Pt-Pb纳米花修饰无酶葡萄糖传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学葡萄糖生物传感器具有选择性高、快速、简便等特点,是检测葡萄糖浓度最重要的方法。近年来,糖尿病的发病率持续增高,为了给糖尿病人提供更为高效的检测血糖手段,新型葡萄糖传感器的开发受到广泛的关注。尽管酶传感器在使用中显示了较好的选择性和灵敏性,但是酶在固定化过程中由于其内部结构稳定性不良而容易失活变性,使得传感器的稳定性不佳。可植入式实时在线监测葡萄糖传感器以及无酶葡萄糖传感器为血糖检测开辟了一条新途径。
     纳米材料及结构以其优异的表面效应、体积效应等多种特性,可作为电极的修饰材料,并且纳米颗粒在电极表面的吸附能力强、催化效率高、生物兼容性好,使得其修饰的电极在构建生物传感器方面有着很好的潜力。因此,本论文通过电沉积的方法在金电极表面制备了具有三维Pt-Pb“纳米花”状纳米结构,并将该修饰电极用于构建无酶葡萄糖传感器。借助扫描电镜图片,透射电镜图片和XPS谱图分析证实了三维Pt-Pb纳米花的形成。电化学测试表明,三维Pt-Pb纳米花结构修饰电极具有较大的电活性面积和高的电催化活性,同时由其构建的无酶传感器具有很好的稳定性和选择性。其对葡萄糖的检测范围是1 ~ 12 mM,选择灵敏度为10.69μA/(cm2·mM),相关系数为0.9997,最低检测限为4 mM(S/N= 3);此外,该三维Pt-Pb纳米花电极在催化葡萄糖的过程中受温度束缚性不大,响应电流随着温度的升高而增大,当增大到一定值后趋于稳定。因此,三维Pt-Pb“纳米花”修饰Au电极有望构建无酶型葡萄糖传感器,相比传统的酶电极将有更加广泛的应用。
     本论文首次在直径为0.35 mm的不锈钢针电极(SSN电极)表面修饰纳米Pt-Pb粒子作为固定化酶的载体,通过纳米结构试图改善针电极面积小的难题。借助对苯醌电还原过程共沉积壳聚糖(CS)/葡萄糖氧化酶(GOD)构建可植入式葡萄糖传感器。在最优的实验条件下,GOD-CS/Pt-Pb/SSN电极构建的葡萄糖传感器表现出良好的综合性能,其对底物葡萄糖的线性检测范围是0.03 ~ 9 mM,相关系数R为0.9994,选择灵敏度为0.44847μA/mM(n= 11),稳态电流响应时间约为15 s,最低检测限为0.17 mM(S/N= 3),表观米氏常数值为4.9837 mM。
The electrochemical glucose biosensor is the most important method for the detection of glucose due to high selectivity, rapid response and convenience. In recent years, developing new glucose sensor was widely concerned in order to provide more effective methods of testing blood glucose for diabetics because of the increasing incidence of diabetes.
     Although enzyme sensor detection usually shows good selectivity and high sensitivity, the enzyme is easily denatured during its immobilization procedure because of the intrinsic stability of enzyme, which leads to the lack of stability.
     Therefore, the development of implantable glucose biosensor and nonenzymatic glucose biosensor is an active research area for the glucose analysis. Nanoparticles with strong adsorption capacity, fast catalytic efficiency, and good biological compatibility can be used as modified materials of electrode, because they possess lots of excellent properties, such as surface effect and volume effect. So the nanoparticles modified electrode shows promising applications for the biosensor construction. Therefore, in this paper, we reported a non-enzymatic electrochemical glucose sensor based on three-dimensional Pt-Pb flower-like nanostructures which were synthesized by electrochemical deposition. SEM images, TEM images and XPS results confirmed the formation of 3D Pt-Pb nanoflower nanostructures. The electrochemical tests showed that the Pt-Pb nanoflower-like particles modified electrode possess a large electroactive surface area and high electrocatalysis activity. Meanwhile, the non-enzyme biosensor constructed by it has a good stability and selectivity. The linear detection range of glucose was from 1 to 12 mM. The response sensitiviyt is 10.69μA/mM (n= 7) with a correlation coefficient of 0.9997, the detection limitation is 4μM (S/N= 3). Moreover, this 3D Pt-Pb nanoflower electrode wasn’t serious effected by the temperature during the process of catalyzing glucose. The response current increased with a rise of temperature, and at last tend to be steady. Therefore, it will be more promising for 3D Pt-Pb nanoflowers electrode to construct non-enzyme biosensor than the traditional enzyme electrode.
