硫酸乙酰肝素蛋白多糖与涎腺腺样囊性癌肺转移关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     涎腺腺样囊性癌(salivary adenoid cystic carcinoma, SACC)是最常见的涎腺恶性肿瘤,约占涎腺恶性肿瘤的22%。此肿瘤无包膜,侵袭性很强。嗜神经生长和远处转移是涎腺腺样囊性癌的两大恶性生物学特性,其中肺脏是涎腺腺样囊性癌远处转移最常发生的部位,也是临床上涎腺腺样囊性癌患者死亡的主要原因之一。
     涎腺腺样囊性癌由肿瘤性肌上皮细胞(neoplastic myoepithelial cells,NMCs)和肿瘤性腺上皮细胞构成。肿瘤性肌上皮细胞具有双向分化的特征,它不仅具有正常肌上皮细胞的收缩功能,还具有平滑肌分泌蛋白多糖(proteoglycans, PGs)的功能。蛋白多糖分布于涎腺腺样囊性癌肿瘤细胞团块中,形成大小不等的囊样腔隙,呈筛孔状分布于肿瘤实质区,形成了涎腺腺样囊性癌特征性的组织学结构。蛋白多糖为涎腺腺样囊性癌的生长提供必要的营养来源。
     硫酸乙酰肝素蛋白多糖(heparan sulfate proteoglycans, HSPGs)是一类由核心蛋白和(乙酰)硫酸肝素(heparan sulfate, HS)多糖链组成的蛋白多糖的总称。根据核心蛋白结构的不同,HSPGs主要包括位于细胞膜表面的磷脂酰肌醇蛋白多糖家族(glypicans, GPCs)和多配体蛋白多糖家族(syndecans, SDCs),以及位于细胞外基质中的基膜蛋白多糖(perlecan/HSPG2)、XVIII型胶原和集聚蛋白多糖(agrin)。GPCs家族包括六个成员:GPC1、GPC2、GPC3、GPC4、GPC5、GPC6;SDCs家族包括四个成员:SDC1、SDC2、SDC3、SDC4。以往的研究表明,HSPGs广泛分布于涎腺腺样囊性癌肿瘤细胞及细胞外基质。并可作为受体、共受体参与细胞增殖、细胞粘附、基质聚集、凝血等正常生理过程,也参与伤口愈合、炎症、肿瘤细胞的迁移及侵袭等过程。
     本研究拟检测HSPGs,包括细胞膜HSPGs(SDCs家族和GPCs家族)与基膜HSPG(perlecan),在涎腺腺样囊性癌高转移细胞株SACC-M、低转移细胞株SACC-2、涎腺腺样囊性癌细胞株SACC-83及伴或不伴有肺转移涎腺腺样囊性癌组织中的表达,并分析探讨HSPGs异常表达,在涎腺腺样囊性癌肺转移过程中的作用。
     方法:
     第一部分硫酸乙酰肝素蛋白多糖在涎腺腺样囊性癌中的表达
     1HSPGs在涎腺腺样囊性癌细胞株中的表达
     本部分研究选择以下细胞株:
     涎腺腺样囊性癌高转移细胞株SACC-M;
     涎腺腺样囊性癌低转移细胞株SACC-2;
     涎腺腺样囊性癌细胞株SACC-83。
     1.1涎腺腺样囊性癌SACC-M、SACC-2、SACC-83的细胞培养将SACC-M、SACC-2、SACC-83细胞培养于含15%胎牛血清的RPMI-1640培养液(100U/ml青霉素,100U/ml链霉素,pH值为7.2)中,于37C、5%CO_2饱和湿度培养箱中培养。
     1.2细胞总RNA提取
     Trizol法分别提取SACC-M、SACC-2、SACC-83细胞总RNA;
     分光光度计260nm及280nm波长检测RNA纯度及浓度;
     1%琼脂糖凝胶电泳鉴定其完整性。
     1.3反转录合成第一链cDNA
     应用反转录试剂盒RevertAid First Strand cDNA Synthesis Kit合成第一链cDNA。
     1.4Real-Time PCR检测
     本研究采用Real-Time PCR(CT相对定量法)检测主要HSPGs,两大细胞膜HSPGs(SDCs家族和GPCs家族)与基膜HSPG(perlecan),在涎腺腺样囊性癌不同细胞株(SACC-M、SACC-2、SACC-83)的相对表达水平。
     2检测GPC5蛋白在涎腺腺样囊性癌细胞株中的表达
     本部分研究根据前述实验结果,选择高表达的硫酸乙酰肝素蛋白多糖——GPC5作为研究目的基因,检测其在不同转移潜能的涎腺腺样囊性癌细胞株中的表达。
     2.1免疫荧光细胞化学检测
     采用兔抗人GPC5单克隆抗体,通过免疫荧光细胞化学法检测GPC5蛋白在涎腺腺样囊性癌细胞株SACC-M、SACC-2和SACC-83细胞中的表达与分布。
     2.2Western blot检测
     采用鼠抗人GPC5单克隆抗体,通过Western blot检测GPC5蛋白在SACC-M、SACC-2、SACC-83细胞中的相对表达量。
     3检测GPC5蛋白在伴或不伴有肺转移涎腺腺样囊性癌中的表达
     收集临床涎腺腺样囊性癌16例,其中肺转移5例,无肺转移11例。免疫组织化学法检测GPC5蛋白在涎腺腺样囊性癌肿瘤组织中的表达,观察分析伴或不伴有肺转移涎腺腺样囊性癌肿瘤中GPC5蛋白的表达差异。
     第二部分靶向沉默人GPC5基因miRNA干扰质粒的构建
     1miRNA干扰载体的设计及构建
     针对靶基因(human GPC5, Gene ID:2262)设计干扰序列并合成一套miRNA干扰载体。一套miRNA干扰载体包含4个miRNA oligos,以及阴性对照序列Oligo,退火后序列亚克隆到pcDNA6.2-GW/EmGFP-miR载体。
     2测序验证
     每个转化平板分别挑取3个克隆,摇菌抽提质粒后进行测序,以验证重组克隆中插入片段序列是否与设计的序列一致。
     3质粒中量抽提
     4质粒靶向沉默效果的鉴定
     脂质体LipofectamineTM2000介导质粒转染SACC-M细胞,Real-TimePCR(CT相对定量法)检测4个构建质粒的沉默效率。
     第三部分沉默人GPC5基因表达对涎腺腺样囊性癌肺转移作用的研究
     1试验分组
     基因沉默组:GPC5-silenced,GPC5干扰质粒转染SACC-M细胞组;
     阴性对照组:GPC5-NC,阴性对照质粒NC转染SACC-M细胞组;
     空白对照组:SACC-M,未转染质粒的SACC-M细胞组。
     2建立稳定沉默人GPC5基因细胞株
     2.1SACC-M细胞培养,确定杀稻瘟菌素对SACC-M细胞的最小致死浓度及筛选浓度。
     2.2通过脂质体LipofectamineTM2000介导靶向沉默GPC5基因的miRNA质粒转染SACC-M细胞,并利用药物(杀稻瘟菌素)筛选单克隆,建立稳定沉默人GPC5基因表达的细胞株(GPC5-silenced细胞),同时转染阴性对照质粒(NC质粒)进入SACC-M细胞株,建立阴性对照细胞株(GPC5-NC细胞)。
     2.3质粒靶向沉默效率的鉴定
     mRNA水平鉴定:Real-Time PCR检测GPC5基因在GPC5-silenced、GPC5-NC、SACC-M细胞的表达;
     蛋白水平鉴定:Western blot检测GPC5蛋白在GPC5-silenced、GPC5-NC、SACC-M细胞的表达。
     3涎腺腺样囊性癌肺转移体内抑制试验
     选择18只BLAB/C nu裸鼠,4周龄,雄性,随机分为3组,分别进行尾静脉注射GPC5-silenced细胞、GPC5-NC细胞和SACC-M细胞,2×107/ml×0.2ml/只。SPF条件下饲养,第4周麻醉处死,称重新鲜肺组织湿重。10%福尔马林固定,HE染色,光镜下观察,进行统计学分析。
     结果:
     第一部分硫酸乙酰肝素蛋白多糖在涎腺腺样囊性癌中的表达
     1HSPGs在涎腺腺样囊性癌细胞株中的表达
    
     Real-Time PCR相对定量(CT相对定量法)分析结果显示,与SACC-2细胞相比,11种主要HSPGs在SACC-M细胞中的表达,其中SDC2、GPC3、GPC5表达分别上调1.50、2.58、3.24倍;与SACC-83细胞相比,11种主要HSPGs在SACC-M细胞中的表达,其中SDC2和GPC5表达分别上调15.32倍和815.69倍。
     GPC5在涎腺腺样囊性癌肺转移细胞株SACC-M细胞中的表达明显上调3倍以上。
     2GPC5蛋白在SACC-M、SACC-2、SACC-83中的表达
     免疫荧光细胞化学法检测结果显示,GPC5蛋白在涎腺腺样囊性癌细胞株SACC-M、SACC-2、SACC-83中均有表达,其中在涎腺腺样囊性癌肺转移株SACC-M中表达最高,SACC-2表达次之,在SACC-83细胞中呈弱表达。另外,GPC5不仅在细胞膜表面有表达,而且在细胞浆部位亦有表达。
     Western blot检测结果显示,GPC5蛋白在涎腺腺样囊性癌肺转移细胞株SACC-M中的表达是SACC-2的3.41倍,是SACC-83表达的675.00倍。
     3GPC5蛋白在伴或不伴有肺转移涎腺腺样囊性癌原发肿瘤中的表达
     免疫组织化学检测结果显示,GPC5蛋白在涎腺腺样囊性癌肿瘤组织中表达,主要沉积在肿瘤细胞的细胞膜、细胞浆。另外,在部分假性囊腔和腺腔内细胞外基质中也有沉积。且GPC5蛋白在伴有肺转移的涎腺腺样囊性癌组织表达明显高于不伴有肺转移的肿瘤,差别具有显著性(P <0.05)。
     第二部分靶向沉默人GPC5基因miRNA干扰质粒的构建
     1构建靶向沉默GPC5基因的miRNA干扰质粒
     成功构建靶向沉默GPC5基因的miRNA干扰质粒12MR0055-1-1、12MR0055-2-1、12MR0055-3-1、12MR0055-4-2及阴性对照质粒NC,并进行测序验证;
     2质粒靶向沉默效率的鉴定
