弹载合成孔径雷达成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用合成孔径雷达(SAR)技术能够获得全天候、全天时、远距离的高分辨雷达图像,是提高精确制导武器打击精度的有效途径。然而,SAR成像末制导需解决以下问题:1)SAR图像的方位分辨率在沿平台航向的前斜视区域会迅速下降;2)导弹的机动飞行偏离理想运动轨迹,带来严重的运动误差使图像质量恶化;3)SAR实时成像需要大运算量和存储量,而弹载平台信号处理机难以满足要求。针对上述问题,本文围绕弹载SAR成像技术开展了以下研究工作:
     1、研究了弹载SAR大斜视角高分辨成像问题,提出了改进的方位向非线性CS算法,解决了时域线性距离走动校正(RWC)带来的聚焦深度问题,分辨率1m时成像斜视角可达50°以上。基于大斜视角SAR成像几何关系,研究了RD类和CS类算法,分析了瞬时斜距模型的近似误差和回波频域解耦合的残余相位误差,指出提高算法性能的关键在于:三次距离偏移量的补偿和二次距离压缩(SRC)的精度。通过理论推导证明:时域线性RWC可减小解耦合误差,但校正到同一距离门的目标存在随方位偏移线性变化的调频率误差。在此基础上,提出先补偿三次距离偏移,再引入改进非线性扰动方程补偿调频率误差的算法,仿真结果表明:ANCS算法成像分辨率高,聚焦深度和成像处理角更大。
     2、研究了匀加速平台的SAR成像及运动补偿方法,提出了一种二维频域补偿匀加速度的改进RD算法,提高了目标分辨率和峰值旁瓣比;并结合对比度最优法,给出了通用的匀加速平台SAR成像和运动补偿流程。首先,基于考虑三方向匀加速度的瞬时斜距模型和回波信号的多普勒历程,指出匀加速运动补偿的重点应为航向速度误差和视线位移误差;随后,给出了改进的RD和SPECAN算法,分别在距离徙动校正和方位聚焦处理中修正滤波函数,并在SPECAN成像后补偿了匀加速度带来的几何失真,仿真结果表明:算法简单,有效;在距离频域补偿视线位移误差,结合对比度最优法,给出了通用的成像运动补偿流程,并通过机载SAR飞行试验数据进行了成像验证。
     3、研究了弹载雷达的前视成像技术,基于多通道解卷积原理,提出一种单脉冲雷达解卷积前视成像新方法,仿真试验表明:在DBS失效的航向附近,解卷积图像的角分辨率比实孔径图像提高约10倍。针对条带式SAR图像的方位分辨率在前斜视区域迅速下降的问题,给出了导弹俯冲段DBS成像的信号处理参数选择准则,分析了方位分辨率的变化趋势;在DBS成像盲区,利用单脉冲雷达和差通道的准互质性提高前视图像角分辨率,并提出考虑天线方向图截断形状的解卷积器设计方法,可有效降低信噪比损失。
     4、研究了弹载SAR信号处理机的设计技术,设计了适宜弹载SAR成像的多DSP信号处理机结构,基于通用DSP芯片TS201,提出了SAR成像流程映射和算法优化的方法。根据典型通用DSP的特点和成像需求,设计了三种弹载SAR多DSP信号处理机结构,以匀加速平台SAR成像流程为例,基于TS201给出了从算法到结构的映射方法,提出了实时成像中关键步骤优化的具体方法;最后,基于主从式信号处理机结构,实现了弹载DBS成像信号处理机。
Synthetic aperture radar (SAR) can achieve long range, high resolution imagery in all weather conditions, day and night, which contributes to an improvement of the orientation performance on precision guided weapons in strike. However, there are three problems must be resolved in missile-borne SAR applications: 1) the cross range resolution of SAR is degraded near the direction of flight due to the decrease in the Doppler bandwidth; 2) Serious motion errors are induced by the trajectory deviations from the straight flight track and forward velocity variations under maneuvers; 3) the large computational and memory requirements in real time SAR imaging are difficult to fulfilled on missile platforms. All the problems are researched on in this dissertation and the main achievements are as follows:
     1. The high resolution imaging algorithms of highly squinted missile-borne SAR are investigated. A modified azimuth nonlinear CS (ANCS) algorithm is proposed to resolve the limitation of the focus depth, which caused by linear range walk correction (RWC) in time domain. Simulation results are presented showing that it can be used toprocess data with up to approximately 50°angle with 1m resolution. Based on the squinted SAR geometry, the RD and CS algorithms are studied. A detail study is preformed on the Taylor extension of the range model and the decoupling errors of the signal expression in 2D frequency domain. It is concluded that the cubic range cell migration correction (RCMC) and secondary range compression (SRC) are significant in highly squinted SAR imaging. The investigation on RWC demonstrates that: the decoupling phase errors can be decreased after RWC; however, the focus depth of map is limited due to the azimuth variations of the target's Doppler rate. So the modified ANCS algorithm is developed to resolve this problem. After the cubic RCMC, an azimuth nonlinear phase term is introduced to equalize the Doppler rate in the same range cell. The modified algorithm can process highly squinted data and extend the focus depth without deterioration of the image quality.
