在线超声间接电氧化合成苯甲醛及其衍生物的过程和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯甲醛及其衍生物是一类重要的有机化合物,应用领域非常广泛,它可用于合成药物、香料、化妆品、染料和农药等多种化工产品,具有年需求量大、市场前景好和经济效益高的特点。对制备苯甲醛及其衍生物的方法进行研究和理论性探讨,不仅具有良好的经济效益,而且具有较高的学术价值,多年来一直是化学工作者研究的重点课题内容。
     本论文采用在线超声电合成的方法制备苯甲醛及其衍生物,并对其过程和机理进行研究。在研究中选择甲苯和二甲苯为原料,分别以Mn(Ⅲ)/Mn(Ⅱ)、Ce(Ⅳ)/Ce(Ⅲ)和MnO_2/Mn(Ⅱ)为氧化媒质,通过超声电氧化的方法,电解得到相应的氧化剂Mn(Ⅲ)、Ce(Ⅳ)和MnO_2,并在超声波作用下,将其用于氧化原料制备相应的苯甲醛及其衍生物。超声电合成方法是将超声波技术和电解合成技术有机地结合在一起,充分利用超声波良好的搅拌、乳化和对电极表面所产生的清洗、除气、去钝化等作用,以及电解合成技术所具有的高效、节能、选择性高、反应条件温和、设备通用性强等特点,促进油/水相间的充分接触,加快传质过程,缩短反应时间,提高反应收率。它克服了传统的有机合成工艺的弊端,强化了原有的电解合成技术。由于参与反应的除反应物外,只有电子“试剂”,因而,它不仅是精细化工领域中的一种高效节能新工艺,而且是一种对环境基本无污染的清洁合成技术,也是目前超声电化学研究的前沿领域之一。
     本研究为检验产品质量,调整合成工艺条件,根据电合成过程中生成物的组成情况,首先建立了无需进行分离就能够简单、快速、准确测定目标产物的紫外分光光度法和反相高效液相色谱法,并将其应用于产品含量的测定,获得令人满意的实验结果。通过对两种分析方法进行比较,发现反相高效液相色谱法不仅线性范围宽,回收率高,而且还能用于甲基苯甲醛和马来酸含量的测定。因此,本实验的目标产物均采用反相高效液相色谱法进行分析。
     施加超声波于电氧化Mn(Ⅱ)为Mn(Ⅲ)的过程中,由于它能够持续地冲击、清洗电极表面,驱除电极附近的气泡,保持电极表面活性,不仅加快了传质速率,降低了氧化电位,提高了电流效率,而且使电解反应所需时间和硫酸浓度均低于机械搅拌法,显示了超声波独特的作用效果。本实验通过电解条件的优化,得到了电氧化Mn(Ⅱ)为Mn(Ⅲ)的最适宜反应条件为:电解时间4100s,电流密度0.09A/cm~2,硫酸浓度5.5mol/L,硫酸锰浓度0.4mol/L,电解温度20℃,超声波频率为59kHz,超声波输出功率175W。在此条件下,其电解电流效率达到了84.79%。
     将超声波应用于以Mn(Ⅲ)为氧化剂制备苯甲醛和三种甲基苯甲醛的有机相/水相体系的氧化反应中,所用氧化液不仅可电解再生,重复利用,而且其效果基本不变,电流效率下降小于4%,而苯甲醛的收率降低小于2%。本研究得到的氧化甲苯制备苯甲醛的条件为:反应温度60℃,甲苯与Mn(Ⅲ)的摩尔质量之比为4:1,硫酸浓度为7.0mol/L;超声波频率59kHz,超声波功率175W。而将此方法应用于氧化二甲苯制备对、邻、间甲基苯甲醛时,超声波的作用更加明显,由于它能够减小分子中二甲基间的空间阻碍效应,不仅降低了硫酸的使用浓度,无需调节酸度就可满足反应的要求,而且与搅拌相比,显著提高了产物的收率,对甲基苯甲醛、间甲基苯甲醛、邻甲基苯甲醛的收率分别提高了4.3%、19.0%和20.7%。
     在实验中发现,无论是在电解反应还是在氧化反应过程中,对超声波频率的选择均倾向于高频率,这可能是由于超声波频率为59kHz时与空化泡的自然频率比较接近,使二者能够达到最有效的能量耦合,充分发挥了超声波的作用。而有关超声波功率的影响,在电解反应过程中其呈起伏波动性,而在氧化过程中则具有较好的规律性。这可能是由于超声波空化作用形成的微射流、冲击流等作用受超声波功率的影响比较大,而由超声波引起的乳化反应等次级效应,受功率的影响不是太突出的缘故。同时实验结果表明,施加超声波并没有改变电解反应中Mn(Ⅱ)的氧化机理,它不是直接与Pb电极进行电子交换,而是与Pb电极表面生成的Pb(Ⅳ)来交换电子,被Pb(Ⅳ)氧化生成Mn(Ⅲ),Pb(Ⅳ)被还原后在电极表面再生。并且在超声波辐射下,不仅降低了电解电位,而且有效地提高了电解收率和电流效率。
     在研究中还对超声电合成制备Ce(Ⅳ)氧化液和Ce(Ⅳ)氧化甲苯及其衍生物生成相应苯甲醛类化合物的过程和机理进行了探讨。由于在无隔膜电解槽中,阴极能够还原阳极生成的Ce(Ⅳ),降低其电解收率。因此,采用隔膜电解槽,选择PbO_2/Pb电极作阳极、纯Pb电极作阴极的双电极电解体系,通过正交试验和单因素实验找出了不同因素对电流效率或电解收率的影响规律,综合考虑电流效率、电解收率、电能效率、时空效率等方面的因素,确定了恒电流电解氧化Ce(Ⅲ)的适宜条件为:超声波频率59kHz,超声波功率250W,电流密度0.06A/cm~2,通过电量1.0F/mol,阳极液的组成为0.40mol/L Ce(Ⅲ)+0.50mol/L H_2SO_4,阴极液的组成为0.50mol/L H_2SO_4。该条件下电解氧化Ce(Ⅲ)为Ce(Ⅳ)的电流效率和电解收率均可达到87.93%。同时,在超声波频率59kHz,超声波功率250W;反应温度75℃,甲苯(或二甲苯)与Ce(Ⅳ)的摩尔质量比为3:1,硫酸浓度7.5mol/L(4.0mol/L)的条件下,Ce(Ⅳ)氧化甲苯(或二甲苯)制备苯甲醛和对、间、邻甲基苯甲醛的收率分别达到了95.78%、84.7%、81.8%和73.5%。实验中采用循环伏安法对其电极反应机理进行研究发现,Ce(Ⅲ)主要是通过在电极表面直接失去电子而被氧化生成Ce(Ⅳ),并通过极化曲线法得到了验证。
