi S,Kitoh J,et al.Etiology of idiopathic scoliosis computational study.Clinical Orthopaedics & Related Research,1998,(357):229-236.
    [17]Goto M,Kawakami N,Azegami H,et al.Buckling and bone modeling as factors in the development of idiopathic scolisis.J Biomec Eng,2002,124(6):784-790.
    [18]Huynh AM,Aubin CE,Rajwani T,et al.Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study.Eur Spine J.2007,16(4):523-529.
    [19]Zhang,H,Sucato DJ.Unilateral Pedicle Screw Epiphysiodesis of the Neurocentral Synchondrosis Production of Idiopathic-Like Scoliosis in an Immature Animal Model.J Bone Joint Surg(Am),2008,90(11):2460-2469.
    [20]Braun JT,Hoffman M,Akyuz E,et al.Mechanical Modulation of Vertebral Growth in the Fusionless Treatment of Progressive Scoliosis in an Experimental Model.Spine,2006,31(12):1314-1320.
    [21]Braun JT,Ogilvie JW,Akyuz E,et al.Creation of an Experimental Idiopathic-Type Scoliosis in an Immature Goat Model Using a Flexible Posterior Asymmetric Tether.Spine,2006,31(13):1410-1414.
    [22]Braun JT,Akyuz E.Prediction of Curve Progression in a Goat Scoliosis Model.J Spinal Disord Tech,2005,18:272-276.
    [23]郑国权,张永刚,张巍,等.单侧椎弓根钉固定建立新型山羊脊柱侧凸模型的实验研究.脊柱外科杂志,2007,5(1):29-32.。
    [24]朱晓东,李明,陈强,等.鸡松果体切成术与脊柱侧凸发生之间的关系.中国临床康复杂志,2004,8(26):5564-5565.
    [25]Belytschko T,Finite element stress analysis of an intervertebral disc.J Biomech, 1974,7:277.
    [26] Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res, 1986,208:40-47.
    [27] Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. -computational study. Clin Orthop Relat Res 1998; (357):229-236
    [28] Rohlmann A, Zander T, Burra NK, et al. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom. Eur Spine J,2008;17(2):217-223.
    [29] van der Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng 2007; 35(7): 1206-1215
    [30] Azlan AM, Mohammad AR, Ariffin AK. et al. The HUKM Spinal Instrumentation System for adolescent idiopathic scoliosis. A biomechanical comparison study using finite element analysis. Med J Malaysia 2005,60 Suppl C: 30-34.
    [31] Duke K, Aubin CE, Dansereau J, et al.Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech (Bristol, Avon) 2005; 20(9):923-931
    [32] Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg 2004; 9(1-2): 17-25
    [33] Lafage V, Dubousset J, Lavaste F, et al.Finite element simulation of various strategies for CD correction. Stud Health Technol Inform 2002;91:428-432.
    [34] Aubin CE. Scoliosis study using finite element models. Stud Health Technol Inform 2002,91:309-313.
    [35] Carrier J, Aubin CE, Villemure I, et al.Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput, 2004,42(4): 541-548
    [36] P(?)ri(?) D, Aubin CE, Petit Y, et al.Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech (Bristol, Avon) 2004; 19(2):190-195
    [37] Gr(?)alou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms. J Orthop Res 2002; 20(5): 1121-1128
    [38]P(?)ri(?) D,Sales De Gauzy J,Baunin C,et al.Tomodensitometry measurements for in vivo quantification of mechanical properties of scoliotic vertebrae.Clin Biomech(Bristol,Avon) 2001,16(5):373-379.
    [39]Goto M,Kawakami N,Azegami H,et al.Buckling and bone modeling as factors in the development of idiopathic scoliosis.Spine,2003,28(4):364-370.
    [40]胡明涛,韦兴,赵红平,等.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分型.医用生物力学,2007,22(4):367-372.
    [41]杨晓明,顾苏熙,李明,等.特发性脊柱侧凸椎体楔形变有限元模型分析.中国矫形外科杂志.2008,16(19):3941-5941.
    [42]余慧琴,顾苏熙,李明,等.脊柱侧凸三维有限元模型的建立及其意义.医用生物力学,2008,23(2):136-139.
    [43]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义.生物医学工程杂志,2008,25(5):1084-1088
    [44]汪正宇,刘祖德,王哲,等.脊柱侧凸有限元模型的建立和参数优化.北京生物医学工程杂志,2008,27(1):28-30.
    [45]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯模型.中国组织工程研究与临床康复杂志,2008,12(44):8610-8614.
    [46]Lenke LG,Betz RR,Clements D,et al.Curve Prevalence of a New Classification of Operative Adolescent Idiopathic Scoliosis:Does Classification Correlate With Treatment? Spine,2002,27(6):604-611.
    [47]King HA,Moe JH,Bradford DS,et al.The selection of fusion levels in thoracic idiopathic scoliosis.J Bone Joint Surg[Am]1983;65:1302-13.
    [48]Helenius I,Remes V,Yrjonen T,et al.Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis:long-term functional and radiographic outcomes.J Bone Jiont Surg,2003,85A(12):1056-1067.
    [49]Suk SI,Lee SM,Chung ER,et al.Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis.Spine,2003;28:484-91.
    [50]王岩,张永刚,张雪松,等.侧弯全节段椎弓根螺钉固定矫治单胸弯特发性脊柱侧凸的下固定融合椎选择.中国脊柱脊髓杂志,2005,15(4):203-206.
    [51]Stokes IA,Aronsson DD.Disc and vertebral wedging in patients with progressive scoliosis.J Spinal 1Nsord,2001,14:317-322.
    [52] Shono Y, Kaneda K, Yamamoto I. A biomechanical analysis of Zielke, Kaneda, and Cotrel-Dubousset instrumentations in thoracolumbar scoliosis. A calf spine model. Spine, 1991,16(11):1305-1311.
    [53] Deviren V, Acaroglu E, Lee J, et al. Pedicle screw fixation of the thoracic spine: An in vitro biomechanical study on different configurations. Spine,2005, 30(22):2530-2537.
    [54] Lafage V, Dubousset J, Lavaste F, et al. 3D finite element simulation of Cotrel-Dubousset correction[J]. Comput Aided Surg, 2004,9(1/2): 17-25.