     The present thesis was the first attempt to use a stainless steel needle electrode (SSN electrode) with a diameter of 0.35 mm as a substrate electrode. Pt-Pb nanoparticles were used to immobilizie the glucose enzyme to overcome the drawbacks of the small area of SSN electrode. A implantable glucose biosensor was constructed by codeposition chitosan (CS) / glucose oxidase (GOD) via electroreduction of benzoquinone. In the optimal experimental conditions, the sensor built by GOD-CS/Pt-Pb/SSN electrode showed good integrated performances, the linear detection range of glucose was from 0.03 to 9 mM with the response sensitivity is 0.44847μA/mM (R= 0.9994, n= 11), the steady-state current response time is 15 s and detection limitation is 0.17 mM (S/N= 3), the Michaelis constant ( ) value is calculated to 4.9837 mM.
引文
[1]李静,生物传感器的进展综述,科教文汇,2007,8:204
    [2]张先恩,生物传感器,北京:化学工业出版社,2006,6 ~ 8,135 ~ 137,
    [3] Zhang F F, Wan Q, Wang X L, Amperometric sensor based on ferrocene-doped silica nanoparticles as an electron transfer mediator for the determination of glucose in rat brain coupled to in vivo microdialysis, J Electroanal. Chem., 2004, 571: 133 ~ 138
    [4]周波,孙润光,王丽华等,蛋白质直接电化学研究及其应用,化学进展,2006,18(7/8):1009 ~ 1013
    [5]刘向阳,生物传感器:未来举足轻重的应用技术,中国医疗器械信息,2007,13(4):48 ~ 54
    [6]韩美,李新等,伏安型细菌总数生物传感器的研究与应用,华夏医学,2000,63(2):49 ~ 52
    [7]蔡豪斌,微生物活细胞检测生物传感器的研究,华夏医学,2000,13(3):252 ~ 256
    [8]汪尔康,21世纪的分析化学,北京:科学出版社,2001,216 ~ 268
    [9]张先恩,生物传感技术原理与应用,长春:吉林科技出版社,1991
    [10]司士辉,生物传感器,北京:化学工业出版社,2003,1 ~ 2
    [11] Sanjay Gopinath, Sankaran Sugunan, Enzymes immobilized on montmorillonite K 10: Effect of adsorption and grafting on the surface properties and the enzyme activity, Applied Clay Science, 2007,35, 67 ~ 75
    [12] Liu S Q, Ju H X, Anal. Biochem., 2002,307, 110
    [13] Liu S Q, Yu J H, Ju H X. J., Electroanal. Chem., 2003, 540: 61
    [14] Xinyang Li, Xiaolin Wang, Gang Ye et al., Polystyrene-based diazonium salt as adhesive: A new approach for enzyme immobilization on polymeric supports, Polymer, 2010, 51, 860 ~ 867
    [15] Song-Se Yi, Chang-won Lee, Juhan Kim, Covalent immobilization of v-transaminase from Vibrio fluvialis JS17 on chitosan beads, Process Biochemistry, 2007, 42, 895 ~ 898
    [16] Jin Young Lee, Hyun Yong Shin, Jong Ho Lee, A novel enzyme-immobilization method for a biofuel cell, Journal of Molecular Catalysis B: Enzymatic, 2009, 59, 274 ~ 278
    [17] Xiao-Jun Huang, An-Guo Yu, Zhi-Kang Xu, Covalent immobilization of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application, Bioresource Technology, 2008, 99, 5459 ~ 5465
    [18]康杰,罗红斌,李柱来,壳聚糖固定胰蛋白酶的研究,福建医科大学学报,1996(30):55 ~ 57
