基于星载测雨雷达和云廓线雷达探测的亚洲雨顶和云顶高度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用CloudSat卫星上的云廓线雷达(Cloud Profile Radar,CPR)探测的雷达反射率因子和地表降水率资料,分析研究了2006年6月至2009年5月亚洲地区云顶高度分布特征,并统计研究了亚洲洋面地区云顶高度与地表雨强的关系。研究结果表明,由于受西太平洋副高和大气低层季风气流的影响,亚洲季风区云顶高度和平均地表降水率的季平均分布变化规律有很好的一致性;通过云顶高度概率密度分布可以发现,亚洲洋面云顶高度具有双峰结构:对流层下层3.5km和对流层上层12-16km处,且各季节云顶具有相似的垂直分布规律,其中夏季主要以高云为主,冬季中低云所占比例较多,春秋两季位于两者之间,且降水云顶高度要比非降水云顶高1-2km左右。此外,陆地上云顶高度概率密度分布较为分散。在对亚洲云顶高度水平和垂直分布研究的基础上,我们对云顶高度与地表降水之间的关系进行了研究,并给出了定量关系表达式,发现云顶高度随降水强度的增加而呈指数增长趋势,关系表达式为R=AHb,且当云顶高度大于10km时,降水强度增加较快,即高云对地面降水贡献较大。
     由于CPR为毫米波雷达,可以同时探测云粒子和小雨粒子,从而可以弥补热带测雨卫星(Tropical Rainfall Measuring Mission,TRMM)上测雨雷达(Precipitation Radar,PR)对弱降水探测的局限性。根据PR降水廓线资料,我们可以定义雨顶高度,而CPR的第一个回波高度为云顶高度,从而利用CloudSat官网提供的2D-CLOUDSAT-TRMM资料,比较2006年8月至2009年2月亚洲地区两部雷达回波信号特点和降水率差异,并统计了亚洲洋面地区雨顶高度、云顶高度及其与地表降水率的关系。研究结果表明,PR对对流型降水(强降水)的反演具有绝对的优势,而由于层云降水为弱降水,两部雷达探测的样本数相当,对于同一降水样本,甚至出现了CPR比PR探测的降水强度大的现象,但当降水强度变大(8mm/h以上),CPR不具有优势。此外,无论是对流降水还是层云降水,云顶高度和雨顶高度都随地表降水增加而单调递增,且满足指数增长规律,其中对于对流降水,云顶和雨顶高度差较小;随着雨强的增加,无论是哪类降水,云顶和雨顶高度愈来愈接近。
The horizontal and vertical distribution of Cloud Top Height(CTH) on seasonal scale and the quantitative relationship between CTH and rain rate in ocean of Asia are investigated based on rain rate and radar reflectivity measured by CloudSat Cloud Profiling Radar(CPR) in the Asia from June 2006 to May 2009. Results indicate that a significantly consistent distribution at 1.5 degree horizontal resolution between CTH and rain rate on seasonal scale due to the Western Pacific Subtropical High and Asia monsoon. As found in previous studies, the probability density distribution of the CTH in ocean displays two main peaks: 3.5 lower troposphere and upper troposphere between 12 and 16 km. In each season, Cloud Top Height in ocean has a similar vertical distribution of high clouds mainly in summer and higher proportion of low clouds in winter, and spring and autumn are in between them, however, more dispersed distribution of vertical structure in land Furthermore, In addition, precipitation Cloud Top altitude is higher than non-precipitation about 1-2km. According to the horizontal and vertical distribution of Cloud Top Height, clouds are classified into two categories, namely, the low clouds(CTH<10km)and high clouds (CTH>10km), and no matter what type of Cloud Top Height increases exponentially with surface rainfall rate, which are fit the form R=AHb, the results show that the height of clouds increases rapid as rain intensity increases especially for clouds deeper than 10 km.
     The high-frequency of CPR is also highly sensitive to the presence of both solid and liquid precipitation, that is to say CloudSat bridges a critical gap between the precipitation measurement of TRMM at low latitudes and the more global precipitation measuring goals of GPM. Therefore, radar echo characteristics, precipitation, Rain Top Height (RTH) and Cloud Top Height observed by PR and CPR are compared in Asia from August 2006 to February 2009 using 2D-CLOUDSAT-TRMM combined data provided by CloudSat official website. It is showed that PR has absolute advantage on the convective heavy of precipitation, otherwise almost the same stratiform-type precipitation samples detected by two radars because of CPR is most applicable to weak precipitation, even the rain intensity of CPR is higher than PR value besides rain rate greater than 8 mm/h. For two kinds of precipitation, the height of cloud from CPR is greater than Rain Top Height retrieved from PR, and both of them are exponentially increased with surface rain rate, and with the increase of rainfall rate, the difference between the two heights become smaller and smaller, but in terms of convective type clouds, the echo top height obtained from PR and CPR are more closer.