    [55] Rohlmann A, Zander T, Bergmann G. Comparison of the biomechanical effects of posterior and anterior spine stabilizing implants. Eur Spine J, 2005, 14(5):445-453.
    [56] Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J, 2006,15(4):457-464.
    [57] Van Rietbergen B. Direct mechanics assessment of trabecular bone architecture. Biomechanics, 1996,29(4):1653-165.
    [58] Hideyuki A, Shunji M, Junzoh K, et al. etiology of idiopathic scoliosis: a computational study. Clinical Orthopaedics and Related Research, 1998,357:229-236.
    [59] Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses.Eur Spine J, 2004,13 : 83-90.
    [60] Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis. Eur Spine J, 2003,12:413-420.
    [61] Pierre-Luc S, Isabelle V, Aubin CE. Finite element modeling of the growth plate in a detailed spine model. Med Bio Eng Comput, 2007,45:977-988.
    [62] Burstein AH, Reilly DT, Martens M. Aging of bone tissue: Mechanical properties. J Bone Jiont Surg(Am),1976,58:82-86.
    [63] Shirazi-Adl SA, Shrivastava SC, Ahmed AM. Stress analysis of the lumbar disc-body unit in compression: A three dimensional nonlinear finite element study. Spine, 1984,9:120-134.
    [64] Shirazi-Adl A, Ahmed AM, Shirvastava SC. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech, 1986,19:331-350.
    [65] Goel VK,Monroe BT,Gilbertson LG,et al. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine,1995,20(6):689-698.
    [66] Stokes IA,Laible JP.Three dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmetric growth. J Biomech, 1990, 23(6):589-595.
    [67] Wang JL, Parnianpour M, Shirazi-Adl A, et al. Development and validation of a viscoelastic finite element model of an L2/L3 motion segment. Theor Appl Fract Mech, 1997, 28:81-93.
    [68] Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res, 1986,208:40-47.
    [69] Rohlmann A, Zander T, Burra NK, et al. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom. Eur Spine J 2008; 17(2):217-223.
    [70] van der Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng 2007;35(7):1206-1215
    [71] Azlan AM, Mohammad AR, Ariffin AK. The HUKM Spinal Instrumentation System for adolescent idiopathic scoliosis. A biomechanical comparison study using finite element analysis. Med J Malaysia 2005; 60 Suppl C:30-34.
    [72] Duke K, Aubin CE, Dansereau J, et al.Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech (Bristol, Avon) 2005;20(9):923-931
    [73] Lafage V, Dubousset J, Lavaste F, et al. 3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg 2004;9(1-2):17-25
    [74] Lafage V, Dubousset J, Lavaste F, et al. Finite element simulation of various strategies for CD correction. Stud Health Technol Inform 2002;91:428-432.
    [75] Aubin CE. Scoliosis study using finite element models. Stud Health Technol Inform 2002, 91:309-313.
    [76] Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput, 2004,42(4):541-548
    [77] P(?)ri(?) D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech (Bristol, Avon) 2004; 19 (2): 190-195
    [78] Gr(?)alou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms. J Orthop Res 2002; 20(5):1121-1128
    [79] P(?)ri(?) D, Sales De Gauzy J, Baunin C, et al. Tomodensitometry measurements for in vivo quantification of mechanical properties of scoliotic vertebrae. Clin Biomech (Bristol, Avon) 2001,16(5):373-379.
    [80] Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis. Spine, 2003,28(4):364-370.
    [81] Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis, Spine, 1993, (16) : 2457-2464.
    [82] Avinash G. Patwardhan, Thomas M. Gavin, Wilton H. Bench, et al. biomechanical comparison of the CTLSO brace and the TLSO for treatment of idiopathic scoliosis, Journal of Prosthetics and Orthotics, 1996, 8(4): 115-122.
    [83] Gignac D, Aubin CE, Labelle H. Optimization method for 3D bracing correction of scoliosis using a finite element model.Eur Spine J, 2000,9:185-190.
    [84] Grealou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis A biomechanical study.Journal of Orthopaedic Research,2002,20:1121-1128.
    [85] Delphine P, Carl-Eric A, Yvan P, et al. Boston Brace Correction in Idiopathic Scoliosis: A Biomechanical Study.Spine,2003,28(15):1672-1677.
    [86] Anne-Marie H, Aubin CE, Talib R, et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study.Eur Spine J. 2007,16: 523-529.
    [87] Liao YC, Feng CK, Tsai MW, et al. Shape Modification of the Boston Brace Using a Finite-Element Method with Topology Optimization. Spine, 2007, 32 (26): 3014-3019.
    [88] Mien C, Aubin CE, Hubert L, et al. Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Bio Eng Comput, 2007,45:467-473.
    [89] Kajsa D, Aubin CE, Jean D, et al. Computer simulation for optimization of patient positioning in spinal deformity instrumentation surgery. Med Bio Eng Comput, 2008,46:33-41.
    [90]Mark D,Aubin CE,Alain M,et al.The role of spinal concave-convex biases in the progression of idiopathic scoliosis.Eur Spine J,2009,18:180-187.
    [1]Nachemson A.The load on lumbardisks in different positions of the body.Clin Orthop,1964,45:107-122.
    [2]Schultz A,Andersson G,Ortengren R,et al.Loads on the lumbar spine validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals.J Bone Joint Surg(Am),1982,64:713-720.
    [3]Villemure I,Aubin CE,Dansereau J,et al.Biomechanical simulations of the spine deformation procession adolescent idiopathic scoliosis from different pathogenesis hypotheses.Eur Spine J,2004,13:83-90.
    [4]Panjabi MM,Brand RA,White AA Ⅲ.Three-dimensional flexibility and stiffness properties of the human thoracic spine.J Biomech 1976;9:185-192.
    [5]Qiu TX,Teo EH,Lee KK,et al.Validation of T10-T11 Finite Element Model and Determination of Instantaneous Axes of Rotations in Three Anatomical Planes.Spine,2003,28(24):2694-2699.
    [6]White AA,Panjabi MM.Clinical Biomechanical of the Spine.2nd ed.Philadalphia:J.B.Lippincott Company,1990.