    [19] Delvaux M, Moustier-Champagne S., Immobilisation of glueose oxidase within metallic nanotubes arrays for application to enzyme biosensors, Biotechnol. Bioeng., 2003, 18(7): 943 ~ 951
    [20]史海滨,静电层层自组装技术构建新型生物传感器的研究:[博士学位论文],天津:南开大学,2006
    [21] Frank N. Crespilhoa, M. Emilia Ghicab, Carla Gouveia-Caridade, Enzyme immobilisation on electroactive nanostructured membranes (ENM): Optimised architectures for biosensing, Talanta, 2008, 76, 922 ~ 928
    [22]陈守文,酶工程,北京:科学出版社,2008:208 ~ 216
    [23]孙君社,酶与酶工程及其应用,北京:化学工业出版社,2006
    [24] Karyakin A A, Kotel’nikova E A, Lukachova L V, et al., Anal. Chem., 2002, 74: 1597
    [25] Yu J H, Ju H X., Anal. Chem., 2002, 74: 3579
    [26] Feng-Yan Li, Yan-Jun Xing, Xin Ding, Immobilization of papain on cotton fabric by sol–gel method, Enzyme and Microbial Technology, 2007, 40, 1692 ~ 1697
    [27] Kanungo M, Kumar A, Contractor A Q., Anal. Chem., 2003, 75: 5673
    [28] Sung W J, Bae Y H, Anal. Chem., 2000, 72: 5755
    [29]吕新萍,朱启忠等,漆酶的固定化及其在生物传感器方面的应用,生命的化学,2007,27(3):1000 ~ 1336
    [30] A.T. Lawal, S.B. Adeloju, Development of a Polypyrrole-Based Amperometric Phosphate Biosensor, Journal of Applied Sciences, 2009, 9(10): 1907 ~ 1914
    [31]狄克松M,威勃EC著,魏正武等译,酶,上海科学技术出版社,1991
    [32]孙崇荣,李玉民,蛋白质化学导论,复旦大学出版社,1991
    [33]张洪渊,生物化学教程,四川大学出版社,1994
    [34] Wang G, Xu J J, Ye L H, et al., Highly sensitive sensors based on the immobilization of tyrosinase in chitosan, Bioelectrochemistry, 2002, 57: 33 ~ 38
    [35] Abdullah J, Ahmad M, Karuppiah N, et al., Immobilization of tyrosinase in chitosan film for an optical detection of phenol, Sensor. Actuat. B-Chem., 2006, 114(2): 604 ~ 609
    [36]刘英菊,古翠媚,袁锐昌,纳米金在生物传感领域的应用研究进展,工业应用,2007,28(6):3 ~ 12
    [37]金利通,鲜跃仲,基于纳米材料的化学与生物传感器研究进展,化学传感器,2006,26(1):5 ~ 11
    [38]杨海朋,陈仕国,李春辉等,纳米电化学生物传感器,化学进展,2009, 21(1):210 ~ 216
    [39]伍林,曹淑超,易德莲等,纳米颗粒增强酶生物传感器性能的研究进展,生物技术通报,2006(1):30 ~ 32
    [40]刘阳,纳米颗粒在电化学生物传感器中的应用研究,现代商贸工业,2008,20(2):281 ~ 282
    [41]张万忠,李万雄,纳米材料研究综述,湖北农学院学报,2003,23(5): 397 ~ 400
    [42]殷焕顺,艾仕云,汪建民,制备金纳米粒子的研究进展,材料研究与应用, 2007,1(4):277 ~ 280
    [43] HENGLEIN A., GIERSIG M., Formation of colloidal silver nanoparticles capping action of citrate, J PhysChem., 1999, 13: 9533
    [44] YONEZAWA T., ONOUE S., KIMIZUKA N., Formation of uniform fluorinated gold nanoparticles and their highly ordered hexagonally packed monolayer, Langmir, 2001, 17(8): 2291 ~ 2293
    [45] Zhenhui Wang, Kunyan Qiu, Electrocatalytic oxidation of formic acid on platinum nanoparticle electrode deposited on the nichrome substrate, Electrochemistry Communications, 2006, (8): 1075 ~ 1081