     脂质体介导质粒12MR0055-1-1、12MR0055-2-1、12MR0055-3-1、12MR0055-4-2及NC转染SACC-M细胞。质粒转染48小时后,均可见有绿色荧光蛋白表达,分别收集细胞并提取细胞总RNA,Real-Time PCR检测结果显示,质粒12MR0055-1-1、12MR0055-2-1、12MR0055-3-1、12MR0055-4-2对靶基因GPC5的沉默效率分别达到80.5%、78.1%、80.3%、89.7%。
     第三部分沉默人GPC5基因表达对涎腺腺样囊性癌肺转移作用的研究
     1建立稳定沉默GPC5基因的细胞株
     通过脂质体介导miRNA质粒成功转染SACC-M细胞株,在基因转染48小时,加入杀稻瘟菌素,进行药物筛选,建立靶向沉默GPC5基因的稳定细胞株GPC5-silenced,以及阴性对照细胞株GPC5-NC。
     mRNA水平检测结果显示沉默效率达到89.7%;
     蛋白水平检测结果显示沉默效率达到96.5%。
     2涎腺腺样囊性癌肺转移体内抑制试验
     裸鼠肺转移试验结果显示,GPC5基因沉默组(GPC5-silenced)裸鼠肺转移2例(转移率33.33%),阴性对照组(GPC5-NC组)裸鼠发生肺转移6例(100%),空白对照组SACC-M组裸鼠肺转移6例(100%),GPC5-silenced组与GPC5-NC组、SACC-M组相比,差异具有显著性(P <0.05);GPC5-NC组与SACC-M组比较,差异没有统计学意义(P>0.05)。
     新鲜肺组织湿重,GPC5基因沉默组(GPC5-silenced组)肺湿重(0.507±0.223g)明显低于阴性对照GPC5-NC组(1.177±0.342g)和空白对照SACC-M组(1.045±0.539g),差异具有显著性(P <0.05);GPC5-NC组与SACC-M组比较,差别无显著性(P>0.05)。
     形态学观察发现,SACC-M组和GPC5-NC组中正常肺组织结构消失,双肺内充满肿瘤细胞转移灶,肿瘤灶呈圆形或椭圆形。肿瘤细胞排列成致密的实性团块。肿瘤细胞圆形或多边性,排列紧密,胞浆嗜伊红染色,着色较浅,细胞胞核呈圆形,核分裂像多见,细胞核异型性明显。另外,肺组织内可见大量毛细血管扩张、充血。GPC5-silenced组2个肺转移标本中,正常肺组织结构清晰,偶见散在分布的肿瘤转移灶,且体积较SACC-M组及GPC5-NC组转移灶小,包膜不完整包膜。其余4个肺组织未见转移,肺组织结构正常。
     结论:
     硫酸乙酰肝素蛋白多糖GPC5基因高表达,能够增强涎腺腺样囊性癌肺转移的能力。
Objectives:
     Salivary adenoid cystic carcinoma (SACC) is one of the most commonsalivary malignant tumors without envelope and strongly aggressive. Itaccounts for about22%of the salivary gland malignanies. SACC has a highpropensity of perineural invasion and distant metastasis, the most common siteof distant metastases is the lung which is also the chief cause of clinical death.
     SACC is composed of duct epithelial cells and neoplastic myoepithelialcells (NMCs) which are the chief proliferative cells of the tumor. Because ofthe bilateral differentiation, NMCs hold the function of constractile andsecreting proteoglycans which is different from the normal myoepithelial cells.Abundant proteoglycans produced by NMCs make SACC typical cribriformstructures full with proteoglycans and provide nutrition and microenvironmentfor the biological behavior of SACC.
     Heparan sulfate proteoglycans (HSPGs), consist of a protein core towhich heparan sulphate glycosaminoglycan chains are attached are abundantcell-surface and extra cellular matrix (ECM). Secreted extra cellular matrixHSPGs include perlecan (HSPG2), agrin and type XVIII collagen. Syndecansand glypicans represent the two major membrane HSPGs, in mammals fourseparate syndecans (SDC1, SDC2, SDC3, and SDC4) and six separateglypicans (GPC1, GPC2, GPC3, GPC4, GPC5, and GPC6) have beenidentified. The syndecans have a transmembrane and cytoplasmic domain,whereas the glypicans are anchored to the extracytoplasmic face of the plasmamembrane via glycosylphosphatidylinositol (GPI).
     HSPGs have been shown to act as receptors, co-receptors and playcentral role in many biological process such as cell proliferation, celladhesion/anti-adhesion, inflammation, wound healing, coagulation, matrix assembly, embryo development, tumor metastasis.
     In present study, the two major membrane HSPGs and perlecanexpression were analyzed in SACC with and without lung metastasis toexplore the role of HSPGs in the lung metastasis of SACC.
     Methods:
     Part I HSPGs expression in SACC
     1HSPGs expression in SACC cell lines
     In this study, the following cell lines with different metastatic abilitywere used:
     Highly metastatic SACC cell line: SACC-M cell line;
     Poorly metastatic SACC cell lines: SACC-2;
     SACC cell lines: SACC-83cell lines.
     1.1Cell culture
     SACC-M, SACC-2, SACC-83cells were routinely cultured inRPMI-1640medium containing15%fetal bovine serum, penicillin (100U/ml),and streptomycin (100U/ml) at37C in humidified air containing5%CO2.
     1.2Total RNA extraction
     Total RNA was extracted from the tumor cells by using TRIzol reagent(Invitrogen, USA) following the manufacturer’s instructions. RNAconcentration was obtained through spectrophotometric readings at260and280nm, and quality was evaluated by1%agarose gel electrophoresis.
     1.3Reverse transcription
     Three microgram of total RNA from the sample were used in reversetranscribed with RevertAid First Strand cDNA Synthesis Kit.1.4Real-Time PCR
     In this study, Real-Time PCR (CTRelative quantification) was used totest the expression of HSPGs, the two major membrane HSPGs and perlecan,in SACC cell lines with highly and poorly metastatic ability.