     2. The SAR image formation and motion compensation (MOCO) algorithms for constant accelerations platform are investigated intensively. A refined RD algorithm is proposed to compensate the constant accelerations in 2D frequency domain, which can improve the cross range resolution and PSLR greatly. In combination with the contrast optimization auto-focus (COA) approach, a generalized block diagram is given for data processing. Firstly, according to the range model and the return signal expression, it is concluded that the velocity error along the flight path and the displacement along the line of sight (LOS) must be compensated in data processing. Secondly, two algorithms including refined RD algorithm and spectral analysis (SPECAN) algorithm are derived to compensate the motion errors effectively. Geometric correction is implemented simply in the SPECAN algorithm too. In a different way, all the displacement along the LOS can also be compensated in range frequency domain. Using the COA approach to correct the residual phase errors, a generalized procedure for imaging and MOCO of the constant accelerations platform is provided. Finally, this procedure is tested by using data from an airborne flight experiment.
     3. The forward looking imaging techniques are investigated. A multi-channel de-convolution imaging method applied to mono-pulse radar is proposed to sharper the angular resolution in the direction of flight. Simulation results show that: about 10 times of improvement in angular resolution over real aperture image can be achieved. To enhance cross range resolution around the boresight, the Doppler beam sharpen (DBS) technique is used. As an unfocused SAR technique, the main specification and processing parameters of DBS in diving phase are deeply analyzed and the characteristics of cross range resolution are tested by simulation. To eliminate the DBS blind sector in the boresight, the return signals of the sum beam and the difference beam are deconvolved to sharpen the angular resolution. With the consideration of the truncation effect, the de-convolution operators are refined to restrain the noise caused by de-convolution effectively.
     4. The techniques to implement real time DSP systems in missile-borne SAR are investigated. Using multiple generalized DSPs as the processing units, the structures of real time missile-borne SAR processor are given. The mapping of SAR imaging procedure to a multi-DSPs system is presented and optimized. At first, according to the characteristics of the generalized DSPs, three SAR processors are proposed to adapt different missile-borne SAR applications. Subsequently, the mapping method of the SAR imaging procedure of constant accelerations platform to a processor formed by multiple TS201s is analyzed. Meanwhile, the key steps in the imaging algorithm are optimized in details. Finally, based on the master-slave structure processor, a missile-borne DBS imaging processor is implemented.