    [46] B. Rezaei, S. Damiri, Fabrication of a nanostructure thin film on the gold electrode using continuous pulsed-potential technique and its application for the electrocatalytic determination of metronidazole, Electrochimica Acta, 2010, 55, 1801 ~ 1808
    [47]邵桂妮,张兴堂,刘兵等,溶胶凝胶-模板法制备一维金纳米材料,现代化工,2006,26(1):44 ~ 46
    [48] O. Lupana, V.M. Guérin, I.M. Tiginyanu, et al., Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211, 65 ~ 73
    [49] A. K. Wanekaya, W. Chen, N. V. Myung, et al., Nanowire-based electrochemical biosensor, Electroanalysis, 2006, 18, 533 ~ 550
    [50] H.J. Wang, C.M. Zhou, F. Peng, Glucose biosensor based on platinum nanoparticles supported sulfonated-carbon nanotubes modified glassy carbon electrode, Int. J. Electrochem. Sci., 2007, 2, 508 ~ 516
    [51] Fenghua Zhang, Soon Sam Cho, Soon Hye Yang, Gold Nanoparticle-Based Mediatorless Biosensor Prepared on Microporous Electrode, Electroanalysis, 2006, 18(3): 217 ~ 222
    [52] S. Andreescu , L.A. Luck, Anal Biochem, 2008, 375, 282
    [53]钟霞,欧朝凤,邹建等,TiO2纳米颗粒增强的过氧化氢生物传感器,西南大学学报(自然科学版),2007,2(5):40 ~ 43
    [54] Xu X, Liu S, Ju H, A novel hydrogen peorxide sensor via the direct Electrochemistry of horseradish peroxidase immobilized on colloidal gold modified sereen-printed electrode, SENSORS, 2003, 3: 350 ~ 360
    [55]高颖,邬冰主编,电化学基础,化学工业出版社,2004,6
    [56]张学记,鞠熀先,约瑟夫?王等,电化学与生物传感器——原理、设计及其在生物医学中的应用,北京:化学工业出版社,2009:314
    [57] Heeht, H.J., Kalisz, H.M., Hendle, J.J., Mol.Biol., 1993, 229: 153
    [58]钟霞,基于纳米Au的几种新型葡萄糖生物传感器的研究,重庆:西南师范大学,2005
    [59] G. Reach, G.S. Wilson, Can continuous glucose monitoring be used for the treatment of diaberes? Anal. Chem., 1992, 64, 381A
    [60] J. Wang, Glucose biosensors: 40 yrs of advances and challenges, Electroanalysis, 2001, 12, 983 ~ 988
    [61] Liu, J., Wang, J., Food Technol. Biotechnol., 2001, 39, 55
    [62] Yang L.Q., Ren X.L., Tang F.Q., A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film, Biosensors and Bioelectronics, 2009, 25(4): 889 ~ 895
    [63] Zou Can, Fu Yingchun, Xie Qingji, et al., High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites, Biosensors and Bioelectronics, 2010, 25(6): 1277 ~ 1282
    [64] XueyingWang, Haifang Gua, Fan Yin, A glucose biosensor based on Prussian blue/chitosan hybrid film, Biosensors and Bioelectronics, 2009, 24, 1527 ~ 1530
    [65] Jing Yang, Renyi Zhang, Ying Xu, et al., Direct electrochemistry study of glucose oxidase on Pt nanoparticle-modified aligned carbon nanotubes electrode by the assistance of chitosan–CdS and its biosensoring for glucose, Electrochemistry Communications, 2008, 10, 1889 ~ 1892