     2GPC5protein expression in SACC cell lines
     In this part, we choose the high expression HSPG (GPC5) as the studygene, and investigated the GPC5expression in SACC cell lines.
     2.1Immunolocalization
     GPC5expression and distribution in SACC-M, SACC-2, SACC-83cellswas tested by Immunofluorescence staining with rabbit anti-GPC5monoclonal antibody.
     2.2Western blot analysis
     The relative quantification of GPC5expression level in SACC-M,SACC-2, SACC-83cells was tested by Western blot with Mouse Anti-GPC5Monoclonal Antibody.
     3GPC5expression in SACC with and without lung metastasis
     Sixteen cases of salivary adenoid cystic carcinoma (SACC) werecollected from Department of Oral Pathology and collected from Departmentof Oral and Maxillofacial Surgery, College&Hospital of Stomatology, andthe Fourth Hospital, Hebei Medical University. Five out of16cases with lungmetastasis, the other11cases without lung metastasis. Immunohistochemistrystaining was used to investigate the GPC5expression in SACC with andwithout lung metastasis.
     Part II construction of GPC5miRNA expression vector
     1Construction of GPC5miRNA expression vector
     The human gene GPC5(glypican5, Gene ID:2262) was selected fromGenBank. Go to the BLOCK-iT RNAi Designer and input the accessionnumber (NM-004466), the Designer will automatically generate highprobability DNA duplexes miRNA oligos. Hybridize the oligos to form a60-bp duplex with4-nt5′overhangs. Cohesively ligate the duplex into theBLOCK-iT Pol II miR RNAi Expression Vector Kit with EmGFP.
     2Sequence validation
     Three clonies from each plate were picked and sequenced to verify therecombinational cloning insertion sequence and oligo sequence alignmentdesign.
     3Plasmid midi-preparation
     4Evaluation of silencing efficiency
     Plasmids were transfected into SACC-M cells through LipofectamineTM2000, and the silencing efficiency was tested by Real-TimePCR.
     Part III The effect of GPC5down-regulation on the lung metastasis ofSACC in vivo
     1Group of experiment
     Gene silenced group: Group GPC5-silenced, SACC-M cells transfectedwith miRNA vector targeting GPC5;
     Negative control group: Group GPC5-NC, SACC-M cells transfectedwith negative control miRNA vector;
     Black control group: Group SACC-M, SACC-M cells withouttransfection.
     2Establishment of stable cell lines with silenced GPC5
     2.1SACC-M cell cultrue and definition of the minimal lethal concentration
     2.2SACC-M cells were transfected with miRNA plasmid targeting GPC5according to the manufacturer’s of LipofectamineTM2000, transfected with NCmiRNA plasmid as negative control. Three weeks after transfection, stable cellclones (GPC5-silenced and GPC5-NC cell lines) were aquired by usingBlasticidin S HCl.
     2.3Evaluation of silencing efficiency
     mRNA level: the GPC5mRNA expression was evaluted by Real-TimePCR.
     Protein level: the GPC5protein expression was evaluted by Western blot.4The inhibition of lung metastasis of SACC in vivo
     Eighteen four-week-old,14~15g, male BALB/C nude mice were dividedinto3groups of6mice each randomly. GPC5-silenced cells, GPC5-NC cellsand SACC-M cells were collected respectively,0.2ml cell suspensioncontaining1×107cells per milliliter was injected into the vena caudalis. Themice were anesthetized and killed at the4th week after injection. The freshlung samples were harvested and weighed. Formalin fixed/paraffin-embeddedspecimens were prepared by ordinary procedures,2.5μm thick sections werestained with hematoxylin and eosin (HE), and then examined by the microscope to evaluate the morphological changes.
     Results:
     Part I HSPGs expression in SACC
     1HSPGs expression in highly and poorly metastatic SACC cell lines
     By relative-quantitive Real-Time PCR, HSPGs were expressed atdifferent levels in the three kinds of SACC cell lines, with no expression ofGPC4. Compared with SACC-2, the mRNA expression of SDC2, GPC3andGPC5in SACC-M cell line increased1.50-flod,2.58-fold and3.24-foldrespectively. And two HSPGs (SDC2and GPC5) expression increased(15.32-fold and815.69-fold) in SACC-M compared with SACC-83, onlyGPC5increased significantly (more than3-fold), while others decreased inSACC-M compared with both SACC-2and SACC-83cells.
     2GPC5protein expression in highly and poorly metastatic SACC cell lines
     2.1Immunolocalization
     By Immunofluorescence staining, GPC5expressed not only on cellmembrane, it also be found in cytoplasm of SACC cells. GPC5expressed atdifferent levels in the SACC-M, SACC-2and SACC-83cell lines, weaklypositive in SACC-83cells, and strong positive in SACC-M cells.
     2.2Western blot analysis
    
     Western blot analysis showed that the expression level of GPC5proteinin SACC-M was3.41-flod as SACC-2and675.00-flod as SACC-83cells.This is consistent with the results of Real-Time PCR and immunofluorescencestaining.
     3GPC5expression in SACC with and without lung metastasis
     In16clinical cases of SACC which were confirmed by pathologicaldiagnosis as SACC with description as cribriform, tumular and solid type, theexpression of GPC5showed strong positive in4cases out of5, and1caseshowed positive in SACC with lung metastasis, whereas negative in3out of11cases,7cases with weakly positive and1case with positive in SACCwithout lung metastasis. The overexpression of GPC5was significantlyassociated with lung metastasis (P <0.05). And the GPC5expression chiefly distributed in the tumor cell membrane and cytoplasm, and extracellularmatrix (ECM) deposit in pseudocyte and lumens.
     Part II Construction of miRNA expression vector targeting GPC5
     Successful construction of miRNA plasmid targeting human GPC5gene:12MR0055-1-1、12MR0055-2-1、12MR0055-3-1、12MR0055-4-2andnegative control plasmid NC. Fourty-eight hours after the transfection of12MR0055-1-1、12MR0055-2-1、12MR0055-3-1、12MR0055-4-2and NCplasmid into SACC-M cells, green fluorescent protein was expressed, and thesilencing efficiency of each plasmid up to80.5%、78.1%、80.3%、89.7%respectively.
     Part III The effect of GPC5down-regulation on the lung metastasis ofSACC in vivo
     1Establishment of stable cell lines with silenced GPC5
     Forty-eight hours after transfection of plasmid targeting GPC5and NCplasmid, stable cell clones GPC5-silenced and GPC5-NC cell were acquiredby using Blasticidin S HCl. Compared with SACC-M cell, the GPC5expression of GPC5-silenced cell was down-regulated by89.7%at mRNAlevel, and96.5%at protein level.
     2The inhibition of lung metastasis of SACC in vivo
     The4th week after injection, The mice were anesthetized and killed andweighed, the lung wet weight of group GPC5-silenced (0.507±0.223g) wassignificantly lower than that of group GPC5-NC (1.177±0.342g) and groupSACC-M (1.045±0.539g), P <0.05. No significant difference betweengroup SACC-M and group GPC5-NC, P>0.05.
     The lung metastasis of group GPC5-silenced decreased to33.33%(2/6),significantly lower than that of group SACC-M (100%,6/6) and groupGPC5-NC (100%,6/6), P <0.05.
     The histopathological analysis of the lung samples of group SACC-Mand GPC5-NC showed that the normal structures of lungs in group werealmost destroyed. The lungs were full of metastasis nodules with differentsizes. The tumor cells were round or polyhedral with eosinophilic cytoplasm and round nucleus, arranged in dense clumps of solid, many mitoses could beobserved. Pulmonary vascular cavities were in condition of hyperaemia. Onlya few metastasis nodules were found in the2lung samples of groupGPC5-silenced and the normal structure of them was still remained. The sizeof the metastasis nodle in group GPC5-silenced was much smaller than that ofgroup SACC-M and group GPC5-NC.
     Conclusion:
     The high expression of heparan sulfate proteoglycan (GPC5) promotesthe metastasis ability of SACC.