引文
[1]朱贵岭,进攻型机载合成孔径雷达技术,空载雷达,2000(4)::10-17
    [2]宋万忠,无人机载毫米波合成孔径雷达技术,电讯技术,2002,42(6):4-7
    [3]Malenke.T.,T.Oelgart,W.Rieck,W-band-radar system in a dual-mode seeker for autonomous target detection,EUSAR 2002
    [4]C.Neumann,H.Senkowski,MMW-SAR seeker against ground targets in a drone application,EUSAR2002
    [5]Tran H.P.,et al.,A fast scanning w-band system for advanced millimetre-wave short range imaging applications,The 3rd European Radar Conference 2006.Manchester:146-149
    [6]张直中,合成孔径雷达(SAR)的最新发展,现代雷达,2003.25(1):1-8
    [7]龙勇,向茂生,尤红建,吴一戎,高精度动态GPS在机载新型SAR上的应用研究与分析,遥感技术与应用,2004.19(6):450-455
    [8]H.Essen,H.H.Fuchs,A.Pagels,Remote sensing of the sea surface by millimeterwave SAR,IEEE International Conference on Remote Sensing of the Ocean,Sea Ice,and Large Water Regions,2006(6360):1-8
    [9]Curlander J.C.and R.N.Mcdonou曲,合成孔径雷达:系统与信号处理,2006,北京:电子工业出版社
    [10]范保虎,赵长明,马国强,战术导弹成像精确制导技术分析与研究,飞航导弹,2007(1):45-49
    [11]何劲,实时成像算法在某8mm高分辨机载SAR中的应用,电讯技术,2004(4):140-142
    [12]M.L.Williams,et al,Millimetre wave radar imaging,IEE Colloquium on Radar and Microwave Imaging,1994
    [13]张澄波,综合孔径雷达原理、系统分析与应用,1989.5,北京:科学出版社,第2,6章
    [14]刘永坦,雷达成像技术,1999,哈尔滨:哈尔滨工业大学出版社,第1章
    [15]保铮,邢孟道,王彤,雷达成像技术,2005.4,北京:电子工业出版社,第5,6章
    [16]C.W.Sherwin,J.P.Ruina,and R.D.Rawcliff,Some early developments in synthetic aperture radar systems,IRE Trans.on Military Electronics,1962.6(2)
    [17]D.A.Ausherman,A.Kozma,and J.L.Walker,Developments in radar imaging.IEEE Transactions on Aerospace and Electronic Systems,1984.20(4)
    [18]F.I.Gonzalez,R.C.B.,et al.,Seasat synthetic apeture radar:ocean wave detection capabilities science,1979
    [19]Dubbert D.F,et al,Results of the sub-thirty-pound high-resolution "mini" SAR demonstration,Proceeding of SPIE 2006
    [20]陈仁元,邓海涛,江凯,雍延梅,张长耀,机载高分辨SAR系统成像技术,遥感技术与应用,2005.20(1):173-177
    [21]孙兵,周荫清,陈杰,李春升,基于俯冲模型的SAR成像处理和几何校正,北京航空航天大学学报,2006.32(4):435-439
    [22]郭彩虹,陈杰,孙雨萌,孙兵,周荫清,超大前斜视空空弹载SAR成像实现方法研究,宇航学报,2006.27(5):880-884
    [23]李军显,岳应娟,刘岩,李萍萍,空空导弹雷达导引头成像研究,弹箭与制导学报,2006.26(2):1-3
    [24]俞根苗,邓海涛,尚勇,张长耀,葛江龙,吴顺君,弹载侧视合成孔径雷达信号分析及成像研究,电子学报,2005.33(5):778-782
    [25]黄世奇,刘代志,陈亮,基于合成孔径雷达成像的景像与地形匹配制导研究,战术导弹控制技术,2006(2):46-49
    [26]A.M.Smith,A new approach to range-doppler SAR processing,Int.J.Remote sensing,1991.12:235-251
    [27]M.J.Jin and C.Wu,A SAR correlation algorithm which accomodates large range migration,IEEE Transactions on Geoscience and Remote Sensing,1984,22(6):592-597
    [28]C.Y.Chang,M.J.Jin,and J.C.Curlander,Squint mode SAR processing algorithms.in the 12th Canadian Symposium on Remote Sensing,1989,Vancouver:1702-1706
    [29]C.Cafforio,C.Prati,and F.Rocca,SAR focusing using seismic migration techniques,IEEE Transactions on Aerospace and Electronic Systems,1991.27(2):194-207
    [30]Raney R.K.and P.W.Vachon,A phase preserving SAR processor,the 12th Canadian Symposium on Remote Sensing,1989,Vancouver:2588-2591