    [7]Panjabi MM,Thomas DT,Oxland R,et al.Thoraco-lumbar burst fracture:a biomechanical investigation of its multidirectional flexibility.Spine,1994,19(5):578-585.
    [8]Yamamoto I,Panjabi MM,Crisco T,et al.Three-dimensional Movements of the whole lumbar spine and lumbosacml joint.Spine,1989,14(11):1256-1260.
    [9]Viviani GR,Ghista DN,Lozada P J,et al.Biomechanical analysis and simulation of scoliosis surgical correction.Clin Orthop Relat Res,1986,(208):40-47.
    [10]Stokes IA,Gardner-Morse M.Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis,Spine,1993,(16):2457-2464.
    [11]Avinash G.Patwardhan,Thomas M.Gavin,Wilton H.Bench,et al.biomechanical comparison of the CTLSO brace and the TLSO for treatment of idiopathic scoliosis,Journal of Prosthetics and Orthotics,1996,8(4):115 -122.
    [12]Hideyuki A,Shunji M,Junzoh K,et al.etiology of idiopathic scoliosis:a computational study.Clinical Orthopaedics and Related Research,1998,357:229-236.
    [13]Gignac D,Aubin CE,Labelle H.Optimization method for 3D bracing correction of scoliosis using a finite element model.Eur Spine J,2000,9:185-190.
    [14]Grealou L,Aubin CE,Labelle H.Rib cage surgery for the treatment of scoliosis A biomechanical study.Journal of Orthopaedic Research,2002,20:1121-1128.
    [15]汪正宇,刘祖德,王哲,等.脊柱侧凸有限元模型的建立和参数优化. 北京生物医学工程,2008,27(1):28-32.
    [16]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义.生物医学工程杂志,2008,25(5):1084-1085.
    [17]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯模型.中国组织工程研究与临床康复.2008,12(44):8610-8614.
    [18]王哲,汪正宇,王冬梅,等.基于CT图像的侧凸脊柱胸腰段及骶骨整体三维有限元模型的建立.计算机应用技术,2007,34(4):24-26.
    [19]Rohlmann A,Richter M,Zander T,et al.Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant.Eur Spine J,2006,15:457-464.
    [1]Weinstein SL.Natural history.Spine,1999,24(24):2592-2600.
    [2]Lonstein JE.Scoliosis:surgical versus nonsurgical treatment.Clin Orthop Relat Res,2006,443:248-259.
    [3]Lenke LG,Bridwell KH,Baldus C,et al.Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis.J Bone Joint Surg(Am),1992;74:1056-67.
    [4]Barr S J,Schuette AM,Emans JB.Lumbar pedicle screws versus hooks:Results in double major curves in adolescent idiopathic scoliosis.Spine, 1997;22:1369-79.
    [5]Liljenquvist UR,Lesien U,Hackenberg L,et al.Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis.Eur Spine J 2002;11:336-43.
    [6]Suk SI,Lee CK,Kim W J,et al.Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis.Spine 1995;20:1399-405.
    [7]King HA,Moe JH,Bradford DS,et al.The selection of fusion levels in thoracic idiopathic scoliosis.J Bone Joint Surg Am 1983;65:1302-13.
    [8]Lenke L,Betz R,Harms J,et al.Adolescent idiopathic scoliosis:a new classification to determine extent of spinal arthrodesis.J Bone Joint Surg Am 2001;83A:1169-81.
    [9]Qiu GX,Zhang JG,Wang YP,et al.A New Operative Classification of Idiopathic Scoliosis:A Peking Union Medical College Method.Spine,2005,30(12):1419-1426.
    [10]Lenke LG,Betz RR,Clements D,et al.Curve Prevalence of a New Classification of Operative Adolescent Idiopathic Scoliosis:Does Classification Correlate With Treatment? Spine,2002,27(6):604-611.
    [11]King HA,Moe JH,Bradford DS,et al.The selection of fusion levels in thoracic idiopathic scoliosis.J Bone Joint Surg[Am]1983;65:1302-13.
    [12]Helenius I,Remes V,Yrjonen T,et al.Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis:long-term functional and radiographic outcomes.J Bone Jiont Surg,2003,85A(12):1056-1067.
    [13]Suk SI,Lee SM,Chung ER,et al.Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis.Spine,2003;28:484-91.
    [14]王岩,张永刚,张雪松,等.侧弯全节段椎弓根螺钉固定矫治单胸弯特发性脊柱侧凸的下固定融合椎选择.中国脊柱脊髓杂志,2005,15(4):203-206.
    [15]Nachemson A.The load on lumbardisks in different positions of the body.Clin Orthop,1964,45:107-122.
    [16]Schultz A,Andersson G,Ortengren R,et al.Loads on the lumbar spine validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals.J Bone Joint Surg(Am),1982,64:713-720.
    [17]Villemure I,Aubin CE,Dansereau J,et al.Biomechanical simulations of the spine deformation procession adolescent idiopathic scoliosis from different pathogenesis hypotheses.Eur Spine J,2004,13:83-90.
    [18]Harrington,PR.Treatment of scoliosis.J Bone Joint Surg.1962,44A:591.
    [19]Wojeik AS,Webb JK,Burwell RG,et al.Harrington-luque and CD instumentation for indiopathie thoraeiei scoliosis:A postoperative comparison using segmental radiologic analysis.Spine,1990,15(5):424-431.
    [20]Cotrel Y,Dubousset J,Guillaumat M.New universal instrumentation in spinal surgery.ClinOrthop,1988,227:10-14.
    [21]唐盛平,林子平,吴建华,等.ISOLA器械治疗小儿脊柱侧凸.中华小儿外科杂志,2001,22:197-199.
    [22]张学军,于风章,孙琳,等.中华长城内固定器械治疗青少年脊柱侧凸.中国脊柱脊髓杂志,2002,12:296-297.
    [23]吕锦瑜,邱勇,朱丽华,等.CD—HoriZOn器械在脊柱侧凸后路矫正中的应用.中国脊柱脊髓杂志,2003,13:276-278.
    [24]王以朋,叶启彬,邱贵兴,等.TRAFIX内固定系统在特发性脊柱侧凸矫正中的临床应用.华外科杂志,2001,39:866-868.