引文
1Nara Y, Takeuchi J, Yoshida K, et al. Immunohistochemicalcharacterisation of extracellular matrix components of salivary glandtumours. Br J Cancer,1991,64(2):307-14
    2Kimura S, Cheng J, Toyoshima K, et al. Basement membrane heparansulfate proteoglycan (perlecan) synthesized by ACC3, adenoid cysticcarcinoma cells of human salivary gland origin. J Biochem,1999,125(2):406-13
    3Kimura S, Cheng J, Ida H, et al. Perlecan (heparan sulfate proteoglycan)gene expression reflected in the characteristic histological architecture ofsalivary adenoid cystic carcinoma. Virchows Arch,2000,437(2):122-8
    4Irié T, Cheng J, Kimura S, et al. Intracellular transport of basementmembrane-type heparan sulphate proteoglycan in adenoid cysticcarcinoma cells of salivary gland origin: an immunoelectron microscopicstudy. Virchows Arch,1998,433(1):41-8
    5David G, Lories V, Decock B, et al. Molecular cloning of aphosphatidylinositol-anchored membrane heparan sulfate proteoglycanfrom human lung fibroblasts. J Cell Biol,1990,111(6pt2):3165-3176
    6Avanesov A, Honeyager SM, Malicki J, et al. The role of glypicans in Wntinhibitory factor-1activity and the structural basis of Wif1's effects on Wntand Hedgehog signaling. PLoS Genet,2012,8(2):e1002503
    7Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in celladhesion, migration and invasion. Cell Signal,2009,21(11):1548-58
    8Péterfia B, Füle T, Baghy K, et al. Syndecan-1enhances proliferation,migration and metastasis of HT-1080cells in cooperation with syndecan-2.PLoS One,2012,7(6):e39474
    9Kleeff J, Ishiwata T, Kumbasar A, et al. The cell-surface heparan sulfateproteoglycan glypican-1regulates growth factor action in pancreaticcarcinoma cells and is overexpressed in human pancreatic cancer. J ClinInvest,1998,102(9):1662-1673
    10Nakatsura T, Yoshitake Y, Senju S, et al. Glypican-3, overexpressedspecifically in human hepatocellular carcinoma, is a novel tumor marker.Biochem Biophys Res Commun,2003,306(1):16-25
    11王洁,吴奇光,孙开华,等.腺样囊性癌组织学类型与蛋白多糖形成的关系.中华医学杂志,1994,74(7):434-435
    12Wegner A. Ultrastructural assessment of adenoid cystic carcinoma withemphasis on tumour infiltration periphery. Rep Pract Oncol&Radiother,2009,14(2):64-69
    13Wang J, Wu Q, Sun K, et al. Quantitative multivariate analysis ofmyoepithelioma and myoepithelial carcinoma. Int J Oral Maxillofac Surg,1995,24(2):153-157
    14卫晋雄,程珺,任恺禹,等.转移性腺样囊性癌细胞纤连蛋白和硫酸乙酰肝素蛋白多糖mRNA的表达.口腔医学研究,2004,20(5):489-491
    15Shi H, Wang J, Dong Fusheng, et al. The effect of proteoglycans inhibitedby RNA interference on metastatic characters of human salivary adenoidcystic carcinoma.2009,9:456
    16石宏,王洁,董福生,等.靶向抑制人木糖基转移酶-I基因的shRNA真核表达载体的构建.华西口腔医学杂志,2008,26(2):206-210
    17石宏,王洁,董福生,等.蛋白多糖与涎腺腺样囊性癌增殖的关系.中华口腔医学杂志,2010,45(1):20-25
    18Zhang Y, Wang J, Dong F, et al. The effect of proteoglycans inhibited onthe neurotropic growth of salivary adenoid cystic carcinoma. J Oral PatholMed,2011,40(6):476-82
    19Muramatsu K, Kusafuka K, Watanabe H, et al. Ultrastructuralimmunolocalization of a cartilage-specific proteoglycan, aggrecan, insalivary pleomorphic adenomas. Med Mol Morphol,2009,42(1):47-54
    20Zhao M, Takata T, Ogawa I, et al. Immunohistochemical evaluation of thesmall and large proteoglycans in pleomorphic adenoma of salivary glands.J Oral Pathol Med,1999,28(1):37-42
    21De Oliveira, Jaeger M, Miyagi S, et al. The effect of a reconstitutedbasement membrane (matrigel) on a human salivary gland myoepitheliomacell line. Virchows Arch,2001,439(4):571-578
    22Farach-Carson MC, Brown AJ, Lynam M, et al. A novel peptide sequencein perlecan domain IV supports cell adhesion, spreading and FAKactivation. Matrix Biol,2008,27(2):150-60
    23Laplante P, Raymond MA, Labelle A, et al. Perlecan proteolysis inducesan alpha2beta1integrin and Src family kinase-dependent anti-apoptoticpathway in fibroblasts in the absence of focal adhesion kinase activation. JBiol Chem,2006,281:30383-92
    24Mongiat M, Fu J, Oldershaw R, et al. Perlecan protein core interacts withextracellular matrix protein1(ECM1), a glycoprotein involved in boneformation and angiogenesis. J Biol Chem,2003,278(19):17491-9
    25Mongiat M, Taylor K, Otto J, et al. The protein core of the proteoglycanperlecan binds specifically to Fibroblast Growth Factor-7. J Biolo Chem,2000,275(10):7095-100
    26Klass CM, Couchman JR, Woods A. Control of extracellular matrixassembly by syndecan-2proteoglycan. J Cell Sci,2000,113(Pt3):493-506
    27Choi S, Kim Y, Park H, et al. Syndecan-2overexpression regulatesadhesion and migration through cooperation with integrin alpha2.Biochem Biophys Res Commun,2009,384(2):231-5
    28Morgan MR, Humphries MJ, Bass MD. Synergistic control of celladhesion by integrins and syndecans. Nat Rev Mol Cell Biol,2007,8(12):957-969
    29Choi Y, Kim H, Chung H, et al. Syndecan-2regulates cell migration incolon cancer cells through Tiam1-mediated Rac activation. BiochemBiophys Res Commun,2010,391(1):921-5
    30Gama-de-Souza LN, Cyreno-Oliveira E, Freitas VM, et al. Adhesion andprotease activity in cell lines from human salivary gland tumors areregulated by the laminin-derived peptide AG73, syndecan-1and beta1integrin. Matrix Biol,2008,27(5):402-19
    31Matsumoto A, Ono M, Fujimoto Y, et al. Reduced expression ofsyndecan-1in human hepatocellular carcinoma with high metastaticpotential. Int J Cancer,1997,74(5):482-491
    32Levy P, Munier A, Baron-Delage S, et al. Syndecan-1alterations duringthe tumorigenic progression of human colonic Caco-2cells induced byhuman Ha-ras or polyoma middle T oncogenes. Br J Cancer,1996,74(3):423-431
    33Kusano Y, Oguri K, Nagayasu Y, et al. Participation of syndecan-2in theinduction of stress fiber formation in cooperation with integrinalpha5beta1: structural characteristics of heparan sulfate chains withavidity to COOH terminal heparan-binding domain of fibronectin. ExpCell Res,2000,256(2):434-44
    34Modrowski D, Baslé M, Lomri A, et al. Syndecan-2is involved in themitogenic activity and signaling of granulocyte-macrophage colonystimulating factor in osteoblasts. J Biol Chem,2000,275(13):9178-85
    35Park H, Kim Y, Lim Y, et al. Syndecan-2mediates adhesion andproliferation of colon carcinoma cells. J Biol Chem,2002,277(33):29730-6
    36Park H, Han I, Kwon HJ, et al. Focal adhesion kinase regulates syndecan-2mediated tumorigenic activity of HT1080fibrosarcoma cells. Cancer Res,2005,65(21):9899-9905
    37Lee JH, Park H, Chung H, et al. Syndecan-2regulates the migratorypotential of melanoma cells. J Biol Chem,2009,284(40):27167-27175
    38Lee H, Kim Y, Choi Y, et al. Syndecan-2cytoplasmic domain regulatescolon cancer cell migration via interaction with syntenin-1. BiochemBiophys Res Commun,2011,409(1):148-53