    [31]Moreira A.and Y.Huang,Chirp scaling algorithm for processing SAR data with high squint angle and motion error,SPIE:SAR Data Processing for Remote Sensing,1994:268-277
    [32]Moreira A.and Y.Huang,Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation,IEEE Transactions on Geoscience and Remote Sensing,1994.32(5):1029-1040
    [33]Moreira A.,et al,Real-time implementation of the extended chirp scaling algorithm for air- and spaceborne SAR-processing,1995:714-722
    [34]G.W.Davidson,I.G.Cumming,and M.R.ITO,A chirp scaling approach for processing squint mode SAR data,IEEE Transactions on Aerospace and Electronic Systems,1996.32(1):121-133
    [35]Raney R.K.,et al.,Precision SAR processing using chirp scaling,IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):786-799
    [36]Davidson G.W.,I.G.Cumming,and M.R.Ito,A chirp scaling approach for processing squint mode SAR data,IEEE Transactions on Aerospace and Electronic Systems,1996.32:121-133
    [37]Shao Y.and Z.Zhu,Squint mode airborne SAR processing using RD algorithm,IEEE Aerospace and Electronics Conference,1997,NAECON:
    [38]Wang J.,G.Xue,and Z.Zhou,A new subaperture nonlinear chirp scaling algorithm for real-time UWB-SAR imaging,CIE2006:
    [39]Tat Soon Yeo,et al,A new subaperture approach to high squint SAR processing.IEEE Transactions on Aerospace and Electronic Systems,2001,39(5):954-968
    [40]Xiaobing Sun,et al,Time-varying step-transform algorithm for high squint SAR imaging,IEEE Transactions on Geoscience and Remote Sensing,1999,37(6):2668-2677
    [41]Xiaobing Sun,et al,An improved step transform algorithm for high squint angle SAR imaging,the International Conference on Geoscience and Remote Sensing Symposium,1998:1156-1158
    [42]张欢,邢孟道,实测数据的机载斜视SAR成像算法,现代雷达,2006,28(4):34-37
    [43]刘光炎,黄顺吉,非线性CS算法的前斜视SAR成像,电子与信息学报,2003,25(10):1308-1315
    [44]WANG Kaizhi and L.Xingzhao,A quartic algorithm for squint SAR imaging,the IEEE International Conference on Acoustics,Speech and Signal Processing,2006:1157-1160
    [45]Tobin M.and M.Greenspan,Smuggling interdiction using an adaptation of the AN/APG-76 multimode radar,the IEEE Magazine on Aerospace and Electronic Systems,1996:19-24
    [46]J.D.O'Brien,Closed form solutions for the depth of focus of synthetic aperture radar(SAR) maps under maneuvers,the IEEE National Radar Conference,1988,Ann Arbor:85-88
    [47]Ibsen P.and R.Guarino,Synthetic aperture radar(SAR) image focus performance during maneuvers,SPIE:Radar Sensor Technology,1996:67-78
    [48]F.Weindling,Advanced techniques for extending synthetic aperture radar(SAR)depth of focus under aircraft maneuvers,IEEE 1988 National Radar Conference,Ann Arbor:89-94
    [49]邢孟道,保铮,基于运动参数估计的SAR成像,电子学报,2001.29(12A):1824-1828
    [50]邢孟道,保铮,基于运动参数估计的窄波束宽幅SAR成像算法,现代雷达,2004.26(2):37-41
    [51]周峰,邢孟道,保铮,一种无人机机载SAR运动补偿的方法,电子学报,2006,34(6):1002-1007
    [52]蔡文伟,雷万明,高分辨率机载SAR地速误差补偿,现代雷达,2007,29(6):31-35
    [53]Energy o.D.,Signal based motion compensation for synthetic aperture radar,Los Angles,1999.