    [66] Huajun Qiua, Luyan Xuea, Guanglei Ji, et al., Enzyme-modified nanoporous gold-based hemical biosensors, Biosensors and Bioelectronics, 2009, 24, 3014 ~ 3018
    [67] Engin Asav, Erol Akyilmaz, Preparation and optimization of a bienzymic biosensor based on self-assembled monolayer modified gold electrode for alcohol and glucose detection, Biosensors and Bioelectronics, 2010, 25, 1014 ~ 1018
    [68] Jingpeng Wang, Dan F. Thomas, Aicheng Chen, Nonenzymatic Electrochemical Glucose Sensor Based on Nanoporous PtPb Networks, Anal. Chem., 2008, 80, 997 ~ 1004
    [69] Sejin Park, Taek Dong Chung, Hee Chan Kim, Nonenzymatic Glucose Detection Using Mesoporous Platinum, Anal. Chem., 2003, 75, 3046 ~ 3049
    [70] Kallum Koczkur, Qingfeng Yi, Aicheng Chen, Nanoporous Pt-Ru Networks and Their Electrocatalytical Properties, Adv. Mater., 2007, 19, 2648 ~ 2652
    [71] Jean Chrysostome Ndamanisha, Liping Guo, Nonenzymatic glucose detection at ordered mesoporous carbon modified electrode, Bioelectrochemistry, 2009, 77, 60 ~ 63
    [72]沙宪政,皮下植入式葡萄糖传感器的研究进展,国外医学生物医学工程分册,2003,26(1):42 ~ 48
    [73] Francesco Ricci, Danila Moscone, Giuseppe Palleschi, Ex Vivo Continuous Glucose Monitoring With Microdialysis Technique: The Example of GlucoDay, IEEE SENSORS JOURNAL, 2008, 8(1): 63 ~ 70
    [74] D. C. Klonoff,“A review of continuous glucose monitoring technology,”Diabetes Technol. Therap., 2005, 7(5): 770 ~ 775
    [75] D. C. Klonoff,“Continuous glucose monitoring: Roadmap for 21st century diabetes therapy,”Diabetes Care, 2005, 28(5): 1231 ~ 1239
    [76] D. C. Klonoff,“The need for separate performance goals for glucose sensors in the hypoglycemic, normoglycemic, and hyperglycemic ranges,”Diabetes Care, 2004, 27, 834 ~ 836
    [77] Takaoka H., Yasuzawa M., Fabrication of an Implantable Fine Needle-Type Glucose Sensor Using gamma-Polyglutamic Acid, ANALYTICAL SCIENCES, 2010, 26(5): 551 ~ 555
    [78] Jie Shen, Laurie Dudik, Chung-Chiun Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sensors and Actuators B, 2007, 125, 106 ~ 113
    [79] Ges Igor A., Baudenbacher Franz J., Amperometric glucose sensor for real time extracellular glucose monitoring in microfluidic device, 2008, 3, 253 ~ 256
    [80] Yuki Yonemori, Eiji Takahashi, Huifeng Ren, et al., Biosensor system for continuous glucose monitoring in fish, Analytica Chimica Acta, 2009, 633, 90 ~ 96
    [81] Hideaki Endoa, Yuki Yonemoria, Kyoko Hibia, et al., Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish, Biosensors and Bioelectronics, 2009, 24, 1417 ~ 1423
    [82] Y. B. Vassilyev, O. A. Khazova, N. N. Nikolaeva, J. Electroanal. Chem., 1985, 196, 105 ~ 125
