核废处置库近场岩体饱和断层带渗流—传热数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高放废物深地质处置库工程为研究背景,采用数值模拟计算分析断层带参数(包括断层带渗透系数、位置、倾角、宽度)对高放核废处置库近场渗流-传热的影响特征。
     主要结论如下:
     (1)渗透系数高值条件下热流量无法越过断层带影响到另一侧岩石,且断层带内的温度梯度极小,断层带内的温度与影响到的底部边界的温度几乎一致;中值条件下热流量可以越过断层带影响到另一侧岩石区域,但此时断层带内水流的对流传热作用不可忽略,断层带内存在较大的温度梯度;低值条件下区域最终温度场与不设断层带时几乎一致,此时断层带内的对流传热作用可以忽略。渗透系数越大,影响到边界所需要的传热时间越短,断层带内的温度越小。
     (2)设定两条不对称的断层带,通过其影响边界所需要的时间长短确定断层带与热源中心距D、断层带宽度d以及渗透系数k这三个参数两两之间对温度场影响程度大小。若存在左、右两条断层带,只要两条断层带单位时间内通过断层带的水流流量一定,即dk乘积相等时,则可以认为两条断层带的渗透系数与断层带宽度分别相等以简化模型。在渗透系数为中、高值条件下,简化模型得出的结果是精确的,两条断层带的温度差值在5%以内。就是说,断层带内的渗透系数k与断层带宽度d对温度场分布的影响程度为线性关系。而断层带与热源中心距D对整个温度场的影响与其余两个参数并不成线性关系,断层带与热源中心距D的影响要大于断层带宽度d及渗透系数k的影响。
     (3)断层带倾角对最终温度场的影响。在地表入渗处水压相同的条件下,水平断层带内的最终温度要远远大于垂直断层带;垂直断层带角度不同,则下部断层带越靠近热源影响边界温度的时间越短,但最终温度几乎没有太大差别。
This paper mainly presents the research based on the the deep geological disposal of high level radioactive waste, in the numerical simulation we need to change the parameters of the faulted zone (including permeability, position, dip, width) in order to find the character of flow and heat transfer in the near field of nuclear waste repository in saturated rock with fault.
     The mainly conclusions are:
     When heat flux affects the boundary, it can not pass over the faulted zone and affect the other rock mass in the condition of high permeability coefficient value, the temperature gradient within the fault zone is very small,the temperature of the faullt zone is nearly eaqul to the temperature of bottom boundary;it can pass over the faulted zone and affect the other rock mass in the condition of medium value but the convective heat role of the flow in the faulted zone should not be ignored; in the low value the final temperature field is nearly exactly as the field without the faulted zone, and the convective heat role of the flow in the faulted zone can be ignored. With larger permeability coefficient, the heat transfer to boundary required shorter time, and the temperature of the faullt zone is smaller.
     Set two unsymmetric faults in the model, through the duration which heat transfer to boundary to get the impact to the temperature field of the zone by the distance D between faulted zone and the center of heat source、the faulted zone width d and the permeability coefficient k.With two faults at left and right zone,if the water flow through the two faults in per unit time is equal, that's to say, the product of the permeability coefficient k and the faulted zone width d is constant, than we can consider the coefficient k and d of the left and right falut are equal in order to simplify the model.Especially in the condition of high or medium permeability coefficient value,the outcome of the simplification is very close to what before it, the temperature difference between the two faults is within 5%. That's to say,the impact to the temperature field of the zone ofκand d is linear. The relationship between the impact,which is exerted by D, on the whole temperature field and other two parameters are nonlinear.
     The impact of faulted zone dip to the final temperature field. In the condition of same Infiltration water pressure, the horizontal faulted zone is much larger than the vertical faulted zone; if the angle of vertical faulted zone is different, the nearer the lower faulted zone to the heat, the shorter time the faulted zone affects the boundary temperature, however, almost no significant difference between the final temperature.
引文
[1]刘亚晨,吴玉山.核废料贮存裂隙岩体耦合分析研究综述[J].地质灾害与环境保护,1999,]0(3):72-78
    [2]蒋中明,Dashnor XOXHA.核废料贮存库围岩体热响应耦合场研究[J].岩土工程学报,2006,28(8):953-956
    [3]张玉军.不同场热-水-应力耦合过程二维有限元分析[J].地下空间与工程学报,2007,3(3):444-449
    [4]张玉军.核废料处置概念库工程屏障中热-水-应力耦合过程数值分析[J].工程力学,2007,24(5):186-192
    [5]孙培德.地质系统热-水-力耦合作用的随机建模初步研究[J].岩土力学,2003,24:39-42
    [6]Manteufel R D, Ahola M Turner D R, et al. A literature review of coupled thermal-hydrologic-mechanical-chemical processes pertinent to the proposed high-level nuclear waste repository at Yucca Mountain, U.S.Nuclear Regulatory Commission Report NUREG/ CR-6021-Center for Nuclear Waste Regulatory Analyses Report CNWRA 92-01-1[R]. [U.S.]: [S.n.],1993.