    [54]叶少华,周荫清,用真实IMU_GPS数据进行机载SAR运动补偿处理,北京航空航天大学学报,2005,31(10):1063-1070
    [55]刘月花,荆麟角,对比度最优自聚焦算法,电子与信息学报,2003,25(1):24-30
    [56]Lu Y.H.,et al,Autoregressive spectral estimation for SAR map-drift autofocusing,the Asia Pasific Microwave Conference,1997:61-64
    [57]邢孟道,基于实测数据的雷达成像方法研究,西安电子科技大学博士学位论文,2003,第6章
    [58]F.Berizzi,et al,Autofocus of wide azimuth angle SAR images by contrast optimisation,IGARSS '96:Geoscience and Remote Sensing Symposium,1996(2):1230-1232
    [59]王建,王亮,薛国义,周智敏,基于数据的超宽带SAR的运动补偿方法,电子与信息学报,2007,29(2):360-364
    [60]孙兵,周荫清,陈杰,李春升,基于恒加速度模型的斜视SAR成像CA-ECS 算法,电子学报,2006,34(9):1595-1599
    [61]毛士艺,李少洪,黄永红,陈远知,机载PD雷达DBS实时成像研究,电子学报,2000,28(3):32-34
    [62]周荫清,机械脉冲多普勒雷达DBS技术,航空学报,1988,9(12):574-581
    [63]张直中,多普勒波束锐化(DBS)理论和实践中若干问题的探讨,现代雷达,1991,13(2):1-12
    [64]张庆文,张剑云,多卜勒波束锐化运动补偿方法的研究,航空学报,1994, 15(11):1348-1356
    [65]李燕平,邢孟道,保铮,宽带机械扫描雷达的DBS成像和动目标检测,西安电子科技大学学报,2006,33(1):116-128
    [66]孙泓波,顾红,苏卫民,刘国岁,机载脉冲多普勒雷达DBS成像实验研究,数据采集与处理,2001,16(4):423-427
    [67]盛卫星,方大纲,杨正龙,李展,一般非综合孔径雷达方位超分辨研究,南京理工大学学报,2000,24(4):289-295
    [68]刘光炎,斜视及前视合成孔径雷达系统的成像与算法研究,2003,电子科技大学博士学位论文,成都,第3,4章
    [69]Lanari R.,S.Hensley,and P.Rosen,Modified SPECAN algorithm for scanSAR data processing,the IEEE International Symposium on Geoscience and Remote Sensing,1998,Rome:636-638
    [70]Xun L.,C.Pengju,and W.Chuanhua,Improvement in angle determination precision and resolution with method of deconvolution by coherent,the 5th International Conference on Signal Processing 2000:1925-1928
    [71]Blankenship G.and C.Fletcher,High radar range resolution using digital deconvolution,the IEEE 1989 National Aerospace and Electronics Conference,1989,NAECON:89-96
    [72]Kusama K.and I.Araial,Compression of radar beam by deconvolution,ISNCR-89,1989,Japan:
    [73]Berenstein C.A.and E.V.Parrick,Exact deconvolution for multiple convolution operators-an overview,plus performance characterizations for imaging sensors,the Proceedings of the IEEE,1990(4):723-734
    [74]Iverson D,Beam sharpening via multikernel deconvolution,the CIE International Conference on Radar.2001:693-697
    [75]Miller C.S.,Enhangced angle resolution in scanning beam systems,the Aerospace Applications Conference,1995(1):333-341
    [76]XU Jia,PENG Y.N.,LI Jun,Wang Xiutan,A homogeneous ping-pang architecture for SAR real-time imaging,the International Conference on Space Information Technology,2005(59852X)
    [77]Ackenhusen J.G,实时信号处理.信号处理系统的设计与实现,2002,北京:电子工业出版社,第4,6章
    [78]Moreira A.,Real-time synthetic aperture radar(SAR) processing with a new subaperture approach,the IEEE Transactions on Geoscience and Remote Sensing, 1992,30(4):714-722
    [79]Spielbauer R.,A.Moreira,and W.Potasch,Development of a real-time airborne SAR processor using a subaperture approach,SAR Data Processing for Remote Sensing,1994(2316):260-267
    [80]Sub J.,M.Ung,and V.K.Prasanna,Parallel implementation of synthetic aperture radar on high performance computing platforms,1997:
    [81]Ortiz F.E.,J.P.Duebano,E.J.Kelmelis,Hardware acceleration of the motion compensation algorithms in synthetic aperture radar(SAR) platforms,the Applications of Digital Image Processing ⅩⅩⅨ,2006(6312):
    [82]费君,胡学成,雷万明,高分辨率SAR实时信号处理,现代雷达,2004,26(11):42-46
    [83]黄源宝,保铮,大斜视SAR成像的一种新的二维可分离处理方法,电子与信息学报,2005,27(1):1-5
    [84]Frank H.Wong,T.S.Y.,Ngee Leng Tan,New applications of non-linear chirp scaling in SAR data processing,the IEEE 2000 International Conference on Geoscience and Remote Sensing,2000:96-98