     将作为氧化媒质的Ce(Ⅳ)/Ce(Ⅲ)与Mn(Ⅲ)/Mn(Ⅱ)进行对比分析可以看出:①以Ce(Ⅳ)为氧化剂氧化甲苯或二甲苯制备苯甲醛和甲基苯甲醛的效果好于Mn(Ⅲ),其产物收率均高出后者10%~15%。②二者的电解氧化反应机理有所不同,Ce(Ⅳ)由Ce(Ⅲ)直接电氧化得到,而Mn(Ⅲ)则是由Mn(Ⅱ)间接电氧化获得,且前者电解氧化所需的硫酸浓度仅为后者的十分之一。③二者所采用的电解槽形式不同,前者为隔膜式,而后者为无隔膜式,前者相对比较复杂。④在电解氧化Ce(Ⅲ)为Ce(Ⅳ)时,通过电量1.0 F/mol所需时间约为5.36h,是电解氧化Mn(Ⅱ)为Mn(Ⅲ)的4.7倍。因此,综合考虑上述情况,若能充分利用阴极反应,选择Ce(Ⅳ)/Ce(Ⅲ)为氧化媒质,间接电氧化甲苯或二甲苯制备苯甲醛和甲基苯甲醛将更加有利。
     本实验针对电解氧化Ce(Ⅲ)为Ce(Ⅳ)所面临的无隔膜电解收率低,而隔膜电解能耗高的问题,建立了一个新的成对电解体系,即在线超声离子膜耦合成对制备Ce(Ⅳ)和丁二酸。实验结果表明:新的成对电解体系不仅完全可行,而且阴、阳极的电流效率与电解收率(或转化率)都比较高;阴极电解的平均电流效率为92.71%,阳极电解的平均电流效率为87.81%,总的电流效率高达180.52%。马来酸电还原为丁二酸的转化率达到了92.09%,电解的槽电压与单纯电解氧化Ce(Ⅲ)相比降低了0.25V。采用熔点测定、红外光谱解析和纯度测定,对阴极电解产品进行了分析,证明该产品为丁二酸,其含量大于99.0%。
     实验中采用在线超声电氧化的方法,对两种不同材料的电极电解MnSO_4酸性溶液制备微粒MnO_2的条件进行了优化和对比分析,探讨了各种因素的影响机理,并通过激光粒度分析仪、红外光谱仪和X射线衍射仪对微粒MnO_2进行了表征,测定了微粒的粒径大小、比表面积和晶相构成等。实验发现采用Pt网电极电解得到的MnO_2颗粒粒度远远小于用PbO_2—Pb电极制得的,前者比表面积约是后者的54倍,颗粒粒径前者<1μm的占到80%以上,后者却未测到;表征结果显示,尽管Pt网电极电解产物是一α-MnO_2和γ-MnO_2的混合晶体,但却以γ-MnO_2晶相为主。因此,将其用于氧化甲苯制备苯甲醛的实验中,并与购买的分析纯试剂MnO_2进行对比,电解制得的MnO_2具有更高的氧化活性,氧化得到的苯甲醛产品收率更高。
     实验中发现,无论采用Mn(Ⅲ)、Ce(Ⅳ)和MnO_2中的那一种氧化剂氧化二甲苯制备甲基苯甲醛,均得到完全相同的实验现象,即制备三种甲基苯甲醛所需的氧化反应时间顺序依次为对甲基苯甲醛<间甲基苯甲醛<邻甲基苯甲醛;而氧化产物的收率顺序则为对甲基苯甲醛>间甲基苯甲醛>邻甲基苯甲醛。表明二甲苯的氧化对位最容易,间位次之,而邻位的最困难。并且施加超声波可明显提高目标产物的收率。
As an important species of organic compound, benzaldehyde and its derivatives were widely used in synthesis of many kinds of chemicals, such as Pharmaceuticals, spiceries, cosmetics, dyes, pesticide, etc. It has high annual demands, promising market and good economic benefits. Studying theoretically and practically on the methods for its preparation has been all along a significant project for the chemist, since it has both good economic benefits and high academic values.