    [25]杨述华,李进,许伟华,等.椎板钩和椎弓根钉系统治疗脊柱侧凸病例对照研究.临床骨科杂志,2004,7:6-9.
    [26]Suk SI,Kim W J,Kim J H,et al.Restoration of thoracic kyphosis in hypokyphotic spine:a comparison between multiple hook and segmental pedncle screw fixation in adolescent idiopathic scoliosis.J Spine Disord,1999,12:489-495.
    [27]Arlet V,Papin P,Marchesi D,et al.Pullout Strength ofpedicle Screws versus pedicle and laminar hooks in the thoracic spine.Acta Orthop Beig,2001,67:157-163.
    [28]Lee SM,Suk SI,Chung ER.Direct Vertebral Rotation:A New Technique of Three-Dimensional Deformity Correction With Segmental Pedicle Screw Fixation in Adolescent Idiopathic Scoliosis.Spine,2004,29(3):343-349.
    [29]Cochran T,Irstam L,Nachemson A.Long-term anatomic and functional changes in patients with adolescent idiopathic scoliosis treated by Harrington rod fusion.Spine 1983;8:576-84.
    [30]Lenke LG,Edwards CC,Birdwell KH,et al.The Lenke Classification of Adolescent Idiopathic Scoliosis: How it Organizes Curve Patterns as a Template to Perform Selective Fusions of the Spine. Spine,2003,28(20S):S 199-207.
    [31] Betz RR, Harms J, Clements DH Ⅲ, et al. Comparison of anterior and posterior instrumentation for the correction of adolescent thoracic idiopathic scoliosis. Spine 1999;24:225-39.
    [32] Engsberg JR, Lenke, LG, Uhrich ML, et al. Prospective Comparison of Gait and Trunk Range of Motion in Adolescents With Idiopathic Thoracic Scoliosis Undergoing Anterior or Posterior Spinal Fusion. Spine, 2003,28(17): 1993-2000.
    [33] Kuklo TR, O'Brien MF, Lenke LG, et al. Comparison of the Lowest Instrumented, Stable, and Lower End Vertebrae in "Single Overhang" Thoracic Adolescent Idiopathic Scoliosis: Anterior Versus Posterior Spinal Fusion. Spine,2006,31(19):2232-2236.
    [34] Margulies JY, Floman Y, Robin GC, et al. An algorithm for selection of instrumentation levels in scoliosis. Eur Spine J, 1998,7(2):88-94.
    [35] Majd ME, Holt RT, Gastro FP. Selection of fusion levels in scoliosis surgery. J Spinal Disord Tech, 2003,16(1):71-82.
    [1]Kulak RF.Non-linear behavior of the human intervertebral disc under axial load.J Biomech,1976,9:377.
    [2]Liu YK.System identification scheme for the estimation of the linear viscoelastic properties of intervertebral disc.Aviat Space Eviron Med.1978,49:175.
    [3]Brekelmans WA,Poort HW,Slooff TJ.A new method to analyse the mechanical behaviour of skeletal parts.Acta Orthop Scand,1972,43:301-317.
    [4]Rybicki EF,Simonen FA,Weis EB Jr.On the mathematical analysis of stress in the human femur.J Biomech,1972,5:203-215.
    [5]Belytschko T,Finite element stress analysis of an intervertebral disc.J Biomech,1974,7:277.
    [6]LiuYk,Ray G,Hirsch.The resistance of the lumbar spine to direct shear[J].Orthop Clin north Am,1975,6:277.
    [7]刘雷,沈根标.胸腰椎脊柱损伤的生物力学及有限元分析.实用骨科杂志,2001,7(5):354-356.
    [8]Gupta S.Development and experimental validation of a three-dimensional finite Element model[J].Proc Inst Mech Eng,2004,218:127-134.
    [9]高允海.有限元分析法研究生物力学新进展[J].国外医学生物医学工程分册,2003,26(6):281-282.
    [10]Yonganandan N,Kumaresan S,Voo L,et al.Finite element model of the human lower cervical spine:parametric analysis of the C4-6 unit.J Biomech Eng,1997,119:87.
    [11]Geol VK,Kong W,Han JS,et al.A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.Spine,1993,18:1531.
    [12]Wu JS,Chen JH.Clarification of the mechanial behaviour of spinal motion segments through a three-dimentional poroelastic mixed finite element model.Med Eng Phys,1996,18:215.
    [13]Gilbertson LG,Goel VK,Kong WZ,et al.Finite element methods in spine biomechanics research.Crit Rev Biomed Eng,1995,23:411.
    [14]Yoganandan N,Kumaresan S,Voo L,et al.Fintite element applications in human cervical spine modeling.Spine,1996,21(15):1824-1834.
    [15]陈伯华,孙鹏,Natarajan N,等.颈椎三维有限元模型的建立及意义.中国脊柱脊髓杂志,2002,12(2):105-108.
    [16]Teo EC,Ng HW.First cervical vertebra(atlas) fracture mechanism studies using finite element method.J Biomech,2001,34(1):13-21.
    [17]Puttlitz CM,Goel VK,Clark CR,et al.Pathomechanisms of failure of the odontoid.Spine,2000,25(22):2868-2876.
    [18]Graham RS,Oberlander EK,Stewart JE,et al.Validation and use of a finite element model of C-2 for determination of stress and fracture patterns of anterior odontoid loads.J Neurosurg,2000,93(Suppl 1):117-125.
    [19]Clausen JD,Goel VK,Traynelis VC,et al.Uncinate processes and Luschkas joints influence the biomechanics of the cervical spine:Quantification using a finite element model of the C5-C6 segment.J Orthop Res,1997;15:342-7.
    [20]Dauvillers F,Bendjellal F,Weiss M,et al.Development of a finite element model of the neck.Proceedings of the 38th STAPP Car Crash Conference SAE 942210,1994;77-91.
    [21]Goel VK,Clausen JD.Prediction of load sharing among spinal components of a C5-C6 motion segment using the finite element approach.Spine 1998;23:684-91.
    [22]Jost R,Nurick GN.Development of a finite element model of the human neck subjected to high g-level deceleration.Int J Crashworthiness 2000;5:259-67.