    39De Oliveira T, Abiatari I, Raulefs S, Sauliunaite D, et al. Syndecan-2promotes perineural invasion and cooperates with K-ras to induce aninvasive pancreatic cancer cell phenotype. Mol Cancer,2012,11:19
    40Song HH, Filmus J. The role of glypicans in mammalian development.Biochim Biophys Acta,2002,1573(3):241-6
    41Shiau CE, Hu N, Bronner-Fraser M. Altering Glypican-1levels modulatescanonical Wnt signaling during trigeminal placode development. Dev Biol,2010,348(1):107-18
    42Gallet A, Staccini-Lavenant L, Thérond PP. Cellular trafficking of theglypican Dally-like is required for full-strength Hedgehog signaling andwingless transcytosis. Dev Cell,2008,14(5):712-25
    43Capurro MI, Xu P, Shi W, et al. Glypican-3inhibits Hedgehog signalingduring development by competing with patched for Hedgehog binding.Dev Cell,2008,14(5):700-11
    44Kreuger J, Perez L, Giraldez AJ, et al. Opposing activities of Dally-likeglypican at high and low levels of Wingless morphogen activity. Dev Cell,2004,7(4):503-12
    45Yan D, Lin X. Drosophila glypican Dally-like acts in FGF-receiving cellsto modulate FGF signaling during tracheal morphogenesis. Dev Biol,2007,312(1):203-16
    46Yan D, Wu Y, Yang Y, et al. The cell-surface proteins Dally-like and Ihogdifferentially regulate Hedgehog signaling strength and range duringdevelopment. Development,2010,137(12):2033-44
    47Kayed H, Kleeff J, Keleg S, et al. Correlation of glypican-1expressionwith TGF-beta, BMP, and activin receptors in pancreatic ductaladenocarcinoma. Int J Oncol,2006,29(5):1139-48
    48Eugster C, Panáková D, Mahmoud A, et al. Lipoprotein-heparan sulfateinteractions in the Hh pathway. Dev Cell,2007,13(1):57-71
    49Duan L, Hu XQ, Feng DY, et al. GPC-1may serve as a predictor ofperineural invasion and a prognosticator of survival in pancreatic cancer.Asian J Surg,2013,36(1):7-12
    50Capurro M, Wanless IR, Sherman M, et al. Glypican-3: a novel serum andhistochemical marker for hepatocellular carcinoma. Gastroenterology,2003,125(1):89-97
    51Nakatsura T, Kageshita T, Ito S, et al. Identification of glypican-3as anovel tumor marker for melanoma. Clin Cancer Res,2004,10(19):6612-21
    52Saikali Z, Sinnett D. Expression of glypican3(GPC3) in embryonaltumors. Int J Cancer,2000,89(5):418-22
    53Mounajjed T, Zhang L, Wu TT. Glypican-3expression in gastrointestinaland pancreatic epithelial neoplasms. Hum Pathol,2013,44(4):542-50
    54Capurro MI, Xu P, Shi W, et al. Glypican-3inhibits Hedgehog signalingduring development by competing with patched for Hedgehog binding.Dev Cell,2008,14(5):700-11
    55Capurro MI, Xiang YY, Lobe C, et al. Glypican-3promotes the growth ofhepatocellular carcinoma by stimulating canonical Wnt signaling. CancerRes,2005,65(14):6245-54
    56Song HH, Shi W, Filmus J. OCI-5/rat glypican-3binds to fibroblastgrowth factor-2but not to nsulin-like growth factor-2. J Biol Chem,1997,272:7574-7
    57Dunham A, Matthews LH, Burton J, et al. The DNA sequence and analysisof human chromosome13. Nature,2004,428(6982):522-8
    58Veugelers M, Vermeesch J, Reekmans G, et al. Characterization ofglypican-5and chromosomal localization of human GPC5, a new memberof the glypican gene family. Genomics,1997,40(1):24-30
    59Saunders S, Paine-Saunders S, Lander AD. Expression of the cell surfaceproteoglycan glypican-5is developmentally regulated in kidney, limb, andbrain. Dev Biol,1997,190(1):78-93
    60Quélin C, Bendavid C, Dubourg C, et al. Twelve new patients with13qdeletion syndrome: genotype-phenotype analyses in progress. Eur J MedGenet,2009,52(1):41-6
    61Saunders S, Paine-Saunders S, Lander AD. Expression of the cell surfaceproteoglycan glypican-5is developmentally regulated in kidney, limb, andbrain. Dev Biol,1997,190(1):78-93
    62Croteau-Chonka DC, Marvelle AF, Lange EM, et al. Genome-wideassociation study of anthropometric traits and evidence of interactions withage and study year in Filipino women. Obesity (Silver Spring),2011,19(5):1019-27
    63Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clusteredin genomic loci and biological pathways affect human height. Nature,2010,467(7317):832-8
    64Bassuk AG, Muthuswamy LB, Boland R, et al. Copy number variationanalysis implicates the cell polarity gene glypican5as a human spinabifida candidate gene. Hum Mol Genet.2013;22(6):1097-111
    65Croteau-Chonka DC, Marvelle AF, Lange EM, et al. Genome-wideassociation study of anthropometric traits and evidence of interactions withage and study year in Filipino women. Obesity (Silver Spring),2011,19(5):1019-27
    66Knuutila S, Autio K, Aalto Y. Online access to CGH data of DNAsequence copy number changes. Am J Pathol,2000,157(2):689
    67Schmidt H, Bartel F, Kappler M, et al. Gains of13q are correlated with apoor prognosis in liposarcoma. Mod Pathol,2005,18(5):638-44
    68Ullmann R, Petzmann S, Sharma A, et al. Chromosomal aberrations in aseries of large-cell neuroendocrine carcinomas: unexpected divergencefrom small-cell carcinoma of the lung. Hum Pathol,2001,32(10):1059-63
    69Ojopi EP, Rogatto SR, Caldeira JR, et al. Comparative genomichybridization detects novel amplifications in fibroadenomas of the breast.Genes Chromosomes Cancer,2001,30(1):25-31
    70Yu W, Inoue J, Imoto I, et al. GPC5is a possible target for the13q31-q32amplification detected in lymphoma cell lines. J Hum Genet,2003,48(6):331-5
    71Okamoto K, Tokunaga K, Doi K, et al. Common variation in GPC5isassociated with acquired nephrotic syndrome. Nat Genet,2011,43(5):459-63
    72Williamson D, Selfe J, Gordon T, et al. Role for amplification andexpression of glypican-5in rhabdomyosarcoma. Cancer Res,2007,67(1):57-65
    73Li F, Shi W, Capurro M, et al. Glypican-5stimulates rhabdomyosarcomacell proliferation by activating Hedgehog signaling. J Cell Biol,2011,192(4):691-704
    1Bohnsack MT, Czaplinski K, Gorlich D. Exportin5is aRanGTP-dependent dsRNA-binding protein that mediates nuclear exportof pre-miRNAs. RNA,2004,10(2):185-91
    2Yi R, Qin Y, Macara IG, Cullen BR. Exportin-5mediates the nuclearexport of pre-microRNAs and short hairpin RNAs. Genes Dev,2003,17(24):3011-6
    3Cullen BR. Derivation and function of small interfering RNAs andmicroRNAs. Virus Res,2004,102(1):3-9. Review
    4Cullen BR. Transcription and processing of human microRNA precursors.Mol Cell,2004,16(6):861-865
    5Baulcombe DC, Voinnet O. Systemic signalling in gene silencing. Nature,1997,389(6651):553
    6Fire A, Xu S, Montgomery MK, et al. Potent and specific geneticinterference by double-stranded RNA in Caenorhabditis elegans. Natrue,1998,391(6669):806-811
    7Guo S, Kemphues KJ. Par-1, a gene required for establishing polarity in C.elegans embryos, encodes a putative Ser/Thr kinase that is asymmetricallydistributed. Cell,1995,81(4):611-20
    8Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nucleasemediates post-transcriptional gene silencing in Drosophila cells. Nature,2000,404(6775):293-6