引文
Adler, R. F.,and R. A.Mack,1984. Thunderstorm Cloud Height-Rainfall Rate Relations for Use with Satellite Rainfall Estimation Techniques. J.Climate Appl.Meteor.,23, 280-296.
    Alcala, C. M. and Dessler, A. E 2002,Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar, J. Geophys. Res.107, 4792.
    Berg, W., T. L’Ecuyer, and S. van den Heever (2008), Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloud-resolving model simulations, J. Geophys. Res., 113,D14S23, doi:10.1029/2007 JD009649.
    Berg,W.and Tristan L’Ecuyer.John M.Haynes,2009:The distribution of Rain-fall over oceans from spaceborne radars. Journal of Applied Meteorology and Climatology.doi:10.1175/2009JAMC 2330.1,in press.
    Bilanow S, Hensley M, Kwo-sen Kuo et al.,Poster presented at 3rd International TRMM Science Conference, February 4, 2008.
    Burrows,J.P., M.Weber, M.Buchwitz et al.,1999: The Global Ozone Monitoring Experiment (GOME):Mission concept and the first scientific results, J.Atomos.Sci.,56,151-175.
    Clothiaux E E, MillerM A, Albrecht B A, et al.1995. An evaluation of a 94GHz radar for remote sensing of cloud properties [ J ].Journal of Atmospheric and Oceanic Technology. 12: 2012229.
    Dessler, A.E.,S.P.Palm,and J.D. Spinhirne (2006), Tropical cloud-top height distributions revealed by the Ice, Cloud,and Land Elevation Satellite (ICESat)/Geoscience Laser Altimeter System (GLAS), J. Geophys. Res., 111, D12215, doi: 10.1029/2005JD006705.
    Ding Y H, Hu J . 1988. The variation of the heat sources in East China in the early summer of 1984 and their effects on the large scale circulation in East Asia. Adv Atmos Sci , 5 :1712180
    Ding Y H. 1992. Summer monsoon rainfall in China. J Meteor Soc Japan , 70 :373-396
    Ellis,T.D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens.2009.How often does it rain over the global oceans? The perspective from CloudSat, Geophys.Res.Lett.36.L03815, doi:10.1029/ 2008GL036728.
    Flaming,G M, 2005,Global precipitation measurement update[M].Seoul,Korea:I2 GARSS,25-29.
    Frey,R A., B.A. Baum,W. P. Menzel, S. A. Ackerman, C. C. Moeller, and J. D. Spinhirne, 1999: A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2slicing. J. Geophys. Res., 104, 24547–24555.
    Fu,Y F, and G.S. Liu. 2001.The variability of tropical precipitation profiles and its impact on microwave brightness temperatures as inferred from TRMM data. Journal of Applied Meteorology, 40(12): 2130-2143.
    Fujita T T.1982.Principle of stereoscopic height computations and their applications to strato- spheric cirrus over severe thunderstorms. J Meteor Soc Japan. 60 (1):355-368
    Futyan J M., and A. D. Del Genio.2007. Relationships between lightning and properties of convective cloud clusters, Geophys. Res. Lett., 34, L15705, doi:10.1029/2007GL030227.
    Garay M J, S. P. de Szoeke, and C. M. Moroney.2008. Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations, J. Geophys. Res., 113, D18204,doi:10.1029/2008JD009975.
    Hasler A F. 1981. Stereographic observations from satellites : An important new tool for the atmospheric science. Bulletin of the American Meteorological Society. 62 : 194-212.
    Hasler A.F, J.Strong, R.H. Woodward, H.Pierce.1991. Automatic analysis of stereoscopic satellite image pairs for determination of cloud-top height and structure. Journal of Applide Meteorology, 30:257-281.
    Haynes, J. M., and G. L. Stephens.2007. Tropical oceanic cloudiness and the incidence of precipitation: Early results from CloudSat, Geophys. Res. Lett., 34, L09811, doi:10.1029/ 2007GL029335.
    Haynes, J. M., T. S. L’Ecuyer, G. L. Stephens, S. D. Miller, C. Mitrescu, N. B. Wood, and S. Tanelli.2009. Rainfall retrieval over the ocean with spaceborne W-band radar, J. Geophys. Res., 114, D00A22, doi:10.1029/2008JD009973.