     In this paper, benzaldehyde and its derivatives were prepared by electrosynthetic method with on-line ultrasound; meanwhile the course and the mechanisms were studied. In the research, toluene and xylene were employed as raw materials, Mn(III)/Mn( II) , Ce(IV)/Ce(III) and Mn( II )/MnO_2 as oxidative medias, respectively. Corresponding oxidants Mn(III), Ce(IV), MnO_2 were electrolyzed through sonoelectrooxidation method, and were applied to oxidate the raw materials to prepare benzaldehyde and its derivatives under the ultrasonic radiation. Sonoelectrosynthesis is a method in which the electrolysis-synthesis technique and the ultrasonic technique were well combined, and it took full advantage of ultrasonic functions such as well-stirring, emulsification and effects of cleaning, purging, depassivating to the electrodes' surface; meanwhile it made the best of electrolytic technique's merits such as high efficiency, low energy consumption, high selectivity, warm reaction conditions and general equipments. Thus oily phase and water phase were contacted sufficiently, and mass transfer was promoted, which resulted in less reaction time and high product yields. This method overcame the weak points of traditional organic synthetic technique; moreover it strengthened the primary electrosynthetic technique. As only electron agent aside from the reactants took part in the reaction, it was not only a new effective and energysaving technics in the fine chemical engineering area, but also a clean synthetic way with nearly no pollutions to the environment, and that it was an advanced field of sonoelectrochemistry nowadays.
     In order to detect product's quality and to adjust the synthetic conditions, UV and RP- HPLC methods for the determination of the target product were established according to the components of products in the electrosynthesis course, by which target product were able to be simply, fast and accurately determined without separation in advance. And satisfactory results were obtained when they were applied to the determined of the product's content. By comparing the two analytical methods, it was found that RP-HPLC method had a wide linear range, and a high recovery, furthermore it was applicable to content determination of tolualdehyde and maleic acid. Therefore, all the target products on the experiment were analyzed by RP-HPLC method.