    9Caudy AA, Bernstein E; Hammond SM, et al. Role for a bidentateribonuclease in the initiation step of RNA interference. Nature,2001,409(1818):363-6
    10Tuschl T, Zamore PD; Sharp PA, et al. RNAi: double-stranded RNAdirects the ATP-dependent cleavage of mRNA at21to23nucleotideintervals. Cell,2000,101(1):25-33
    11Hamilton AJ, Baulcombe DC. A Species of Small Antisense RNA in Posttranscriptional Gene Silencing in Plants. Science,1999,286(5441):950-952
    12Zamore PD. RNA interference: listening to the sound of silence. Nat StructBiol,2001,8(9):746-50
    13Ambros V. microRNAs: tiny regulators with great potential. Cell,2001,107(7):823-6. Review
    14Carrington JC, Ambros V. Role of microRNAs in plant and animaldevelopment. Science,2003,301(5631):336-8
    15Bartel, DP. MicroRNAs: genomics, biogenesis, mechanism, and function.Cell,2004,116(2):281-297
    16Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNAprecursors by the nuclear processing enzyme Drosha. Embo J,2005,24(1):138-148
    17Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiatesmicroRNA processing. Nature,2003,425(6956):415-9
    18Ambros V. The functions of animal microRNAs. Nature,2004,431(7006):350-355
    19Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of21-nucleotideRNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411(6836):494-8
    20Huang L, Jin J, Deighan P, et al. Efficient and specific gene knockdown bysmall interfering RNAs produced in bacteria. Nature Biotechnology,2013,31,350-356
    1Ullmann R, Petzmann S, Sharma A, et al. Chromosomal aberrations in aseries of large-cell neuroendocrine carcinomas: unexpected divergencefrom small-cell carcinoma of the lung. Hum Pathol,2001,32(10):1059-63
    2Reardon DA, Jenkins JJ, Sublett JE, et al. Multiple genomic alterationsincluding N-myc amplification in a primary large cell medulloblastoma.Pediatr Neurosurg,2000,32(4):187-91
    3Yu W, Inoue J, Imoto I, et al. GPC5is a possible target for the13q31-q32amplification detected in lymphoma cell lines. J Hum Genet,2003,48(6):331-5
    4Williamson D, Selfe J, Gordon T, et al. Role for amplification andexpression of glypican-5in rhabdomyosarcoma. Cancer Res,2007,67(1):57-65
    5Li F, Shi W, Capurro M, et al. Glypican-5stimulates rhabdomyosarcomacell proliferation by activating Hedgehog signaling. J Cell Biol,2011,192(4):691-704
    6Recillas-Targa F. Multiple strategies for gene transfer, expression,knockdown, and chromatin influence in mammalian cell lines andtransgenic animals. Mol Biotechnol,2006,34(3):337-54
    7Glover DJ, Lipps HJ, Jans DA. Towards safe, non-viral therapeutic geneexpression in humans. Nat Rev Genet,200,6(4):299-310
    8Dunham A, Matthews LH, Burton J, Ashurst JL, et al. The DNA sequenceand analysis of human chromosome13. Nature,2004,428(6982):522-8
    9Veugelers M, Vermeesch J, Reekmans G, et al. Characterization ofglypican-5and chromosomal localization of human GPC5, a new memberof the glypican gene family. Genomics,1997,40(1):24-30
    10Saunders S, Paine-Saunders S, Lander AD. Expression of the cell surfaceproteoglycan glypican-5is developmentally regulated in kidney, limb, andbrain. Dev Biol,1997,190(1):78-93
    11Ullmann R, Petzmann S, Sharma A, et al. Chromosomal aberrations in aseries of large-cell neuroendocrine carcinomas: unexpected divergencefrom small-cell carcinoma of the lung. Hum Pathol,2001,32:1059-63
    12Reardon DA, Jenkins JJ, Sublett JE, et al. Multiple genomic alterationsincluding N-myc amplification in a primary large cell medulloblastoma.Pediatr Neurosurg,2000,32:187-91
    13Cao R, Brakenhielm E, Pawliuk R, et al. Angiogenic synergism, vascularstability and improvement of hind-limb ischemia by a combination ofPDGF-BB and FGF-2. Nat Med,2003,9(5):604-13
    14Goto F, Goto K, Weindel K, et al. Synergistic effects of vascularendothelial growth factor and basic fibroblast growth factor on theproliferation and cord formation of bovine capillary endothelial cellswithin collagen gels. Lab Invest,1993,69(5):508-17
    15Thurston G. Role of Angiopoietins and Tie receptor tyrosine kinases inangiogenesis and lymphangiogenesis. Cell Tissue Res,2003,314(1):61-8
    16Eugster C, Panáková D, Mahmoud A, Eaton S. Lipoprotein-heparansulfate interactions in the Hh pathway. Dev Cell,2007,13(1):57-71
    17Hufnagel L, Kreuger J, Cohen SM, et al. On the role of glypicans in theprocess of morphogen gradient formation. Dev Biol,2006,300(2):512-22
    1赵文川,章魁华,马大权.涎腺腺样囊性癌ras,myc,erbB_1和sis癌基因的表达.华西口腔医学杂志,1993,11(3):167-169
    2于利洁,王洁,董福生,等.沉默H-ras基因对人涎腺腺样囊性癌裸鼠移植瘤的抑制作用.肿瘤,2008,28(2):104-107,112
    3Seethala RR, Cieply K, Barnes EL, Dacic S. Progressive geneticalterations of adenoid cystic carcinoma with high-grade transformation.Arch Pathol Lab Med,2011,135(1):123-30
    4王洁,董福生,尤红煜,等.涎腺腺样囊性癌c-erbB-2癌基因蛋白的研究.华西口腔医学杂志,1996,14(2):101-103
    5Shintani S, Funayama T, Yoshihama Y, et al. Expression of c-erbB familygene products in adenoid cystic carcinoma of salivary glands: animmunohistochemical study. Anticancer Res.1995, Nov-Dec,15(6B):2623-6
    6史宏男,何荣根,邱蔚六,等. nm23基因在涎腺腺样囊性癌中的表达及其与肺转移的关系.中华口腔医学杂志,1997,32(1):4-6
    7葛明华,凌志强,谭卓,等.表皮生长因子受体在涎腺腺样囊性癌中的表达及其在肿瘤侵袭中的作用.中华肿瘤杂志,2012,34(4):278-280
    8Abu-Ali S, Sugiura T, Takahashi M, et al. Expression of the urokinasereceptor regulates focal adhesion assembly and cell migration in adenoidcystic carcinoma cells. J Cell Physiol,2005,203(2):410-9
    9Shao Z, Zhu F, Song K, et al. EphA2/EphrinA1mRNA Expression andProtein Production in Adenoid Cystic Carcinoma of Salivary Gland. J OralMaxillofac Surg,2013, S0278-2391(12):01613-8
    10Wu HM, Ren GX, Wang LZ, et al. Expression of podoplanin in salivarygland adenoid cystic carcinoma and its association with distant metastasisand clinical outcomes. Mol Med Rep,2012,6(2):271-4
    11Hu K, Li SL, Gan YH, et al. Epiregulin promotes migration and invasionof salivary adenoid cystic carcinoma cell line SACC-83through activationof ERK and Akt. Oral Oncol,2009,45(2):156-63
    12Franchi A, Santoro R, Paglierani M, et al. Comparison of integrin alphachain expression in benign and malignant salivary gland tumors. OralSurg Oral Med Oral Pathol Oral Radiol Endod,1997,83(5):588-95
    13黄静,陈新明,张佳丽,等.涎腺腺样囊性癌中趋化因子4、整合素β1表达的意义.现代口腔医学杂志,2007,21(2):122-125
    14Lyons AJ, Xie JJ. Integrins in metastatic adenoid cystic carcinoma. nt JOral Maxillofac Surg,2005,34(8):912-4
    15Cheung LW, Leung PC, Wong AS. Cadherin switching and activation ofp120catenin signaling are mediators of gonadotropin-releasing hormoneto promote tumor cell migration and invasion in ovarian cancer. Oncogene,2010,29(16):2427-2440
    16Wallerand H, Cai Y, Wainberg ZA, et al. Phospho-Akt pathway activationand inhibition depends on N-cadherin or phospho-EGFRexpression ininvasive human bladder cancer cell lines. Urol Oncol,2010,28(2):180-188