    [83] B. Beden, F. Largeaud, K. B. Kokoh, et al., Electrochim. Acta., 1996, 41, 701 ~ 709
    [84] I. T. Bae, E. Yeager, X. Xing, et al., J. Electroanal. Chem., 1991, 309, 131 ~ 145
    [85] Y. P. Sun, H. Buck, T. E. Mallouk, Anal. Chem., 2001, 73, 1599 ~ 1604
    [86] E. Shoji, M. S. Freund, J. Am., Chem. Soc., 2001, 123, 3383 ~ 3384
    [87] Park, S. J., Chung, T. D., Kim, H. C., Anal. Chem., 2003, 75, 3046 ~ 3049
    [88] Yuan, J., Wang, K., Xia, X., Adv. Funct. Mater, 2005, 15, 803 ~ 809
    [89] Song, Y., Zhang, D., Gao, W., et al., Chem.sEur. J., 2005, 11, 2177 ~ 2182
    [90] Cui, H. F., Ye, J. S., Liu, X.,et al., Nanotechnology, 2006, 17, 2334 ~ 2339
    [91] Yan Yan Song, Dai Zhang, Wei Gao, et al., Nonenzymatic Glucose Detection by Using a Three-Dimensionally Ordered, Macroporous Platinum Template, Chem. Eur. J., 2005, 11, 2177 ~ 2182
    [92] Hye Kyoung Seo, Dae Joon Park, Jae Yeong Park, Fabrication and characterization of platinum black and mesoporous platinum electrodes for in-vivo and continuously monitoring electrochemical sensor applications, Thin Solid Films, 2008, 516, 5227 ~ 5230
    [93] Bikash Kumar Jena, C. Retna Raj, Enzyme-Free Amperometric Sensing of Glucose by Using Gold Nanoparticles, Chem. Eur., 2006, 12, 2702 ~ 2708
    [94]赵英曲,罗红群,李念兵,对巯基苯硼酸/纳米金修饰玻碳电极用于葡萄糖的识别,分析测试学报,2009,28(3):301 ~ 305
    [95] Yu Bai, Yingying Sun, Changqing Sun, Pt–Pb nanowire array electrode for enzyme-free glucose detection, Biosensors and Bioelectronics, 2008, 24: 579 ~ 585
    [96]张彦,南彩凤,冯丽等,壳聚糖固定化葡萄糖氧化酶生物传感器测定葡萄糖的含量,分析化学研究简报,2009,37(7)
    [97]施晶莹,肖秀峰,朱则善等,不锈钢上电沉积活性铂,电镀与精饰,2006,22(2):9 ~ 11
    [98]施晶莹,肖秀峰,朱则善等,新型的不锈钢镀Pt(Ir)电极,电化学,1998,4(2):159 ~ 163
    [99] Cosnier, S., Biosens. Bioelectron. 1999, 14 (5), 443 ~ 456
    [100] Xiandong Zeng, Xuefang Li, Liang Xing, et al., Electrodeposition of chitosan-ionic liquid-glucose oxidase biocomposite onto nano-gold electrode for amperometric glucose sensing, Biosensors and Bioelectronics, 2009, 24, 2898 ~ 2903
    [101] Xi, F., Liu, L.,Wu, Q., et al., Biosen. Bioelectron., 2008, 24: (1), 29 ~ 34
    [102] Hwang Kyu Lee, Eun Hwan Jeong, Chi Kyoung Baek, e al., One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. Mater. Lett., 2005, 59: 2977 ~ 2980
    [103] Xie J B, You-Lo. Ultra-high surface fibrous membranes from electrospinning of natural proteins: casein and lipase enzyme. J Mater. Sci., 2003, 38: 2125 ~ 2133
    [104] K. Hasebe, J. Osteryoung. Differential Pulse Polarographic Determination of Some Carcinogenic Nitrosamines. Anal. Chem., 1975, 47: 2412 ~ 2418

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700