     When ultrasound was brought into the course of electrooxidating Mn( II) to Mn(III) , it could continuously swash and clean the electrode surface, cleared away the air bubbles around the electrode and maintained its activity. As a result, mass transfer rate was increased, while oxidative potential was decreased, and current efficiency was promoted. What's more, it made the electrolytic reaction time less and the concentration of sulfuric acid lower than those by mechanical stirring. All mentioned above indicated a special function of ultrasound. By optimizing the electrolytic conditions in the experiment, best reaction conditions for the electrooxidation of Mn( II) to Mn(III) were given as : Electrolytic time was 4100s, current density was 0.09A/cm~2 , concentration of sulfuric acid was 5.5mol/L, concentration of manganese sulfate was 0.4mol/L, electrolytic temperature was 20℃, ultrasonic frequency was 59kHz, and ultrasonic output power was 175W. In this case, the current efficiency of electrolysis was up to 84.79%.
     When ultrasound was employed in the heterogeneous reaction of preparation for benzaldehyde and three species of tolualdedhyde, the oxidant solution could be reproduced and utilized repeatedly by electrolysis with little changes of the effect that less than 4% and 2% decrease in the current efficiency and benzaldehyde's yield respectively. Conditions of benzaldehyde's preparation by oxidizing toluene in the research were obtained as follows: reaction temperature was 60℃, mole ratio of toluene and Mn(II) was 4:1, concentration of sulfuric acid was 7.0mol/L, ultrasonic frequency was 59kHz, and ultrasonic output power was 175W. While the method was applied to prepare p-,m-,o-tolualdehyde by oxidizing corresponding xylene, the effect of ultrasound was more remarkable. As it could reduce the spatial block effect between the two methyl group in the molecule, concentration of sulfuric acid needed was decreased, thus it could met the demands in the reaction without adjusting the acid concentration. Moreover, product's yield was apparently improved compared with stirring. The yield of p-tolualdehyde, m-tolualdehyde, and o-tolualdehyde was increased by 4.3%, 19.0% and 20.7%, respectively.
     In the experiment it was found that the higher ultrasonic frequency was always apt to be chosen whether in the electrolysis or in the oxidation. This might be because the ultrasonic frequency of 59kHz was more close to the natural frequency of the air bubble, which caused a most effective energy coupling of the two, thus the function of ultrasound could be fully carried out. The effect of ultrasonic power fluctuated in the electrolytic course, this might result from that the effect of ultrasonic power had a stronger effect to the microjet and the shockflow caused by cavitation of ultrasound than that to the subeffect such as emulsification. Meanwhile, experimental results showed that it didn't change the oxidative mechanism of Mn(II) in the electrolysis when the ultrasound was introduced in. Mn(II) didn't directly exchange electrons with Pb electrode, but exchanged electrons with Pb(IV) created on the Pb electrode surface, that was, Mn(II) was oxidized into Mn(III) by Pb(IV), which was reproduced on the electrode surface after reduced. Under ultrasonic radiation, electrolytic potential was diminished; in contrast, electrolytic yield and current efficiency were promoted effectively.