    17Fougner SL, Lekva T, Borota OC, et al. The expression of E-cadherin insomatotroph pituitary adenomas is related to tumor size, invasiveness, andsomatostatin analog response. J Clin Endocrinol Metab,2010,95(5):2334-2342
    18Zhang ZY, Wu YQ, Zhang WG, et al. The expression of E-cadherin-catenincomplex in adenoid cystic carcinoma of salivary glands. Chin J Dent Res,2000,3(3):36-39
    19赖非云,张诠,吴秋良,等. E钙粘素在涎腺腺样囊性癌中的表达及其意义.癌症,2007,26(9):1025-8
    20葛明华,凌志强,谭卓,等.涎腺腺样囊性癌组织中E-钙黏蛋白的表达及临床意义.中华医学杂志,2012,92(2):106-9
    21Kehagias N, Epivatianos A, Sakas L, et al. Expression of N-cadherin insalivary gland tumors. Med Princ Pract,2013,22(1):59-64
    22Wang JF, She L, Su BH, et al. CDH12promotes the invasion of salivaryadenoid cystic carcinoma. Oncol Rep,2011,26(1):101-8
    23Xue F, Zhang Y, Liu F, et al. Expression of IgSF in salivary adenoid cysticcarcinoma and its relationship with invasion and metastasis. J Oral PatholMed,2005,34(5):295-7
    24Fran a CM, Jaeger RG, Freitas VM, et al. Effect of N-CAM on inviroinvasiion of human salivary adenoid cystic carcinoma. Oral Oncol,2001,37(8):638-42
    25荆得宝,王丽琴,刘雪阳,等.神经细胞粘附分子在涎腺腺样囊性癌中的表达及其意义.现代口腔医学杂志,2010,24(3):191-193
    26Zhang Y, Wang J, Dong F, et al. The effect of proteoglycans inhibited onthe neurotropic growth of salivary adenoid cystic carcinoma. J Oral PatholMed,2011,40(6):476-82
    27Shi H, Wang J, Dong FS, et al. The effect of proteoglycans inhibited byRNA interference on metastatic characters of human salivary adenoidcystic carcinoma. BMC Cancer,2009,9:456
    28Maruyama S, Cheng J, Yamazaki M, et al. Metastasis-associated genes inoral squamous cell carcinoma and salivary adenoid cystic carcinoma: adifferential DNA chip analysis between metastatic and nonmetastatic cellsystems. Cancer Genet Cytogenet,2010,196(1):14-22
    29卢友光,周鸿鹰,丁林灿,等.涎腺腺样囊性癌高、低转移细胞系基因表达谱及基质金属蛋白酶表达差异.中华医学遗传学杂志,2006,23(5):505-510
    30彭歆,俞光岩,高岩,等.中华口腔医学杂志,2000,35(3):206-208
    31史宏男,何荣根,林国础. IV型胶原及IV型胶原酶与涎腺腺样囊性癌生物学特性的关系研究.华西口腔医学杂志,1997,15(3):218-219
    32Xu Q, Liu X, Chen W, et al. Inhibiting adenoid cystic carcinoma cellsgrowth and metastasis by blocking the expression of ADAM10usingRNA interference. J Transl Med,2010,8:136
    33Zhang J, Peng B. In vitro angiogenesis and expression of nuclear factorkappaB and VEGF in high and low metastasis cell lines of salivary glandAdenoid Cystic Carcinoma. BMC Cancer,2007,7:95
    34Zhang J, Peng B. NF-kappaB promotes iNOS and VEGF expression insalivary gland adenoid cystic carcinoma cells and enhances endothelialcell motility in vitro.Cell Prolif,2009,42(2):150-61
    35Le Jan S, Hayashi M, Kasza Z, et al. Functional Overlap BetweenChondroitin and Heparan Sulfate Proteoglycans During VEGF-InducedSprouting Angiogenesis. Arterioscler Thromb Vasc Biol,2012,32(5):1255-63
    36Tang QL, Chen WL, Tan XY, et al. Expression and significance of Cyr61in distant metastasis cells of human primary salivary adenoid cysticcarcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod,2011,112(2):228-36
    37Tang QL, Fan S, Li HG, Chen WL, et al. Expression of Cyr61in primarysalivary adenoid cystic carcinoma and its relation to Ki-67and prognosis.Oral Oncol,2011,47(5):365-70
    38Tadbir AA, Pardis S, Ashkavandi ZJ, et al. Expression of Ki67and CD105as proliferation and angiogenesis markers in salivary gland tumors. AsianPac J Cancer Prev,2012,13(10):5155-9
    39Ota T, Ota K, Jono H, Fujimori H,et al. Midkine expression in malignantsalivary gland tumors and its role in tumor angiogenesis. Oral Oncol,2010,46(9):657-61
    40Shirai A, Furukawa M, Yoshizaki T. Expression of intercellular adhesionmolecule (ICAM)-1in adenoid cystic carcinoma of the head and neck.Laryngoscope,2003,113(11):1955-60
    41Uchida D, Kuribayashi N, Kinouchi M, et al. Expression and function ofCXCR4in human salivary gland cancers. Clin Exp Metastasis,2013,30(2):133-42
    42徐晓刚,吕春堂,袁卫,等.趋化因子受体CXCR4在涎腺腺样囊性癌肺高转移细胞株中的表达.第二军医大学学报,2005,26(6):606-608
    43顾云峰,周正炎,季振威,等.口腔小涎腺腺样囊性癌47例局部复发及转移的临床分析.口腔颌面外科杂志,2001,11(2):98-101
    1Dunham A, Matthews LH, Burton J, et al. The DNA sequence and analysisof human chromosome13. Nature,2004,428(6982):522-8
    2Veugelers M, Vermeesch J, Reekmans G, et al. Characterization ofglypican-5and chromosomal localization of human GPC5, a new memberof the glypican gene family. Genomics,1997,40(1):24-30
    3Saunders S, Paine-Saunders S, Lander AD. Expression of the cell surfaceproteoglycan glypican-5is developmentally regulated in kidney, limb, andbrain. Dev Biol,1997,190(1):78-93
    4Li M, Choo B, Wong ZM, et al. Expression of OCI-5/glypican3duringintestinal morphogenesis: regulation by cell shape in intestinal epithelialcells. Exp Cell Res,1997,235(1):3-12
    5Litwack ED, Ivins JK, Kumbasar A, et al. Expression of the heparansulfate proteoglycan glypican-1in the developing rodent. Dev Dyn,1998,211(1):72-87
    6Topczewsky J, Sepich DS, Myers DC, et al. The zebrafish glypicanKnypek controls cell polarity during gastrulation movements ofconvergent extension. Dev Cell,2001,1(2):251-264
    7Lin X, Perrimon N. Dally cooperates with Drosophila Frizzled2totransduce Wingless signaling. Nature,1999,400(6741):281-284
    8Song HH, Shi W, Xiang Y, et al. The loss of Glypican-3induces alterationsin Wnt signaling. J Biol Chem,2005,280:2116-2125
    9Yan D, Lin X. Drosophila glypican Dally-like acts in FGF-receiving cellsto modulate FGF signaling during tracheal morphogenesis. Dev Biol,2007,312(1):203-216
    10Ohkawara B, Yamamoto TS, Tada M, et al. Role of glypican4in theregulation of convergent extension movements during gastrulation inXenopus laevis. Development,2003,130(10):2129-2138
    11Eugster C, Panáková D, Mahmoud A, et al. Lipoprotein-heparan sulfateinteractions in the Hh pathway. Dev Cell,2007,13(1):57-71
    12Johnson KG, Tenney AP, Ghose A, et al. The HSPGs syndecan andDallylike bind the receptor phophatase LAR and exert distinct effects onsynaptic development. Neuron,2006,49(4):517-531
    13Rodríguez I, Baena-Lopez LA, Baonza A. Upregulation of glypicans inHippo mutants alters the coordinated activity of morphogens. Rodríguez I,Baena-Lopez LA, Baonza A. Fly (Austin),2008,2(6):320-2
    14Duan L, Hu XQ, Feng DY, et al. GPC-1may serve as a predictor ofperineural invasion and a prognosticator of survival in pancreatic cancer.Asian J Surg,2013,36(1):7-12
    15Quélin C, Bendavid C, Dubourg C, et al. Twelve new patients with13qdeletion syndrome: genotype-phenotype analyses in progress. Eur J MedGenet,2009,52(1):41-6
    16Saunders S, Paine-Saunders S, Lander AD. Expression of the cell surfaceproteoglycan glypican-5is developmentally regulated in kidney, limb, andbrain. Dev Biol,1997,190(1):78-93
