牙轮钻头圆柱滚子轴承接触力学性质及弹流润滑理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
要加快我国石油天然气的勘探开发速度,提高钻井工程技术的国际竞争能力,提高钻头尤其是牙轮钻头的工作性能和工作寿命十分重要。现阶段应综合应用接触力学、润滑理论等学科的知识,对滚子凸度设计、空心圆柱滚子及其润滑状态等关键问题进行深入研究,进而研制开发长寿命、高转速的滚动轴承牙轮钻头。
     本文首先针对Hertz点接触问题的求解方法进行了研究,得到了关于点接触问题精确高效的完全数值算法;从计算速度、计算精度和计算方便性等方面对几种典型算法进行了对比研究,得出了各算法在不同条件下的适用情况;并将完全数值算法应用于牙轮钻头滚动轴承中的全圆弧凸型滚子,分析了其接触参数在不同条件下的变化。然后,采用MSC.Marc有限元软件对迄今常见代表性凸型滚子的应力分布规律和特点进行了分析,提出采用多段变曲率圆弧组合替代Lundberg理论对数凸型的工程化模拟技术,给出了较为合理的圆弧组合数目;分析了空心圆柱滚子及其进行凹端处理后的应力分布规律。结果表明,合理的空心度可减小接触应力的边缘效应,但等效应力在滚子两端的应力集中始终存在;在相同空心度下,等效应力和接触应力随载荷的变化规律不同;且不同载荷作用下,最佳空心度的理论值不同;空心度较大时,滚子内壁等效应力会超过外壁成为危险区域,同时应考虑弯曲应力的影响,避免滚子内壁发生弯曲疲劳断裂;较之普通空心滚子,凹端空心圆柱滚子有效克服了滚子端部的应力集中现象。最后,采用多重网格法对牙轮钻头实心圆柱滚子和空心圆柱滚子的弹流润滑情况进行了分析,通过对无限长滚子线接触弹流润滑问题的研究,揭示了实心圆柱滚子油膜压力和膜厚随载荷参数、速度参数和材料参数的变化规律;空心圆柱滚子空心度的变化会引起速度参数和载荷参数的变化,但并没有引起接触区域中部油膜厚度以及最小膜厚的明显变化;空心度的增加可以降低油膜压力,但合理空心度的选取应考虑其对滚子内壁应力分布的影响。有限长线接触弹流润滑中最大油膜压力和最小膜厚都位于滚子端部,故滚子端部为易破坏部位;滚子中部润滑状况与无限长滚子几乎一致,可按无限长处理;空心度对滚子端部润滑情况的影响与中部相同,由于端部油膜压力大于中部,故二次峰值和最小油膜厚度较之中部都更靠近出口区。
     本文的研究成果为国内自主实现滚动轴承牙轮钻头的长寿命和高转速化,乃至为工程实际中广泛存在的重载低速滚子轴承系统工作性能的提高奠定了坚实基础,同时也值得标准或通用滚子轴承、铁路机车、冶金轧机等行业的研究人员借鉴。
In order to speed up the rate of oil & gas exploration and development, and improve the international competition of drilling engineering technology, improving the working performance and working life of bit especially the rock bit is very important. Currently the knowledge of contact mechanics, lubrication theory and other disciplines should be utilized to carry out in-depth research on some critical problems such as roller crowned design, hollow cylindrical roller and its lubrication status, thus researching and developing roller bearing rock bit with long life and high speed.