    [23]Kleinberger M.Application of finite element techniques to the study of the cervical spine.Proceedings of the 37th STAPP Car Crash Conference SAE933131,1993;261-72.
    [24]Kumaresan S,Yoganandan N,Pintar FA.Age-specific pediatric cervical spine biomechanical responses:Three-dimensional nonlinear finite element models.Proceedings of the 41st STAPP Car Crash Conference SAE 973319,1997;31-61.
    [25]Kumaresan S,Yoganandan N,Pintar FA.Finite element analysis of the cervical spine:A material property sensitivity study.Clin Biomech 1999;14:41-53.
    [26]Maurel N,Lavaste F,Skalli W.A three-dimensional parameterized finite element model of the lower cervical spine:Study of the influence of the posterior articular facets.J Biomech 1997;30:921-31.
    [27]Ng HW,Teo EC.Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading. J Spinal Disord 2001;14:201-10.
    [28] Stemper BD, Kumaresan S, Yoganandan N, et al. Head-neck finite element model for motor vehicle inertial impact: Material sensitivity analysis.Biomed Sci Instrumentation 2000;36:331-335.
    [29] Wheeldon J, Khouphongsy P, Kumaresan S, et al. Finite element model of human cervical spinal column. Biomed Sci Instrumentation 2000;36:337-42.
    [30] Yang KH, Zhu F, Luan F, et al. Development of a finite element model of the human neck. Proceedings of the 42nd Stapp Car Crash Conference. SAE983157,1998;1-11.
    [31] Voo L,Denman J,Kumaresan S,et al. Development of 32D finite element model of cervical spine. Avd Bioeng, 1995,31 :13 - 14.
    [32] Kumaresan S, Yoganadan N,Pintar FA,et al. Finite element model of cervical laminectomy with graded facetectomy. J Spinal Disorder, 1997,10 (1) :40 - 46.
    [33] Kumaresan S,Yoganandan N,Pintar. Finite element analysis of anterior cervical spine interbody fusion. Bio Medical Materials & Engineering, 1997,7 :221 - 230.
    [34] Goel VK, Clausen JD. Predicition of load sharing among spinal components of a C5-C6 motion segment using the flintc clement approach. Spine, 1998, 23 (6):684-91.
    [35] Ng HW, Teo EC, Lee KK, et al.Finite element analysis of cervical spinal instability under physiologic loading.J Spinal Disord Tech. 2003,16(1):55-65.
    [36] Zhang QH,Teo EC,Ng HW,et al.Finite element analysis of moment rotation relationships for human cervical spine.J Biomech,2006,39(1):189-193.
    [37] Scifert J, Totoribe K, Goel V, et al. Spinal cord mechanics during flexion and extension of the cervical spine: a finite element study.Pain Physician. 2002,5(4):394-400.
    [38] Greaves CY, Gadala MS, Oxland TR.et al.A three-dimensional finite element model of the cervical spine with spinal cord: an investigation of three injury mechanisms.Ann Biomed Eng. 2008,36(3):396-405.
    [39] Hu J, Yang KH, Chou CC, et al.A numerical investigation of factors affecting cervical spine injuries during rollover crashes. Spine. 2008, 33(23):2529 -2535.
    [40] Imajo Y, Hiiragi I, Kato Y, Taguchi T.et al.Use of the finite element method to study the mechanism of spinal cord injury without radiological abnormality in the cervical spine.Spine,2009,34(2):E83-87.
    [41]VooL M,Kumaresan S,Yoganandan N,et al.Finite element analysis of cervical facetectomy.Spine,1997,22(9):964-969.
    [42]Ng HW,Teo EC,Zhang Q.Influence of cervical disc degeneration after posterior surgical techniques in combined flexion-extension--a nonlinear analytical study.J Biomech Eng.2005,127(1):186-192.
    [43]Natarajan RN,Chen BH,An HS,et al.Anterior cervical fusion a finite element model study on motion segment stability including the effect of osteoporosis.Spine,2000,25(8):955-961.
    [44]Lim TH,Kwon H,Joen CH,et al.Effect of end plate conditions and bone mineral density on the compressive strength of the graft endplate interface in anaterior cervical spine fusion.Spine,2001,26:951-956.
    [45]Lopez-Espina CG,Amirouche F,Havalad V.et al.Multilevel cervical fusion and its effect on disc degeneration and osteophyte formation.Spine.2006,31(9):972-978.
    [46]Teo EC,Yang K,Fuss FK,et al.Effects of cervical cages on load distribution of cancellous core:a finite element analysis.J Spinal Disord Tech.2004,17(3):226-231.
    [47]Epari DR,Kandziora F,Duda GN.et al.Stress shielding in box and cylinder cervical interbody fusion cage designs.Spine,2005,30(8):908-914.
    [48]Galbusera F,Bellini CM,Costa F,et al.Anterior cervical fusion:a biomechanical comparison of 4 techniques.Laboratory investigation.J Neurosurg Spine.2008,9(5):444-449.
    [49]Galbusera F,Bellini CM,Raimondi MT,et al.Cervical spine biomechanics following implantation of a disc prosthesis.Med Eng Phys.2008,30(9):1127-33.
    [50]Rousseau MA,Bonnet X,Skalli W.et al.Influence of the geometry of a ball-and-socket intervertebral prosthesis at the cervical spine:a finite element study.Spine,2008,33(1):E10-14.
    [51]李雪迎,王春明,殷秀珍,等.颈椎牵引过程的三维有限元分析.中华理疗杂志,1999,22(6):53-56.
    [52]郎继孝,陈新民,董振风,等.正常人颈椎前屈运动的三维空间有限元研究.颈腰痛杂志,2001,22(4):265-266.
    [53]陈伯华 J;孙鹏J;Natarajan N,等.颈椎三维有限元模型的建立及意义.中国脊柱脊髓杂志,2002,12(2):105-108.
    [54]程黎明,贾连顺,黄本才,等.下颈椎三维有限元模型的建立.第二军医大学学报,2003,24(3):339-341.
    [55]程黎明,贾连顺,蔡宣松,等.颈椎前路椎管扩大的三维有限元研究.第二军医大学学报,2003,24(4):418-420.