     In the study, the procedures and mechanisms of preparing Ce(IV) oxidative solution and of producing compounds like benzaldehyde by oxidation of toluene and its derivatives with Ce(IV) were discussed. In undivided electrobath, cathode would reduce the Ce(IV) just created on the anode, which caused a decease of the electrolytic yields. Therefore, divided electrobath was employed, and a dielectrode system with PbO_2/Pb electrode as anode while pure Pb electrode as cathode was chosen. Affecting rules of different factors to the current efficiency or the electrolytic yield were found out through orthogonal experiments and solofactor experiments. With integrated consideration of current efficiency, electrolytic yield, electrical efficiency, spatio-temporal efficiency and so on, suitable conditions for galvanoplastics electrooxidation of Ce(III) were as follows: ultrasonic frequency was 59kHz, ultrasonic power was 200W, current density was 0.06A/cm~2, electricity passed through was 1.0F/mol, anodic electrolyte was composed of 0.4mol/L Ce(III) and 0.5mol/L H_2SO_4, cathodic electrolyte was merely 0.5mol/L H_2SO_4. On these conditions, both the current efficiency and electrolytic yield of electrooxidating Ce(III) to Ce(IV) could reach 87.93%. Moreover, on the occasion that ultrasonic frequency was 59kHz, ultrasonic power was 200W, reaction temperature was 75℃, mole ratio of toluene or xylene and Ce(IV) was 3:1, concentration of sulfuric acid was 7.5mol/L(4.0mol/L for xylene), the product yield could be up to 95.78%, 84.7%,81.8% and 73.5% respectively, when Ce(IV) was utilized to oxidize toluene or certain xylene for preparation of benzaldehdye and p-,m-,o-tolualdehyde. Meanwhile, mechanisms of electrode reaction was studied by cyclic voltammetry, and it was found that Ce(III) was mainly oxidized into Ce(IV) by releasing electrons directly on the electrode surface, which was proved by polarization curves subsequently.
     Comparing Ce(IV) /Ce(III) with Mn(III)/Mn( II) oxidative medias, we learned that:①A better results could be achieved using Ce(III) than using Mn(III) as oxidant to prepare benzaldehyde and tolualdehyde from toluene or xylene with the product's yield 10%~15% higher;②Mechanisms of the two electrooxidation reaction were different from each other. Ce(IV) was directly oxidized from Ce(III), but Mn(III) was produced by indirect electrooxidation of Mn( II), and concentration of sulfuric acid needed in the former was only one tenth of that in the latter;③Different electrobathes were employed. More complicated divided type was used in the former, while undivided type was used in the latter;④In the electrooxidation of Ce(III) to Ce(IV), as 1.0F/mol electricity passed through 5.6 hours of time were needed, which was 4.7 times of that in Mn( II) to Mn(III). Therefore, with integrated consideration of the situations mentioned above, if the cathode reaction could be sufficiently utilized, preparation of benzaldehyde and tolualdehyde from toluene and xylene by electrooxidation with Ce(IV) /Ce(III) as oxidative media would be more advantageous.
     Concerning to the problems in electrooxidation of Ce(III) to Ce(IV) that undivided electrolysis had a lower yield while divided electrolysis consumed more energy, a new paired electrolytic system was set up, that was, ion membrane paired electrolysis for preparations of Ce(IV) coupling with succinic acid with on-line ultrasound. Experimental results showed that, the new paired electrolytic system was completely applicable; moreover, it was of high current efficiency and electrolytic yield (or transformation ratio) either on the anode or on the cathode. The average current efficiency was 92.71% and 87.81% on the cathode and the anode, respectively. Thus the total current efficiency was up to 180.52%. The percent of maleic acid transformed into succinic acid reached 92.09%, and the bath potential decreased by 0.25v compared with single electrooxidation of Ce(III). Additionally, the electrolytic product arisen from the cathode was proved to be succinic acid with purity more than 99.0% by melting point test, IR spectrometry and purity test, etc.
     In the experiment, preparation conditions of particle MnO_2 by electrolyzing MnSO_4 acid solution with two kinds of electrode made of different materials were optimized and compared, effect mechanisms of different factors were discussed, and diameter, specific surface area and crystal phase of the particle MnO_2 was all determined by several means such as laser diameter analysis, IR and XRD.
     In the experiment it was found that the particle diameter of MnO_2 produced by grid Pt electrode was much smaller than that produced by PbO_2-Pb electrode. The specific surface area of the former was approximately 54 times as that of the latter. Particles with a diameter under 1 urn accounted to 80% above in the former, while it was not detected in the latter. From the test results, it was learned that, electrolytic product of grid Pt electrode was a mixture crystal ofα-MnO_2 andγ-MnO_2, however,γ-MnO_2 crystal was the major product. Therefore, it was used in oxidizing toluene to prepare benzaldehyde and compared with analytical reagent MnO_2. The results showed electrolytic MnO_2 was of higher oxidative activity, which resulted in a higher yield of benzaldehyde.