    [85]G.Fornaro,et al.,Role of processing geometry in SAR raw data focusing,IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):441-453
    [86]Ian G.Cumming and F.H.Wong,Digital processing of synthetic aperture radar data,2005,Boston/London:Artech House
    [87]Moreira A.,J.Mittermayer,and R.Scheiber,Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging modes,IEEE Transactions on Geoscience and Remote Sensing,1996,34(5):1123-1136
    [88]Duan Shizhong and L.Junxian,High squint processing using modified extended chirp scaling,the First International Conferencen on Innovative Computing,Information and Control,2006:358-361
    [89]刘光炎,蔡文伟,黄顺吉,四阶传递函数算法用于斜视SAR成像,信号处理,2003,19(4):319-323
    [90]蓝金巧,邢孟道,吴顺君,机载大斜视SAR的运动补偿方法,现代雷达,2004,26(7):17-20
    [91]I.G.Cumming and F.H.Wong,Digital processing of synthetic aperture radar data,2005,Boston/London:Artech House:Chap.6,7,9
    [92]R.Bamler,A Systematic Comparision of SAR focusing algorithm,the Proceeding of the International Geoscience and Remote Sensing Symposium,1991,Helsinki:
    [93]C.Y.Chang,M.Y.Jin,and J.C.Curlander,SAR processing based on the exact two-dimensional transfer function,the International Conference of Geoscience and Remote Sensing Symposium,1992:355-359
    [94]王国华,孙进平,毛士艺,机载斜视SAR改进ETF快速成像算法,航空学报,2007,28(1):156-160
    [95]Doerry A.W.,Patch diameter limitations due to high chirp rates in focused synthetic aperture radar images,IEEE Transacitons on Aerospace and Electronic Systems,1994,AES-30(4):1125-1129
    [96]李勇,朱岱寅,朱兆达,机载合成孔径雷达大斜视高分辨率重叠子孔径成像算法研究,电子信息学报,2006,28(9):1577-1581
    [97]Doerry A.W.,Synthetic aperture radar processing with polar formatted subapertures,the 28th Asilomar Conference on Signals,Systems,and Computers,1994,Pacific Grove,CA,USA:1210-1215
    [98]Doren N.E.,Space-variant post-filtering for wavefront curvature correction in polar-formatted spotlight-mode,1999,Sandia National Lab,New Mexico
    [99]Moreira A.,T.Misra,S.Chowdhury,Modelling and performance evaluation of a new subaperture approach for real-time SAR processing:399-401
    [100]Moreira A.,R.Scheiber,J.Mittermayer,Azimuth and range scaling for SAR and scanSAR processing,the International Conference Geoscience and Remote Sensing Symposium,1996(2):1214-1216
    [101]Meyer-Hilberg J.,C.Neumann,Low-cost one-axis accelerometers in line of sight for image focussing in mini SAR systems:
    [102]J.Kolman,PACE:an autofocus algorithm for SAR,the International Radar Conference,1999,Virginia:310-314
    [103]F.Berizzi and G.Corsini,Autofocusing of inverse synthetic aperture radar images using contrast optimization,IEEE Transactions on Aerospace and Electronic Systems,1996,32(3):1185-1191
    [104]D.E.Wahl,P.H.Eichel,D.C.Ghigilia,Phase gradient autofocus-a robust tool for high resolution SAR phase correction,IEEE Transactions on Aerospace and Electronic Systems,1994,30(3):827-834
    [105]俞根苗,邓海涛,吴顺君,弹载SAR图像几何失真校正方法,西安电子科技大学学报,2006,33(3):386-389
    [106]俞根苗,邓海涛,吴顺君,弹载SAR图像几何失真校正误差分析,电子与信息学报,2007,29(2):383-386
    [107]黄源宝,邢孟道,保铮,周峰,载机速度不稳对SAR成像的影响及补偿方法,中国合成孔径雷达会议,合肥,2003:
    [108]程玉平,机载SAR数据的成像研究,系统工程与电子技术,2000,22(7):90-93
    [109]Li Y.,et al,Automatic mosaicing for airborne SAR imaging based on subaperture processing,IEEE International Conference of Geoscience and Remote Sensing Symposium,2005:4644-4647
    [110]Carrara W.G.,R.S.Goodman,R.M.Majewski,Spotlight synthetic aperture radar:signal processing algorithms,1995,Boston:Artech House.