    [56]张军,金观昌,宋建新,等,人体颈椎C7退变性的有限元分析与实验研究.清华大学学报(自然科学版),2004,(11):1509-1512.
    [57]陈新民,郎继孝,陈德喜,等.应用三维有限元模型研究颈椎不同工况下的生物力学变化.临床骨科杂志,2003,6(4)294-296.
    [58]付裕,阮狄克,刘斌,等.利用CT扫描及CAD技术建立第3-7颈椎三维有限元模型.内蒙古医学杂志,2005,37(12):1073-1074.
    [59]陈强,侯铁胜,杨国标,等.全颈椎三维有限元模型的建立.2006,27(5):554-555.
    [60]周华军,张美超,李锋,等.人工颈椎间盘置换术后颈椎生物力学的有限元分析.生物骨科材料与临床研究,2007,4(05):1-5.
    [61]王芳,张建国,薛强,等.挥鞭样仿真全颈椎有限元模型的建立和验证.生物医学工程与临床.2008,12(01):13-16.
    [62]卢畅,韩珂,李晶,等.全颈椎三维有限元模型建立及验证方法探讨.医学临床研究,2008,25(3):389-392.
    [63]王晓军,刘伟强,阎志进,等.颈椎前路内植入固定系统的有限元模拟及生物力学分析.北京生物医学工程,2008,27(3):267-271.
    [64]Teo EC,Paul JP,Evans JH.Finite element s tress analys is of a cadaver second cervical vertebra.Med Biol Eng Comput 1994;32(2):236-238.
    [65]Teo EC,Ng HW.Firs t cervical vertebra(atlas) fracture mechanisms tudies using finite element method.J Biomech 2001;34(1):13-21
    [66]Bozkus H,Karakas A,Hanci M,et al.Finite element model of the Jefferson fracture:comparison with a cadaver model.Eur Spine J,2001;10(3):257-263.
    [67]Puttlitz CM,Goel VK,Traynelis VC,et al.A finite element investigation of upper cervical instrumentation.Spine,2001,26:2449-2455.
    [68]夏虹,张美超,赵卫东,等.寰椎三维有限元模型的建立及其骨折机制. 中华创伤杂志,2004,20(4):209-212.
    [69]Brolin K,Halldin P,Development of a Finite Element Model of the Upper Cervical Spine and a Parameter Study of Ligament Characteristics.Spine,2004,29(4):376-385.
    [70]Zhang H,Bai J.Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads.Spine,2007,32(9):968-974.
    [71]廖穗祥,夏虹,昌耘冰,等.上颈椎三维有限元模型的建立[J].中国组织工程研究与临床康复,2007,11(27):5269-5272.
    [72]Patwardhan AG;Li SP,Gavin T,Lorenz M,et al.Orthotic stabilization of thoracolumbar injuries.A biomechanical analysis of the Jewett hyperextension orthosis.Spine,1990,15(7):654-661.
    [73]Villarraga LM,Cripton PA,Bellezza AJ,et al.Stress levels in bones and bone cement in the thoracolumbar spine afer kyphoplasty.Finite element study.Orthopade.2004,33(1):48-55.
    [74]Crawford RP,Keaveny TM.Relationship between axial and bending behaviors of the human thoracolumbar vertebra.Spine.2004,29(20):2248-2255.
    [75]Qiu TX,Tan KW,Lee VS,et al.Investigation ofthoracolumbar T12-L1burst fracture mechanism using finite element method.Med Eng Phys.2006,28(7):656-64.
    [76]Qiu TX,Teo EC,Zhang QH.Comparison of kinematics between thoracolumbar T11-t12 and T12-L1 functional spinal units.Proc Inst Mech Eng.2006,220(4):493-504.
    [77]Qiu TX,Teo EC,Zhang QH.Effect of bilateral facetectomy of thoracolumbar spine T11-L1 on spinal stability.Med Biol Eng Comput,2006,44(5):363-370.
    [78]Tyndyka MA,Barron V,McHugh PE,et al.Generation of a finite element model of the thoracolumbar spine.Acta Bioeng Biomech.2007;9(1):35-46.
    [79]刘雷,沈根标.胸腰椎损伤的三维有限元模型的应力分析.中华创伤杂志,1995,11(6):343-344.
    [80]戴力扬。胸腰椎爆裂性骨折损伤机理的生物力学研究.医用生物力学,2000,15(1):19-21.
    [81]李健,徐晖,程立明,等.胸腰段椎体压缩性骨折三维有限元模型的建立及其意义.中国临床解剖学杂志,2005,23(2):199-201.
    [82]张平,李健,张美超,等.在不同状态下胸腰段小关节应力分析.中国临床解剖学杂志,2005,23(6):656-660.
    [83]刘胜,韩德韬.胸腰椎不稳定骨折前后路短节段内固定有限元生物力学研究.中国骨与关节损伤杂志,2008,23(10):796-798.
    [84]Liu YK,Ray G,Hirsch.The resistance of the lumber spine to direct shaear.Orthop Clin Noth AM,1975,6(1):33-49.
    [85]Shirazi-Adl A,Parnianpour M.Nonlinear response analysis of the human ligamentous lumbar spine in compression on mechanisms affecting the postural stability.Spine,1993,18:147-158.
    [86]Zander T,Rohlmann A,Burra NK,et al.Estimation of muscle forces in the lumbar spine during upper body inclination.Clin Biomech(Bristol,Avon),2001,16(Suppl1):S73-S80.
    [87]Zander T,Rohlmann A,Bergmann G.Analysis of simulated single ligament transection on the mechanical behaviour of a lumbar futional spinal unit.Biomed Tech (Berl),2004,49(2):27-32.
    [88]Rohlmann A,Zander T,Schmidt H,et al.Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method.J Biomech,2006,39(13):2484-2490.
    [89]Holzapfel GA,Stadler M.Role of facet curvature for accurate vertebral facet load analysis.Eur Spine J,2006,15(6):849-856.
    [90]Natarajan RN,Lavender SA,An HA,et al.Biomechanical response of a lumbar intervertebral disc to manual lifting activities:a poroelastic finite element model study.Spine,2008,33(18):1958-1965.