     Through the experiment it was found that no matter which one was employed for oxidizing xylene to prepare tolualdehyde, the same phenomenon turned up. That was, the sequence of oxidative reaction time needed in preparing the three kinds of tolualdehyde was p-tolualdehyde < m-tolualdehyde < o-tolualdehyde, while the sequence of the product's yield was p-tolualdehyde > m-tolualdehyde > o-tolualdehyde. It indicted that paraxylene was most easily oxidized, and then was the metaxylene, while the orthaxylene was the last. What's more, yield of the target product was apparently promoted when ultrasound was imposed on.
引文
[1] 闵恩泽,傅军.绿色化学的进展[J].化学通报,1999(1):10-15.
    [2] 陈敏元.有机电化学的新进展[J].精细化学,2000,17(增刊):75-79.
    [3] 徐克勋.精细有机化工原料及中间体手册[M].北京:化学工业出版社,1998,3-154.
    [4] 化工百科全书,第一卷[M].北京:化学工业出版社,1995,462-463.
    [5] 吴雨龙,王为国,陈苏芳等.苯甲醛类产品的研究进展[J].广东化工,2006,33(7):40-42.
    [6] 毕良武,刘先章,赵振东等.芳香醛电合成技术的研究进展[J].化工纵横,2002, (3): 1-5.
    [7] Kramer K., Robertson P.M., Ibl. N. Indirect electrolytic oxidation of some aromatic derivatives [J]. J.Appl. Electrochem., 1980, 10(1): 29-36.
    [8] Kurz M.E., Chen. T.R. Nitromethylation of aromatics with nitromethane-manganese(Ⅲ) acetate[J]. J.Org. Chem., 1978, 43 (2): 239-242.
    [9] Wagcnknecht J.H.. Electrogeneration of Mn(Ⅲ) in an undivided cell[J]. J. Appl. Electrochem., 1983, 13(4): 535-540.
    [10] 张卫香,张汉昌,林祥钦.苯甲醛系列化合物的电合成进展[J].化工进展,2000,(4):24—27.
    [11] 王仲华,华庆民,陈贵才等.甲苯间接电氧化作用[J].电化学,1995,1(2):202-208.
    [12] 王文英,刘伟,丁克强等.间接电氧化法合成苯甲醛[J].现代化工,1996,(6):33-35.
    [13] 卢文庆,蔡政,李国栋等.均匀设计法研究甲苯间接电氧化合成苯甲醛[J].精细化工,2000,17(增刊):31-33.
    [14] 褚道葆,林昌健,林华水.非匀相二步间接电解合成苯甲醛的研究[J].电化学,1998,4(1):54-59.
    [15] 于伯章,李毅,王桂兰等.相转移催化下苄基醚选择性间接电氧化的研究[J].合成化学,1995,3(4):375—377.
    [16] Ramaswamy R., Venkatachalapathy M.S., Udupa H.V.K.. Electrolytically regenerated ceric sulfate for the oxidation of organic compounds I.Oxidation of P-Xylene to P-toluealdehyde[J].Bull. Chem. Soc. Jpn. 1962, 35: 1751—1753.
    [17] 王光信,周志强,刘道军等.邻甲基苯甲醛的电合成[J].精细化工,1995,(5):1248-1250.
    [18] 王光信,刘道军,董强.芳醛电合成的研究[J].青岛化工学院学报,1995,16(4):303-306.
    [19] 罗世忠,牛淑妍,冷晓飞等.硫酸铈氧化对二甲苯制对甲基苯甲醛[J].精细化 工,1997,14(6):57-58.
    [20] 孙治荣,胡翔,胡万里等.间接电合成对甲基苯甲醛减废工艺[J].化工环保,1999,19(2):108-113.
    [21] 赵尧敏,刘国际,李竹霞.Ce~(4+)/Ce~(3+)做氧化媒质间接电合成邻氯苯甲醛[J].精细化工,2000,17(4):217-219.
    [22] 李竹霞,刘国际,雒廷亮等.Mn~(3+)间接电氧化邻氯甲苯制邻氯苯甲醛[J].郑州工业大学学报,1999,20(4):74-77.
    [23] 崔小明.对氯苯甲醛的生产和应用[J].氯碱工业.1999,(9):30-32.
    [24] 王瑞芝,张宏坤,张雪英等.间接电氧化法合成氯代苯甲醛[J].精细化工,1998,15(3):48-50.