    [111]Calloway T.M.,G.W.Donohoe,Subaperture autofocus for synthetic aperture radar,IEEE Transactions on Aerospace and Electronic Systems,1994,30(2):617-621
    [112]康雪艳,杨汝良,对比度最优与子孔径相关自聚焦算法的比较,测试技术学报,2003,17(1):19-24
    [113]石媛珍,多普勒波束锐化与聚束式地图测绘.前视合成孔径雷达技术,空载雷达快报,1981,5:1-21
    [114]Purchla M.,M.Malanowski,Simple motion compensation algorithm for unfocused synthetic aperture radar,SPIE:Photonics Applications in Astronomy,Communication,Industry,and High-Energy,Bellingham,2004(5484):659-664
    [115]D.Wenzel,J.Mittermayer,A.Moreira,Analysis of two different implementations of the SPECAN algorithm for real time range compression of SAR data,IEEE International Conference of Geoscience and Remote Sensing Symposium,1999:1764-1766
    [116]I.G.Cumming,Y.Guo,A comparison of phase-preserving algorithms for burst-mode SAR data processing,IEEE International Conference on Geoscience and Remote Sensing,1997(2):731-733
    [117]Albrecht S.,On the properties and efficiency of the SIFFT SAR processing algorithm,the IEEE Radar Conference,2002:187-193
    [118]Mittermayer J.,A.Moreira,A generic formulation of the extended chirp scaling for phase preserving scanSAR and spotSAR processing,2000:108-110
    [119]M.C.OPJIOB,前视机载合成孔径雷达的信号处理,空载雷达,1998(4):26-29
    [120]A.K.Lohner,Improved azimuthal resolution of forword looking SAR by sophisticated antenna illumination function design,IEE Proc-Radar Sonar Navig.,1998,145(2):128-134
    [121]何峰,DBS信号处理机的设计与实现,国防科技大学电子科学与工程学院硕士论文,长沙,2001,第2章
    [122]Ruegg M.,E.Meier,D.Nuesch,Capabilities of dual-frequency millimeter wave SAR with monopulse processing for ground moving target indication,IEEE Transactions on Geoscience and Remote Sensing,2007,45(3):539-551
    [123]G.C.Pryde,et al,Design of a high quality real-time processor for airborne SAR data,SAR Data Processing for Remote Sensing,1994(2316):248-259
    [124]吴敏渊,金伟正,胡志雄,黄建忠,ADSP系列数字信号处理器原理,2002,北京:电子工业出版社,第2章
    [125]Analog Devices,Inc.,ADSP TS201 Datasheet,2004
    [126]李素芝,万建伟,时域离散信号处理,1994,长沙:国防科技大学出版社
    [127]Lerner B.,为ADSP-TS201 TigerSHARC处理器编写高效的浮点FFT,2004
    [128]卢世祥,韩松,王岩飞,合成孔径雷达实时成像转置存储器的两页式结构与实现,电子与信息学报,2005,27(81:1226-1228
    [129]曾涛,李眈,龙腾,高速实时数字信号处理器SHARC的原理及其应用,2000,北京:北京理工大学出版社
    [130]FPGA/CPLD设计工具—Xinlinx ISE5.x使用详解,2003,北京:人民邮电出版社,第1章
    [131]Hall S.H.,G.W.Hall,J.A.McCall,高速数字系统设计-互连理论和设计实践手册,2005,北京:机械工业出版社,第3章
    [132]叶勤,陈鹰,高程起伏对雷达景像匹配的影响及改正方法,同济大学学报,2003,31(1):85-88
    [133]李燕平,邢孟道,保铮,沿航向运动补偿的几何形变校正,西安电子科技大学学报(自然科学版),2006,33(6):881-886
    [134]李亚超,蓝金巧,邢孟道,沈福民,SAR术制导中导弹定位方法及分析,遥测遥控,2004,25(6):29-33
    [135]苗慧,王岩飞,张冰尘,黄倩,运动误差对机载SAR定位精度的影响,电子测量技术,2007,30(1):63-57
    [136]Zhonghou Z.,L.Xingzhao,Z.Zhixin,Motion correction in synthetic aperture radar using subaperture techniques,IEEE International Conference on Acoustics,Speech,and Signal Processing,2004(2):69-72
    [137]程玉平,SAR成像中几个问题的研究,西安电子科技大学博士学位论文,西安,2000,第3章

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700