    Hollars S, Fu Q, Comstock J, et al.2004. Comparison of cloud top height retrievals from ground -based 35GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site [ J ]. Atmospheric Research. 72: 169-186.
    Hudak, D, P.Rodriguez, and N. Donaldson .2008. Validation of the CloudSat precipitation occurrence algorithm using the Canadian C band radar network, J. Geophys. Res., 113, D00A07, doi:10.1029/2008JD009992.
    Mack R A , Hasler A F , Adler R F. 1983. Thunderstorm cloud-top observations using satellite stereoscopy.Monthly Weather Review. 111. 1949-1964.
    King M D, Y.J.Kaufman, W.P.Menzel, D.Tanre.1992. Remote sensing of cloud, aerosol, andwater vapor properties from the moderate Resolution Imaging Spectrometer(MODIS).IEEE Trans. On Geosc.And Rem.Sens.,30:2-26.
    Kodama, Y.M. and A. Tamaoki.2002. A re-examination of precipitation activity in the subtropics and the mid-latitudes based on satellite-derived data. J Meteor Soc Japan. 80(5): 1261-1278.
    Koelemeijer, R.B.A., P.Stammes et al.,2001. Global distribution of effective cloud fraction and cloud top pressure derived from oxygen A band spectra measured by the Global Ozone Moni -toring Experiment: Comparison to ISCCP data. J. Geophys. Res.107D12, 4151, 10.1029/ 2001JD000840.
    Konrad,T.G.,1977.Satistical models of summer rain showers derived from fine-scale radar obser- vation. Rep.No.APL/JHUCP 056,Johns Hopkins University.67 pp.
    Kozu T T. Kawanishi, H. Kuroiwa, et al. 2001. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. Geoscience and Remote Sensing, IEEE Transactions on, 39(1): 102-116.
    Krishinamuti T N, Bhalme H N. 1976. Oscillations of a monsoon system Part I: Observational aspects. J Atmos Sci,33:1937-1954
    Kubar T L., and D. L. Hartmann.2008. Vertical structure of tropical oceanic convective clouds and its relation to precipitation, Geophys. Res. Lett.,35,L03804,doi:10.1029/2007GL328-11.
    Kummerow C,Barnes W, Kozu T, et al. 1998. The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol, 15: 809-817.
    L’Ecuyer, T. S., and G. L. Stephens, 2001: An estimation-based precipitation retrieval algorithm for attenuating radars. J. Appl. Meteor., 41, 272–285.
    Liu, G.2008. Deriving snow cloud characteristics from CloudSat observations, J. Geophys. Res., 113, D00A09,doi:10.1029/2007JD009766.
    Lorenz,D. 1985, On the feasibility of cloud stereoscopy and wind determination with the along- track scanning radiometer. Int.J.Remote Sens.,6(8):1445-1461.
    Luo, Z., G. Y. Liu, and G. L. Stephens.2008. CloudSat adding new insight into tropical penetrating convection, Geophys.Res.Lett., 35, L19819, doi:10.1029/2008GL035330.
    Marchand R T, T. P. Ackerman, and C. Moroney.2007. An assessment of Multiangle Imaging Spectro-radiometer (MISR) stereo-derived cloud top heights and cloud top winds using ground-based radar, lidar, and microwave radiometers, J. Geophys.Res., 112, D06204, doi:10.1029/2006JD007091.
    Masunaga H. M. Satoh, and H. Miura.2008. A joint satellite and global cloud-resolving model analysis of a Madden-Julian Oscillation event: Model diagnosis, J. Geophys. Res., 113,D17210, doi:10.1029/2008JD009986.
    Matrosov, S. Y.2007. Potential for attenuation-based estimations of rainfall rate from CloudSat, Geophys. Res. Lett., 34, L05817, doi:10.1029/2006GL029161.
    Menzel.W.P, R.A.Frey, H.Zhang et a1.,2008.MODIS global cloud-top pressur e and amount estimation:Algorithm descripation and results. App1.Meteor.Climato1.,47,1175-1198.
    Minnis,P et al.,2004.CERES cloud property retrievals from images on TRMM, TERRA and AQUA. Proceedings of the VIII SPIE on Remote Sensing of Clouds and the Atmosphere, 37-48.
    Mitrescu, C., S. Miller, J. Hawkins, T. L’Ecuyer, J. Turk, P. Partain, and G. Stephens, 2008: Operational applications of CloudSat data, J. Appl. Meteor., 47.