    [91]Ivanov AA,Faizan A,Ebraheim NA,et al.The effect of removing the lateral part of the pars interarticularis on stress distribution at the neural arch in lumbar foraminal microdecompression at L3-L4 and L4-L5:anatomic and finite element investigations.Spine,2007,32(22):2462-2466.
    [92]Chen CS,Cheng CK,Liu CL,et al.Stress analysis of the disc adjacen to interbody fusionin lumbar spine.Med Eng phys,2001,23(7) 483-491.
    [93]Liebschner MA,Rosennberg WS,Keaveny TM.Effects of bone cement volume and distribution on vertebral stiffness after vertebroplast.Spine,2001,26(14):1547-1554.
    [94]Totoribe K,Chosa E,Tajima N.A biomechanical study of lumbar fusion based on a three-dimensional nonlinear finite element method.J Spinal Disord Tech, 2004,17(2): 147-53.
    [95] Rohlmann A, Burra NK, Zander T, et al.Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis.Eur Spine J. 2007 Aug; 16(8): 1223-31.
    [96] Rohlmann A, Mann A, Zander T, et al.Effect of an artificial disc on lumbar spine biomechanics: a probabilistic finite element study.Eur Spine J. 2009, 18 (1):89-97.
    [97] Shirazi-Adl A. Nonlinear stress analysis of the whole lumbar spine in torsion mechanics of facet articulation.J Biomech, 1994,27(3):289-299.
    [98] Konz RJ,Goel VK, Grobler LJ,et al.The pathomechainsom of spondylolytic spondylolisthesis in immature primate lumbar spine in vitro and finite element assessments. Spine,2001,26(4):E38-E49.
    [99] Sairyo K,Katoh S, Sasa T,et al. Athletes with unilateral spodylolysis are at risk of stress fracture at the contralateral pedicle and pars interarticularis:a clinicaland biomechanical study.Am Sports Med,2005,33(4):583-590.
    [100] Sairyo K, Goel VK, Vadapalli S,et al.Biomechanical comparison of lumbar spine with or without spina bifida occulta. A finite element analysis. Spinal Cord, 2006,44(7):440-444.
    [101] Sairyo K, Goel VK,Masuda A,et al.Three dimensional finite elment analysis of the pediatric lumbar spine.PartⅠ: pathomechanis of apophyseal bony ring fracture.Eur Spine J,2006,15(6):923-929.
    [102] Pitzen T, Geisler FH, Matthis D,et al. Motion of threaded cages in posterior lumbar interbody fusion. Eur Spine J. 2000,9(6):571-576.
    [103] Kim Y. Prediction of mechanical behaviors at interfaces between bone and two interbdy cages of lumbar spine segments. Spine, 2001,26(13):1437-1442.
    [104] Chiang MF, Zhong ZC, Chen CS,et al.Biomechanical comparison of instrumented posterior lumbar interbody fusion with one or two cages by finite element analysis.Spine,2006,31(19):E682-689.
    [105] Vadapalli S, Sairyo K, Goel VK,et al.Biomechanical rationale for using polyetheretherketone (PEEK) spacers for lumbar interbody fusion-A finite element study.Spine,2006,31 (26):E992-998.
    [106] Zhong ZC, Wei SH, Wang JP,et al.Finite element analysis of the lumbar spine with a new cage using a topology optimization method.Med Eng Phys.2006,28(1):90-8.
    [107]Chen SH,Yai CL,Lin CY,et al.Biomechanical comparison of a new stand-alone anterior lumbar interbody fusion cage with established fixation techniques -a three-dimensional finite element analysis.BMC Musculoskelet Disord.2008,18(9):88.
    [108]戴力扬,屠开元,徐印坎,等.后部结构切除对腰椎应力分布影响的三维有限元分析.中国临床解剖学杂志,1990,8(4):238-240.
    [109]戴力扬,屠开元,徐印坎,等.腰椎椎体应力分布的三维有限元分析.中国临床解剖学杂志,1991,9:46-48.
    [110]侯铁胜,王惠聪.椎间盘部分切除对腰椎应力分布影响的有限元分析.生物医学工程学杂志.1991,8(2):133-136.
    [111]刘雷,沈根标,等.胸腰椎损伤的三维有限元模型的应力分析.中华创伤杂志,1995,11(6):343-344.
    [112]谭军,万卫平,王鸣鹏,等.应用三维有限元法分析正常人腰椎椎体的应力分布.第二军医大学学报,1997,18(6):566-568.
    [113]杜东鹏,张克华,葛宝丰,等.腰椎疲劳骨折的有限元分析.中国临床解剖学杂志.1999,17(3):268-269.
    [114]毕胜,张明.腰椎三维有限元模型的建立及应用.颈腰痛杂志,2001,22(4):339-341.
    [115]张美超,肖进,李义凯,等.腰椎小关节接触模型的有限元分析.第一军医大学学报,2002,22(9):836-838.
    [116]张辉,靳安民,张美超,等.腰椎峡部裂记忆合金节段内固定器的有限元分析.第一军医大学学报,2002,22(12):1128-1130.
    [117]韦兴,侯树勋,张美超,等.腰椎滑脱短节段固定器的初步有限元分析.中国脊柱脊髓杂志,2002,12(5):363-366.
    [118]张美超,程立明,李义凯,等.三维有限元在正常与后凸畸形胸腰椎体力学性能比较中的应用.中国康复医学杂志,2003,18(11):653-655.
    [119]齐振熙,马英锋.退变性腰椎滑脱的三维有限元分析(J).中国骨伤,2004,17(12):714-716.
    [120]迟增德,刘尚礼,张美超,等.人工椎间盘置换腰椎节段有限元模型的 建立.中国临床解剖学杂志,2005,23(3):303-306.
    [121]范子文,黄文铎,张美超,等.腰椎单、双Cage置入加椎弓根钉内固定的三维有限元分析比较.广州医学院学报,2005,33(5):36-40.
    [122]陆声,张美超,徐永清,等.骨质疏松腰椎三维有限元数字化模型的建立.中国临床康复,2006,10(9):127-130.