    17Croteau-Chonka DC, Marvelle AF, Lange EM, et al. Genome-wideassociation study of anthropometric traits and evidence of interactions withage and study year in Filipino women. Obesity (Silver Spring),2011,19(5):1019-27
    18Lango Allen H, Estrada K, Lettre G, et al. Hundreds of variants clusteredin genomic loci and biological pathways affect human height. Nature,2010,467(7317):832-8
    19Croteau-Chonka DC, Marvelle AF, Lange EM, et al. Genome-wideassociation study of anthropometric traits and evidence of interactions withage and study year in Filipino women. Obesity (Silver Spring),2011,19(5):1019-27
    20Wheeler HE, Metter EJ, Tanaka T, et al. Sequential use of transcriptionalprofiling, expression quantitative trait mapping, and gene associationimplicates MMP20in human kidney aging. PLoS Genet,2009,5(10):e1000685
    21Ullmann R, Petzmann S, Sharma A, et al. Chromosomal aberrations in aseries of large-cell neuroendocrine carcinomas: unexpected divergencefrom small-cell carcinoma of the lung. Hum Pathol,2001,32(10):1059-63
    22Reardon DA, Jenkins JJ, Sublett JE, et al. Multiple genomic alterationsincluding N-myc amplification in a primary large cell medulloblastoma.Pediatr Neurosurg,2000,32(4):187-91
    23Yu W, Inoue J, Imoto I, et al. GPC5is a possible target for the13q31-q32amplification detected in lymphoma cell lines. J Hum Genet,2003,48(6):331-5
    24Williamson D, Selfe J, Gordon T, et al. Role for amplification andexpression of glypican-5in rhabdomyosarcoma. Cancer Res,2007,67(1):57-65
    25Li F, Shi W, Capurro M, et al. Glypican-5stimulates rhabdomyosarcomacell proliferation by activating Hedgehog signaling. J Cell Biol,2011,192(4):691-704
    26Li Y, Sheu CC, Ye Y, et al. Genetic variants and risk of lung cancer innever smokers: a genome-wide association study. Lancet Oncol,2010,11(4):321-330
    27Landi MT, Dracheva T, Rotunno M, et al. Gene expression signature ofcigarette smoking and its role in lung adenocarcinoma development andsurvival. PLoS One,2008,3(2):e1651
    28Powell CA, Spira A, Derti A, et al. Gene expression in lungadenocarcinomas of smokers and nonsmokers. Am J Respir Cell Mol Biol,2003,29(2):157-162
    29Bhattacharjee A, Richards WG, Staunton J, et al. Classification of humanlung carcinomas by mRNA expression profiling reveals distinctadenocarcinoma subclasses. Proc Natl Acad Sci USA,2001,98(24):13790-13795
    30Garber ME, Troyanskaya OG, Schluens K, et al. Diversity of geneexpression in adenocarcinoma of the lung. Proc Natl Acad Sci USA,2001,98(24):13784-13789
    31Talbot SG, Estilo C, Maghami E, et al. Gene expression profiling allowsdistinction between primary and metastatic squamous cell carcinomas inthe lung. Cancer Res,2005,65(8):3063-3071
    32Wachi S, Yoneda K, Wu R. Interactome-transcriptome analysis reveals thehigh centrality of genes differentially expressed in lung cancer tissues.Bioinformatics,2005,21(23):4205-4208
    33Li Y, Sheu CC, Ye Y, et al. Genetic variants and risk of lung cancer innever smokers: a genome-wide association study. Lancet Oncol,2010,11(4):321-30
    34Landi MT, Chatterjee N, Caporaso NE, et al. GPC5rs2352028variant andrisk of lung cancer in never smokers. Lancet Oncol,2010,11(8):714-6
    35Zheng Y, Kan M, Yu L, et al. GPC5rs2352028polymorphism and risk oflung cancer in Han Chinese.Cancer Invest,2012,30(1):13-9
    36Neat MJ, Foot N, Jenner M, et al. Localisation of a novel region ofrecurrent amplification in follicular lymphoma to an approximately6.8Mbregion of13q32-33. Genes Chromosomes Cancer,2001,32(3):236-43
    37Yu W, Inoue J, Imoto I, et al. GPC5is a possible target for the13q31-q32amplification detected in lymphoma cell lines. J Hum Genet.2003;48(6):331-5.
    38Ota A, Tagawa H, Karnan S, et al. Identification and characterization of anovel gene, C13orf25, as a target for13q31-q32amplification in malignantlymphoma. Cancer Res,2004,64(9):3087-95
    39Zhang C, Zhang S, Zhang D, et al. A lung cancer gene GPC5could also becrucial in breast cancer. Mol Genet Metab,2011,103(1):104-5
    40Ojopi EP, Rogatto SR, Caldeira JR, et al. Comparative genomichybridization detects novel amplifications in fibroadenomas of the breast.Genes Chromosomes Cancer,2001,30(1):25-31
    41Comabella M, Craig DW, Cami a-Tato M, et al. Identification of a novelrisk locus for multiple sclerosis at13q31.3by a pooled genome-wide scanof500,000single nucleotide polymorphisms. PLoS One,2008,3(10):e3490
    42Baranzini SE, Wang J, Gibson RA, et al. Genome-wide associationanalysis of susceptibility and clinical phenotype in multiple sclerosis. HumMol Genet,2009,18(4):767-778
    43Lorentzen AR, Melum E, Ellinghaus E, et al. Association to theGlypican-5gene in multiple sclerosis. J Neuroimmunol,2010,226(1-2):194-7
    44Cavanillas ML, Fernández O, Comabella M, et al. Replication of topmarkers of a genome-wide association study in multiple sclerosis in Spain.Genes Immun,2011,12(2):110-5
    45Cénit MD, Blanco-Kelly F, de las Heras V, et al. Glypican5is aninterferon-beta response gene: a replication study. Mult Scler,2009,15(8):913-7
    46Byun E, Caillier SJ, Montalban X, et al. Genome-wide pharmacogenomicanalysis of the response to interferon beta therapy in multiple sclerosis.Arch Neurol,2008,65(3):337-44
    47Bassuk AG, Muthuswamy LB, Boland R, et al. Copy number variationanalysis implicates the cell polarity gene glypican5as a human spinabifida candidate gene. Hum Mol Genet,2013,22(6):1097-111
    48Luo J, Balkin N, Stewart JF, et al. Neural tube defects and the13q deletionsyndrome: evidence for a critical region in13q33-34. Am J Med Genet,2000,91(3):227-30
    49Chen CP, Su YN, Tsai FJ, et al. Partial monosomy13q (13q21.32--->qter)and partial trisomy8p (8p1--->pter) presenting with anencephaly andincreased nuchal translucency: array comparative genomic hybridizationcharacterization. Taiwan J Obstet Gynecol,2011,50(2):205-11
    50Luxardi G, Galli A, Forlani S, Lawson K et al. Glypicans are differentiallyexpressed during patterning and neurogenesis of early mouse brain.Biochem Biophys Res Commun,2007,352(1):55-60
    51Joslyn G, Wolf FW, Brush G, et al. Glypican Gene GPC5Participates inthe Behavioral Response to Ethanol: Evidence from Humans, Mice, andFruit Flies. G3(Bethesda),2011,1(7):627-35
    52Okamoto K, Tokunaga K, Doi K, et al. Common variation in GPC5isassociated with acquired nephrotic syndrome. Nat Genet,2011,43(5):459-63
    53Rampersaud E, Damcott CM, Fu M, et al. Identification of novel candidategenes for type2diabetes from a genome-wide association scan in the OldOrder Amish: evidence for replication from diabetes-related quantitativetraits and from independent populations. Diabetes,2007,56(12):3053-62
    54Arking DE, Reinier K, Post W, et al. Genome-wide association studyidentifies GPC5as a novel genetic locus protective against sudden cardiacarrest. PLoS One,2010,5(3):e987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700