     Fist of all, by studying the solution method of Hertzian point contact problem, the accurate and efficient full numerical method was obtained. Through comparative study of calculation speed, calculation accuracy, and calculation convenience of some typical algorithms, the applicable condition of each algorithm under different conditions was obtained. And then full numerical method was applied to single-arc crowned roller in rock-bit roller bearing, to analyze the change of contact parameters under different conditions. Secondly, taking advantage of Finite Element software MSC. Marc, the stress distribution of common representative types of crowned roller so far were analyzed. It is put forward that the Lundberg theoretical logarithmic crowned type can be replaced approximately by multiple-variable-curvature arcs, and according to the theoretical research, the appropriate number of variable-curvature-arc segments were presented. And then the stress distribution of hollow as well as concave-ended hollow cylindrical roller was analyzed. It is shown that, the reasonable hollow ratio can reduce the contact stress concentration in the roller end, But it can not avoid the sharp edge equivalent stress, under the same hollow ratio, the change of equivalent stress and contact stress is different with the change of loads. The optimal hollow ratio is also different under different extrnal loads. The equivalent stress on the inner wall can exceed the corresponding value on the outer wall, thus making the inner wall be the dangerous area under large hollow ratio. The bending stress should be considered in the mean time to avoid the bending fatigue failure occurred on the inner wall of roller. Compared with ordinary hollow roller, concave-ended hollow cylindrical roller can effectively overcome the stress concentration at the end of roller. Finally, the multilevel method was utilized to analyze the elastohydrodynamic lubrication (EHL) condition of solid as well as hollow cylindrical roller in rock bit. The analysis of EHL for infinite line contact illustrated that the change of film pressure and thickness under different load parameters, velocity parameters, and material parameters. The change of hollow ratio for hollow cylindrical roller can cause the change of velocity parameter and load parameter, but will not cause the obvious change of film thickness and minimum film thickness at central contact area. The increase of hollow ratio can reduce the film pressure, but the stress distribution on inner wall should be considered when selecting a reasonable hollow ratio. The analysis of EHL for finite line contact showed that, the maximum film pressure and minimum film thickness were both at the end of roller, therfore the end of roller is the easily damaged area. The lubrication condition at middle part of the roller can be treated as infinite, due to its similarity to the infinite one. At the end part and middle part of roller, the influence of hollow ratio on lubrication condition was the same. Because the film pressure at the end was larger than that at the middle, the second peak and minimum film thickness were both closer to inlet-zone.
     The research results established a solid foundation for accomplishing the long-life and high-speed of rock bit with roller bearing, furthemore it can be used to improve the working performance of heavy-load and low-speed roller bearing system widely existed in engineering practice. It is also worth to be learne by the researchers in standard or universal roller bearing, railway locomotive, metallurgical mill and so on.
引文
[1]Jost H P,陈家庆译,罗纬校.现代摩擦学的过去和未来[J].润滑与密封,1994,03:52-63.
    [2]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008.
    [3]Urbieta A, Martinez M, Escareno P, Arias A, Portillo R et al.. Advanced technology improves drilling economics/sets new benchmark[C]. SPE 103921, presentation at the First International Oil Conference and Exhibition in Mexico held in Cancun, Mexico, 31 August-2 September 2006.
    [4]Thorsten Regener, Matthias Reich, Ralf Duerholt and Bernd Wagner. Latest positive displacement motor and drill bit developments for drilling hard and abrasive formations[C]. SPE/IADC 92542, presentation at the SPE/IADC Drilling Conference held in Amsterdam, The Netherlands,23-25 February 2005.
    [5]Donnie Martin, Devon Energy and Jim Jacobsen. New hard rock roller cone bit technology/operational excellence improves economic in mature east Texas gas fields[C]. SPE 74527, presentation at the IADC/SPE Drilling Conference held in Dallas, Texas,26-28 February 2002.
    [6]Alain Besson, Bruce Burr, Scott Dillard, Eric Drake et al.. On the cutting edge[J]. Oilfield Review,2000,12(3):36-57.
    [7]Moses A J. PM spinodal copper alloy for rock bit bearings[J]. Metal Powder Report, 1997,52(9):44-48.
    [8]余俊等.机械设计手册[M].北京:机械工业出版社,1992.
    [9]Cooper D H, Hertzian contact-stress deformation coefficients[J]. Trans. ASME, Series E, Journal of Applied Mechanics,1956,36:296-603.
    [10]万长森.滚动轴承设计应用和试验分析的有关程序[J].轴承,1983(4):1-8.
    [11]Brewe D E and Hamrock B J. Simplified solution for elliptical-contact deformation between two elastic solids[J]. ASME Journal of Tribology,1977,99:485-487.
    [12]Hamrock B J and Brewe D. Simplified solution for stresses and deformations [J]. ASME Journal of Lubrication Technology.,1983,105:171-177.
    [13]Markho P H. Highly accurate formulas for rapid calculation of the key geometrical parameters of elliptic Hertzian contacts[J]. ASME Journal of Tribology,1987,109: 640-647.
    [14]罗继伟.滚动轴承中的弹性接触问题及其数值求解[D].清华大学工学博士论文,1989.
    [15]Houpert L. An engineering approach to Hertzian contact elasticity Part I[J]. ASME Journal of Tribology,2001,123:580-588.
    [16]Antoine J F, Visa C and Sauvey C. Approximate model for Hertzian elliptical contact problems[J]. ASME Journal of Tribology,2006,128:660-664.
    [17]Dyson A, Evans H P and Snidle R F. A simple, accurate method for calculation of stresses and deformations in elliptical Herzian contacts [J]. J. Mech. Eng. Sci. Proc. I. Mech. E pt C 1992,206:139-141.