    [123]张德盛,宋跃明.下腰椎不同融合方式的有限元研究.中国修复重建外科杂志,2006,20(4):400-403.
    [124]马英锋,齐振熙.退变性腰椎滑脱三维有限元模型的建立.宁夏医学院学报,2006,28(2):111-114.
    [125]刘耀升,陈其昕,廖胜辉,等.椎间盘高度降低及退变对腰椎生物力学影响的有限元分析.中国临床解剖学杂志,2006,24(5):566-570.
    [126]刘耀升,陈其昕,李方财,等.终板凹陷角变化对腰椎运动节段生物力学影响的有限元分析.中国临床解剖学杂志,2007,25(2):207-211.
    [127]姚庆强,王黎明,蒋纯志,等.非融合棘突间撑开器治疗腰椎早期退变性腰痛的三维有限元分析.中国骨与关节损伤杂志,2008,23(4):292-295.
    [128]敖俊,靳安民,方国芳,等.前路腰椎间融合后路关节突螺钉固定术螺钉应力的有限元研究.中国临床解剖学杂志,2008,26(4):429-432.
    [129]敖俊,方国芳,冯伟,等.以三维有限元模型分析短节段腰椎椎弓根螺钉系统固定后螺钉应力的分布.中国组织工程研究与临床康复,2008,12(39):7601-7604.
    [130]陈家麟,茅祖斌,吴小涛.四种经椎间孔腰椎间融合固定方式的三维有限元分析.中国组织工程研究与临床康复,2008,12(39):7605-7611.
    [131]Viviani GR,Ghista DN,Lozada PJ,et al.Biomechanical analysis and simulation of scoliosis surgical correction.Clin Orthop Relat Res,1986,(208):40-47.
    [132]Carr AJ.Adolescent idiopathic scoliosis in identical twins.J Bone Joint Surg(Br),1990,72(6):1077.
    [133]Kesling KL,Reinker KA.Scoliosis in twins.A meta-analysis of the literature and report of six cases.Spine,1997,22(17):2009-2015.
    [134]Giampietro PF,Raggio CL,Blank RD.Synteny-defined candidate genes for congenital and idiopathic scoliosis.Am J Med Genet,1999,83(3):164-177.
    [135]Qiu XS,Tang NL,Yeung HY,Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis.Spine. 2008,33(20):2204-2207.
    [136] Qiu XS, Tang NL, Yeung HY,et al.Melatonin receptor IB (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine. 2007,32(16):1748-1753.
    [137] Qiu XS, Tang NL, Yeung HY,et al.Genetic association study of growth hormone receptor and idiopathic scoliosis.Clin Orthop Relat Res. 2007,462:53-58.
    [138] Machida M ,Dubousset J , Imamura Y,et al. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine,1993,18(12):1609-1615.
    [139] Brodner W, Krepler P,Nicolakis M, et al. Melatonin and adolescent idiopathic scoliosis. J Bone Joint Surg (Br),2000,82(3):399-403.
    [140] Sadat-Ali M, al-Habdan I,al-Othman A.Adolescent idiopathic scoliosis. Is low melatonin a cause? Joint Bone Spine, 2000,67(l):62-64.
    [141] Normelli H, Sevastik JA,Akrivos J. The length and ash weight of the ribs of normal and scoliotic person. Spine, 1985,10:590-592.
    [142] He Y, Qiu Y, Zhu F,et al.Quantitative analysis of types Ⅰ and Ⅱ collagen in the disc annulus in adolescent idiopathic scoliosis.Stud Health Technol Inform. 2006; 123:123-128.
    [143] Stokes IA, Laible JP.Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmeric growth. J Biomech, 1990, 23:589-595.
    [144] Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis comjputatonal study. Clinical Orthopaedics & Related Research, 1998, (357): 229-236.
    [145] Goto M,Kawakami N,Azegami H,et al.Buckling and bone modeling as factors in the development of idiopathic scolisis.J Biomec Eng, 2002,124(6): 784-790.
    [146] Huynh AM, Aubin CE, Rajwani T,et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study. Eur Spine J. 2007, 16(4):523-529.
    [147] Millner, PA, RA. Dickson. Idiopathic scoliosis:biomechanics and biology. Eur Spine J.1996,5:362-373.
    [148] Gross C, J. Graham, M Neuwirth, et al. Scoliosis and growth, an analysis of the literature. Clin Orthop Rel Res. 1983,175:243-250.
    [149] Goto M, N Kawakami, H Azegami,et al. Buckling and bone remodeling as factors in the development of idiopathic scoliosis. Spine,2003,28:364-370.
    [150] Beguiristain J, J. Oriaifo, J. Cana dell, et al.Experimental scoliosis by epiphysiodesis in pigs. Int. Orthopaed.1980,3:317-321.
    [151] vander Plaats A, Veldhuizen AG, Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis.Ann Biomed Eng.2007,35(7):1206-1215.
    [152] Little JP, Adam CJ.The effect of soft tissue properties on spinal flexibility in scoliosis: biomechanical simulation of fulcrum bending.Spine,2009,34(2):E76-82.
    [153] Driscoll M, Aubin CE, Moreau A,et al.The role of spinal concave-convex biases in the progression of idiopathic scoliosis.Eur Spine J. 2009 Jan 8.[Epub ahead of print]
    [154] Liao YC, Feng CK, Tsai MW,et al.Shape modification of the Boston brace using a finite-element method with topology optimization. Spine, 2007, 32 (26):3014-3019.
    [155] Clin J, Aubin CE, Parent S, et al.Biomechanical modeling of brace design.Stud Health Technol Inform.2006,123:255-260.
    [156] Dumas R, Lafage V, Lafon Y,et al.Finite element simulation of spinal deformities correction by in situ contouring technique.Comput Methods Biomech Biomed Engin. 2005,8(5):331-337.
    [157] Lalonde NM, Aubin CE, Pannetier R, et al.Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis: preliminary results.Stud Health Technol Inform. 2008; 140:111-115.
    [158] Rohlmann A, Zander T, Burra NK,et al.Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine: a finite element analysis of different features of orthobiom.Eur Spine J, 2008,17(2):217-23.
    [159] Duke K, Aubin CE, Dansereau J, et al.Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput, 2008, 46(1):33-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700