    
    Moroney, C., R. Davies, and J.-P. Muller.2002. Operational retrieval of cloud-top heights using MISR data, IEEE Trans. Geosci. Remote Sens.,40, 1532– 1546.
    Nieman S J,Schmetz J and W P. Menzel, 1993: A comparison of several techniques to assign heights to cloud tracers. J. Appl. Meteor., 32, 1559–1568.
    Naud C, J.-P. Muller and E.E. Clothiaux.2002. Comparison of cloud top heights derived from MISR stereo and MODIS CO2-slicing, Geophys. Res. Lett. 29.16,10.1029/ 2002GL015460.
    Naud C, J.-P. Muller, M. Haeffelin, Y. Morille, and A. Delaval (2004), Assessment of MISR and MODIS cloud top heights through inter-comparison with a back-scattering lidar at SIRTA, Geophys. Res. Lett., 31,L04114, doi:10.1029/2003GL018976.
    Naud C, J.-P. Muller, and P. de Valk (2005), On the use of ICESAT-GLAS measurements for MODIS and SEVIRI cloud-top height accuracy assessment, Geophys. Res. Lett., 32,L19815, doi:10.1029/2005GL023275.
    Negri,A.J,and R.F.Adler.1981.Relation of satellite-based thunderstorm intensity to radar-estimated rainfall. J.Appl.Meteor.20.288-300.
    Prata,A.J, P.J.Turner.1997. Cloud-top height determination using ATST data. REMOTE SENS. ENVIRON.,59:1-13.
    Preusker, R., J. Fischer, G. Seiz, D. Poli, A. Grün, C. Poulsen, and R. Siddans, 2005: Validation of cloud-top pressure derived from MSG-SEVIRI observations through a comparison with independent observations. EUMETSAT Final Rep. ContractEUM/CO/03/R08/SAT, 262 pp.
    [Available online at http://www.eumetsat.int/Home/Main/Publications/Technical_and _Documentation/Technical_Memoranda/SP_1124282681564?l_en.].
    Schumacher C.and R.A.House.2000. Comparison of radar data from TRMM satellite and Kwaja-Lein oceanic validation site,J.Appl.Meteor.39.2151-2164.
    Schumacher C. and R.A. Houze. 2006. Stratiform precipitation production over sub-Saharan Africa and the tropical East Atlantic as observed by TRMM. Quarterly Journal of the Royal Meteorological Society, 132(620): 2235-2255
    Short, D. A. and K.Nakamura. 2000. TRMM radar observations of shallow precipitation over the tropical oceans. J. Climate 13:4107–4124.
    Shenk, W. E.1974. Cloud top height variability of strong convective cells. J. Appl. Meteorol.13, 917–922.
    Sherwood S C, and Dessler, A E. 2000. On the control of stratospheric humidity, Geophys. Res. Lett. 27, 2513-2516.
    Short D A,and Nakamura K. 2000. TRMM radar observations of shallow precipitation over the tropical oceans. Journal of Climate.13:4107-4124.
    Smith W L., Jr.,P. Minnis, H. Finney, R. Palikonda, and M. M. Khaiyer.2008. An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains Site, Geophys. Res. Lett., 35, L13820, doi:10.1029/2008GL034275.
    Takayabu, Y. N.2002. Spectral representation of rain profiles and diurnal variations observed with TRMM PR over the equatorial area. Geophys.Res.Lett., 29, 1584, doi:10.1029/2001 GL014113.
    Tao Shiyan, Chen Longxun. 1987. A Review of Research on the East Asian Summer Monsoon in China∥Monsoon Meteorology. Oxford University Press, 60-92.
    Ushio T, S. J. Heckman, D J Boccippio, H. J. Christian, and Z.-I.Kawasaki.2001. A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data, J.Geophys Res., 106,24,089– 24,095.
    Valovcin, F.R., 1965. Infrared measurements of clouds form a U-2 Platform , Proc. Third Symp. Remote Sensing of Environment , The University of Michigan , Ann Arbor ,153-172. Weisz E,J.Li, W P.Menzel, A K Heidinger, B. H. Kahn, and C.-Y. Liu.2007. Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals, Geophys.Res.Lett., 34, L17811, doi:10.1029/2007GL030676.
    Wilk K E,and J.T.Dooley.1980.FAA radars and their display of severe weather (thunderstorms). Rep.No.FAA-RD-80-65,38pp.