    [18]Tanaka N. A new calculation Method of Hertz elliptical contact pressure. Trans[J]. ASME Journal of Tribology,2001,123:887-889.
    [19]Reusner H. The logarithmic roller profile—the key to superior performance of cylindrical and taper roller bearings[J]. Ball Bearing Journal,1987,230:2-10.
    [20]William J Derner, Harold E Stewart and Roger A Goodlle. Hollow ended bearing Roller[P]. United States Patent 3713712 B1, Jan.30,1973.
    [21]Johns P M and Gohar R. Roller bearing under radial and eccentric loads [J]. Tribology International,1981,14(6):131-136.
    [22]Yuuji Shimjomura and Shinichi Natsumeda. Roller bearing[P]. United States Patent No.6390685 B1, May 21,2002.
    [23]Yasuaki Nagai, Kenji Shitsukawa, Kenji Asano and Masamichi Shibata. Roller bearing[P]. United States Patent 6254277 B1, Jul.3,2001.
    [24]Kenji Shitsukawa, Masamichi Shibata and Masaaki Sakuragi. Roller bearing and a method of process the same[P]. United States Patent 6318897 B1,Nov.20,2001.
    [25]Hiroki Fujiwara and Tatsuo Kawase. Logrithmic profiles of rollers in roller bearings and optimization of the Profiles[J]. Japan Society of Mechanical Engineers Part C, 2006,72:3022-3029.
    [26]Hiroki Fujiwara, Tatsuo Kawase,Takuji Kobayashi, and Kazuto Yamauchi. Optimized logrithmic roller bearings and its experimental demonstration[C]. ASME/STLE 2009 International Joint Tribology Conference. October 19-21,2009.
    [27]马家驹,徐文,刘双表,王晨.对数滚子的工程设计[J].轴承,1997(6):2-5.
    [28]孙浩洋,陈晓阳,刘春浩,杨沛然Lundberg对数滚子的热弹流特性及其凸度量的修正[J].摩擦学学报,2008,28(1):68-72.
    [29]孙浩洋,陈晓阳,张宏信.对数滚子的热弹流凸度量设计研究[J].摩擦学学报,2010,30(6):567-571.
    [30]魏延刚,马文.圆柱滚子轴承滚子凸度量的有限元分析[J].轴承,2004,(4):1-4.
    [31]柴俊峰,贾现召,李济顺.高速铁路客车轴承滚子凸度量的有限元分析[J].哈尔滨轴承,2008,29(4):1-3,10.
    [32]Hong T L. A numerical alogrithm for determining the contact stress of circular crowned roller compressed between two flat plates[J]. Journal of solid mechanics and materials engineering,2007,1:58-68.
    [33]Hong T L. Analyses of stress components for circular crowned roller compressed between two flat plates[J]. ImechE,2007,221:581-589.
    [34]王方飞,罗纬.牙轮钻头滚动轴承凸度设计探讨[J].石油机械,1996,24(3):1-4.
    [35]陈家庆,任伟,邱宗义.轴承滚子凸度设计可视化软件的开发[J].轴承,2006,(6):36-40.
    [36]王文广,翟应虎,李树盛.凹端圆柱滚子在牙轮钻头上的应用分析[J].石油钻采工艺,2007,29(2):31-34.
    [37]Bhateja C P and Bowen W L. The hollow roller bearing[J]. ASME Journal of Lubrication Technology,1980,102(4):222-234.
    [38]罗虹,刘家浚.空心圆柱滚动体接触状况的分析研究[J].摩擦学学报,1997,(3):253-259.
    [39]H. Zhao. Analysis of load distributions within solid and hollow roller bearings[J]. ASME Journal of Tribology,1998,120(1):134-139.
    [40]张茂,邓茂云.牙轮钻头空心滚子轴承载荷分析与计算[J].石油机械,2000,28(增 刊):151-152.
    [41]葛宰林,董美云,张秀娟.圆柱滚子轴承的圆柱深孔滚子受力分析[J].机械设计,2003,20(7):59-60.
    [42]魏延刚.无预负荷空心圆柱滚子轴承空心度的优化设计[J].机械设计,2003,20(11):20-22.
    [43]魏延刚.新型滚子轴承-深穴空心圆柱滚子轴承承载性能的理论研究[J].机械工程学报,2005,2(2):107-111.
    [44]陈家庆,毛红兵,张宝生.无预载荷空心圆柱滚子轴承的理论研究[J].轴承,2002,(6):1-6.
    [45]陈家庆,张沛,徐林林.牙轮钻头采用空心圆柱滚子轴承的理论探讨[J].石油机械,2001,29(9):5-8.