    [7]曲伟平.核废料处置关系人类安全[J].安全,2008,2:24-26.
    [8]邓广哲,杨梅忠.核岩土环境工程问题及研究现状[J].西安科技学院学报,2000,20(4):293-298.
    [9]张玉军.核废料地质处置近场热-水-应力-迁移耦合二维有限元分析与比较[J].工程力学,2008,25(4):218-223.
    [10]CHIJIMATSU M, FUJITA,T KOBAYASHI A, et al. Experiment an d validation of numerical simulation of coupled therm al, hydraulic an dymechanical behavior in engineering bufer material[J]. Int J for Numerical and Analytical Methods in Geomechanics,2000,24(4):403-424.
    [11]T. Chana, R. Christiansson, G.S. Boulton, L.O. Ericsson, J. Hartikainen,M.R. Jensen, D. Mas lvars, F.W. Stanchell, P. Vistrand, T. Wallroth. DECOVALEX III BMT3/BENCHPAR WP4:The thermo-hydromechanical. responses to a glacial cycle and their potential implications for deep geological disposal of nuclear fuel waste in a fractured crystalline rock mass[J]. International Journal of Rock Mechanics & Mining Sciences,2005,42:805-827.
    [12]Chin-Fu Tsang, Lanru Jing, Ove Stephansson, Fritz Kautsky. The DECOVALEX III project:A summary of activities and lessons learned[J]. International Journal of Rock Mechanics & Mining Sciences,2005,42:593-610.
    [13]刘泉声,张程远,刘小燕.DECOVALEX IV TASK D项目的热-水-力耦合过程的数值模 拟[J].岩石力学与工程学报,2006,25(4):709-720.
    [14]Jing L et al. DECOVALEX-An international cooperative research projects on machematical models of radioactive waste repositories[J]. International Journal of Rock Mechanics & Mining Sciences,1995,32:389-398.
    [15]王媛,刘杰.基于敏感性分析的裂隙岩体渗流与应力静态全耦合参数反演[J].岩土力学,2009,30(2):311-317
    [16]张玉军.核废料处置概念库近场热-水-应力耦合二维有限元模拟[J].岩土工程学报,2006,28(9):1053-1058.
    [17]刘亚晨,席道瑛.核废料贮存裂隙岩体中THM耦合过程的有限元分析[J].水文地质工程地质,2003,30(3):81-87.
    [18]刘亚晨,蔡永庆.岩体裂隙结构面的温度—应力—水力耦合本构关系[J].岩土工程学报,2003,21(2):196-200.
    [19]刘泉声,刘小燕等.核废料贮存裂隙岩体THM耦合研究进展与展望.国防科工委首届高放废物地质处置研讨会论文集.2005年,北京,76-88.
    [20]刘建军,薛强.岩土热-流-固耦合理论及在采矿工程中的应用[J].武汉工业学院学报,2004,23(3):55-60.
    [21]冉启全,李士伦.流固耦合油藏数值模拟中物性参数动态模型研究[J].石油勘探与开发,1997,24(3):61-65.
    [22]曾亿山,卢德唐,曾清红,董虎.单裂隙流—固耦合渗流的试验研究[J].实验力学,2005,20(1):10-16.
    [23]高红梅梁冰,兰永伟核废料地下处置过程中相关动力学问题及控制措施地质灾害与环境保护2004 15(2):52-56.
    [24]张强林,王媛.岩体THM耦合应用研究现状综述[J].河海大学学报(自然科学版),2007,35(5):538-541.
    [25]周志芳,王锦国.裂隙介质水动力学.中国水利水电出版社[M],2004:27-29.
    [26]张有天.岩石水力学与工程.中国水利水电出版社[M],2005.
    [27]薛禹群,朱学愚.地下水动力学.地质出版社[M],1979.
    [28]陈崇希,林敏.地下水动力学.中国地质大学出版社[M],1999.
    [29]陈景仁.流体力学及传热学.北京:国防工业出版社[M],1984.
    [30]赵镇南.传热学.高等教育出版社[M],2008.
    [31]Itasca Consulting Group, Inc. FLAC(Fast Lagrangian Analysis of Continua) User Manuals,Version 5.0,Minneapolis,Minnesota,2005,5.
    [32]Itasca Consulting Group, Inc. FLAC 3D(Fast Lagrangian Analysis of Continua) User Manuals,Version 2.1,Minneapolis,Minnesota,2002,6.
    [33]刘波,韩彦辉.FLAC原理、实例与应用指南.人民交通出版社[M],2005:106-110.
    [34]张玉军渗透系数对渗流速度影响的热-水-应力耦合二维有限元分析.岩土力学.2007,28(7):1292-1298.
    [35]王青海.花岗岩介质中处理中低放核废料的热应力.地质灾害与环境保护[J],1998 9(2):45-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700