    Wylie,D.P, D.Santek, et al. 1998: Cloud-Top Heights from GOES-8 and GOES-9 Stereoscopic Imagery. Jounal of Applied Meteorology. 37: 405-413.
    Wylie,D.P,and W.P. Menzel,1999:Eight years of high cloud statistics using HIRS. J.Climate 12,l70-184.
    Zhu Qiangen, He J H , Wang P X. 1986. A study of the circulation differences between East Asian and India n summer monsoon. Adv Atmos Sci,3:466-477.
    陈举,施平,王东晓等.TRMM卫星降雨雷达观测的南海降雨空间结构和季节变化[J].地球科学进展,2005,20(1):29-35.
    程明虎,刘黎平,张沛源等.2004.暴雨系统的多普勒雷达反演理论和方法.北京:气象出版社. 147-188.
    丁伟钰,陈子通.2004.利用TRMM资料分析2002年登陆广东的热带气旋降水分布特征[J].应用气象学报.15(4):436-444.
    傅云飞,宇如聪,徐幼平等.2003.TRMM测雨雷达和微波辐射成像仪对两个中尺度特大暴雨降水结构的观测分析研究.气象学报,61(4):421—431.
    傅云飞,冯静夷,朱红芳等.2005.西太平洋副热带高压中热对流降水结构特征的个例分析.气象学报,63(5):750-761.
    傅云飞,张爱民,刘勇等.2008.基于星载测雨雷达探测的亚洲对流和层云降水季尺度特征分析. 气象学报,66(5):730-746.
    傅云飞,刘鹏,曹爱琴等.2008.热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧.气象学报.(已接收)
    何文英,陈洪滨,2006.TRMM卫星对一次冰雹降水过程的观测分析研究,气象学报, 2006,64(3), 364-375
    何贤强,潘德炉,朱乾坤,龚芳. 2006.利用偏振遥感反演云顶高度的研究.《第六届成像光谱技术与应用研讨会文集》.
    黄芳,陈洪滨,王振会.2003.37GHz和94GHz的大气微波衰减比较分析.遥感技术与应用,18(5):269-275.
    黄磊,吕胜辉等(2008).双星立体观测云顶高度几何反演方法.北京大学学报(自然科学版) 44(1):129-134.
    金鑫,李万彪,朱元竞.2003.利用TRMM/PR资料分析1998年GAME/HUBEx期间梅雨锋雨带结构.20(2):293-298.
    刘黎平,葛润生.2006.中国气象科学研究院雷达气象研究50年.应用气象学报,17(6):682-689.
    刘奇,傅云飞.2007.夏季青藏高原潜热分布及其廓线特征.中国科学技术大学学报,37(3):303-310.
    毛冬艳,程明虎.2001.用TRMM资料研究1999年Sam台风.气象科技,29(2):37-40.
    马雷鸣,端义宏.2005.利用TRMM资料对热带气旋“威马逊”结构及其降水特征的研究[J].海洋学报,27(1):36-44.
    聂祥,万汉芸,邱祥.2002.卫星云图云顶亮温与气象要素关系初探.贵州气象,14(26),30-33.
    秦宏德.1984.青藏高原那曲地区对流性降水回波的统计特征.北京:科学出版社,P258-268.
    陶诗言,丁一汇,周晓平.1979.暴雨和强对流天气的研究.大气科学,3(3):227-238.
    陶诗言.1980.中国之暴雨.北京:科学出版社.225pp.
    王东海,柳崇健,刘英等.2008.2008年1月中国南方低温雨雪冰冻天气及其天气动力学成因的初步分析.气象学报,66(3):405-422.
    魏重,林海,忻妙新. 1985.毫米波气象雷达的测云能力[J].气象学报. 43 (3): 378-383.
    吴国雄,张永生.1998.青藏高原的热力和机械强迫作用以及亚洲季风的爆发.I:爆发地点.大气科学,22(6):825-838.
    易笑园,宫全胜,李培彦等. 2009.华北飑线系统中地闪活动与雷达回波顶高的关系及预警指标,35(2):34-40.
    张培昌.2000.雷达气象学.北京:气象出版社.
    张庆云,陶诗言.1998.夏季东亚热带和副热带季风与中国东部汛期降水.应用气象学报,9(增刊):16223.
    郑媛媛,张小玲,朱红芳等.2009.2007年7月8日特大暴雨过程的中尺度特征.气象,35(2):3-7.
    仲凌志,刘黎平,葛润生.2009.毫米波云廓线雷达的特点及其研究现状.地球科学进展,24(4):383-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700