    [46]杨沛然.流体润滑数值分析[M].北京:国防工业出版社,1998.
    [47]温诗铸,杨沛然.弹性流体动力润滑[M].北京:清华大学出版社,1992.
    [48]Wymer D G and Cameron A. Elastohydrodynamic lubrication of a line contact[J]. Proceedings Institution of Mechanical Engineers,1974,188:221-238.
    [49]Bahadoran H and Gohar R. Research note:End closure in elastohydrodynamic line contact[J]. Journal of Mechanical Engineering Science,1974,16(4):276-278.
    [50]Mostofi A and Gohar R. Elastohydrodynamic lubrication of finite line contacts[J]. ASME Journal of Lubrication Technology,1983,105:598-604.
    [51]崔子伟,张和豪,华东耘.重载有限宽滚子弹流润滑的逆解法[J].上海工业大学学报,1991,12:303-311.
    [52]莫云辉.正反圆锥滚子弹流润滑[D].上海工业大学工学博士论文,1994.
    [53]陈晓阳.等温有限长线接触弹性流体动力润滑[D].浙江大学工学博士论文,1993.
    [54]J J Ma, X Y Chen and X B Liu. Elastohydrodynamic lubrication of lundberg's profile roller contacts. Proc Int Sym on Tribol, Beijing,1993:132-138.
    [55]陈晓阳.修形滚子凸型对润滑油膜的影响[J].机械设计与研究,1996,2:2-3.
    [56]马家驹,徐文,陈晓阳.滚子摩擦副弹流特性及其应用-工程对数滚子的弹流数值解[J].摩擦学学报,2000,20(1):63-66.
    [57]任伟.三维有限长线接触弹性流体动压脂润滑的理论研究[D].中国石油大学(北京)工学硕士论文,1993.
    [58]Hamrock B J and Dowson D. Isothermal elastohydrodynamic lubrication of point contacts, part Ⅰ-theoretical formulation[J]. ASME Journal of Lubrication Technology, 1976,98:223-229.
    [59]Hamrock B J and Dowson D. Isothermal elastohydrodynamic lubrication of point contacts, part Ⅱ-elliptical parameter results[J]. ASME Journal of Lubrication Technology,1976,98:375-383.
    [60]Hamrock B J and Dowson D. Isothermal elastohydrodynamic lubrication of point contacts, part Ⅲ-fully flooded results[J]. ASME Journal of Lubrication Technology, 1977,99:264-276.
    [61]Chittenden R J, Dowson D, Dunn J F and Taylor C M. A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts, Ⅱ-general case, with lubricant entrainment along either principal axis of Hertzian contact ellipse or at some intermediate angle[C]. Proceedings of the Royal Society, London, Series A,1985, 397:271-294.
    [62]P Yang, S Wen. A fast, robust, straightforward algorithm for thermal elastohydrodynamic lubrication[J]. Tribology International,1993,26:17-23.
    [63]Evans H P and Snidle R W. Inverse solution of Reynolds equation of lubrication under point contact elastohydrodynamic conditions [J]. ASME Journal of Lubrication Technology,1981,103:539-546.
    [64]Oh K P and Rohde S M. Numerical solution of the point contact problem using the finit element methods[J]. International Journal for Numerical Method in Engineering,1977, 11:1507-1518.
    [65]Houpert L G and Hamrock B J. Fast approach for calculating film thicknesses and pressures in elastohydrodynamic lubricated contacts at high loads [J]. ASME Journal of Tribology,1986,108:411-420.
    [66]Lubrecht A A, Ten Napel W E, and Bosma R. Multigrid, an alternative method for calculation film thickness and pressure profiles on elastohydrodynamically Lubricated Line Contacts[J]. ASME Journal of Tribology,1986,108:551-556.
    [67]Lubrecht A A, Venner C H, Ten Napel, W E, and Bosma R. Film thickness calculation in elastohydrodynamic lubricated circular contacts, using a multigrid method[J]. ASME Journal of Tribology,1988,110:503-507.
    [68]Venner C H, Ten Napel W E and Bosma R. Advanced multilevel solution of the EHL line contact problem[J]. ASME Journal of Tribology,1990,112:426-431.
    [69]Venner C H. Multilevel Solution of the EHL Line and Point Contact Problems[D]. University of Twente, Enschede, the Netherlands,1991.
    [70]陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,1987.
    [71]刘超群.多重网格法及其在计算流体力学中的应用[M].北京:清华大学出版社,1995.
    [72]Lubrecht A A, Ten Napel W E and Bosma R. The influence of longitudinal and transverse roughness on the elastohydrodynamic lubrication of circular contacts [J]. ASME Journal of Tribology,1988,110:421-426.
    [73]Venner C H and Lubrecht A A. Numerical analysis of the influence of waviness on the film thickness of a circular EHL contact[J]. ASME Journal of Tribology,1996,118: 153-161.
    [74]L Chang, Conry T F and Cusano C. An effective, robust, multi-level computational algorithm for EHL[J]. ASME Journal of Tribology,1989,111:193-199.
    [75]Lee R T and Hsu C H. A fast method for the analysis of thermal-elastohydrodynamic lubrication of rolling/sliding line contacts[J]. Wear,1993,166:107-117.
    [76]Lee R T and Hsu C H. An efficient algorithm for thermal elastohydrodynamic lubrication under rolling/sliding line contacts[J]. ASME Journal of Tribology,1994, 116:762-769.
    [77]Lee R T and Hsu C H. Advanced multilevel solution for thermal elastohydrodynamic lubrication of simple sliding line contacts[J]. Wear,1994,171:227-237.
    [78]Lee R T, Hsu C H and Kuo W F. Multilevel solution for thermal elastohydrodynamic lubrication of rolling/sliding circular contacts[J]. Tribology International,1995,28: 541-552.
    [79]H Lu, Berzins M, Goodyer C E and Jimack P K. High order discontinuous galerkin method for elastohydrodynamic lubrication line contact problems[J]. Comm. Num. Meth. Engrg,2005,21:643-650.
    [80]王方飞,叶元凯,陈月珠.几种国产钻头脂高温流变特性的实验研究[J].石油大学学报(自然科学版),1997,21(1):77-78.
    [81]李建伟,郑家伟,王国荣.牙轮钻头轴承RB润滑脂流变性研究[J].润滑与密封,2006,(2):121-123.
    [82]罗纬,陈家庆.在重载工况下“万灵霸”润滑油添加剂的抗磨性能对比试验[J].润滑与密封,1995,(2):72-74.
    [83]Almqvist T, Almqvist A and Larsson R. A comparison between computational fluid dynamic and reynolds approaches for simulating transient EHL line contacts[J]. Tribology International,2004,37(1):61-69.
    [84]王方飞,罗纬.牙轮钻头滚动轴承弹流润滑的研究[J].石油机械,1996,24(8):12-14,22.
    [85]郑学普,邓四二,周彦伟.矿用牙轮钻头中圆柱滚子轴承弹流数值解分析[J].矿山机械,2005,33(6):12-14.
    [86]Harris T A. Rolling bearing analysis[M], New York:John Wiley and Sons Publication, 1966.
    [87]Roark R J and Young W C. Formulas for stress and strain[M], McGaw-Hill,5th Ed., 1975,516-518.
    [88]Greenwood J A. Formulas for Hertzian elliptical contacts[J]. ASME Journal of Tribology,1985,107:501-504.
    [89]Greenwood J A. Analysis of elliptical Herzian contacts[J]. Tribology International, 1997,30(3):235-237.
    [90]Curtis A R. Table of Jacobian elliptical functions whose arguments are rational fractions of the quarter period[J]. Journal of Applied Mathematics and Mechanics,1965,45(1): 71.
    [91]Abramowitz M and Stegun I A. Handbook of mathematical functions[M]. New York: Dover Publication,1964.
    [92]Abramovitz M., and Stegun I A. Handbook of mathematical functions with formulas, Graphs, and Mathematical tables[M]. New York:Dover Publication,1972.
    [93]任汝南.牙轮钻头大圆弧鼓形滚子轴承设计[J].石油机械,1997,25(2):7-10,19.
    [94]H. Reusner. The Logarithmic Roller Profile-The key to Superior Performance of Cylindrical and Taper Roller Bearings[J]. Ball Bearing Journal,1987,230:2-10.
    [95]高作斌,丁海善.滚子凸度加工技术现状及发展趋势[J].轴承,2003,(8):36-38.
    [96]Kenji Shitsukawa, Masamichi Shibata and Masaaki Sakuragi. Roller bearing and a method of process the same[P]. United States Patent 6318897 B1, Nov.20,2001.
    [97]Chandrasekara Murthy C S and Ramamohana Rao A. Mechanics and behaviour of hollow cylindrical members in rolling contact[J]. Wear,1983,87:287-296.
    [98]Hoeprich M R and Zantopulos H. Line contact deformation:acylinder between two flat plates[J]. ASME Journal of Lubrication Technology,1981,103(1):21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700