    [25] 刘伟,王文英,丁克强等.间接电氧化法合成对氯苯甲醛[J].河北化工,1996,(4):1-4.
    [26] 刘伟,范小振,张文育等.间接电氧化法合成2,4-二氯苯甲醛[J].河北化工,1998,(2):12-13.
    [27] 肖强,邓为玲,张曼利等.2,6-二氯苯甲醛电合成的研究[J].青岛化工学院学报,1999,20(3):233-236.
    [28] Sasabe Mikio, Yoshida Naoki, Kumai Seisaku, et al. Manufacture of parafluorobenzaldehyde by electrochemical oxidation [P]. Jpn kokai Tokkyo Koho: JP 03240983, 1991-10-28.
    [29] 顾登平,张雪英,张宏坤等.间接电氧化的进展[J].精细化工,2000,17(增刊):4-6.
    [30] 孟阿兰,吴志勇,宋春霞等.电合成对氟苯甲醛的研究[J].精细化工,2000,17(增刊):58-60.
    [31] 张宏坤,贾振斌,蒋殿录等.间接电氧化法研制对氟苯甲醛[J].河北师范大学学报(自然科学版),1999,23(2):232-234.
    [32] Kreysa G., Medin H.. Indirect electrosynthesis ofp-methoxybenzal-dehyde [J]. J.Appl.Electrochem., 1986, 16: 757-767.
    [33] 邓为玲,刘洪正,杨元田等.茴香醛的电合成研究[J].精细化工,1999,16(4):29-34.
    [34] 杨爱云,刘士荣,曹光明.电化学氧化法合成茴香醛(Ⅰ)[J].合成化学,1995,3(2):147-152.
    [35] Comninellis Ch., Plattner E., Javet Ph.. Indirect electrolytic oxidation of o-nitrobenzaldehyde [J]. J.Appl.Electrochem., 1979(9): 595.
    [36] 张忠诚,刘嘉丽,王信东.间接电解氧化合成邻硝基苯甲醛的研究[J].精细化工,1995,12(1):52-54.
    [37] 丁平.邻甲基苯甲醛的电合成研究[J].精细石油化工,1995,(2):1.
    [38] 邓斌,黄海英,刘庆学.电化学合成间羟基苯甲醛的新方法[J].郴州师范高等专科学校学报,2001,22(2):72-74.
    [39] 程华,袁挽青.间接电化学合成香草醛[J].精细化工,1993,10(3):16-19.
    [40] Nishiguchi Ikuzo, Hirashima Tsunesuke, Kumai Seisaku. Manufacture of p-fluorotolueneoxides[P]. Jpn Kokai Tokkyo Koho: JP 0297690,1990-04-10.
    [41] 李则林,张永康,成介平.茴香脑电氧化合成茴香醛[J].精细化工,1995,12(1):16-18.
    [42] Monaka Tsutoma, Sato Norio, Yoshiyama Akiko, et al. Manufacturing of polyfluoro aromatic aldehyde by electrochemical reduction[P]. Jpn Kokai Tokkyo Koho: JP 01119686,1989-05-11.
    [43] 李永常,王万得.电合成水杨醛工艺的改进[J].天津化工,1995,4(1):14—17.
    [44] Jow Jiin-Jiang, Lee An-Chen, Chou Tse-chuan. Paired electrooxidation. Ⅰ. Production of benzaldehyde[J]. JAppl Electrochem, 1986, 17(4); 735-759
    [45] 张国衡,杨前顺.由甲苯成对电合成苯甲醛的研究[J].化学工业与工程,1991,8(2):9—13.
    [46] Y. Qingfeng, L. Xiaoping, Z.Xiuling. A new approach to electrochemical production of benzaldehyde from toluene in an undivided cell in the presence of the couple V~(5+)/V~(4+)[J].J Appl Electrochem, 1986, 33(3): 273-277
    [47] 曾跃,姚素薇.邻硝基苯甲醛的成对电合成[J].研究简报,11(4):21-23.
    [48] 丁绍民,王继东,宋华付.消耗电极法在有机电合成中的应用[J].精细化工,2000,17(增刊):7—9.
    [49] 杜敬星,应桃开.牺牲阳极法在电有机合成中的应用[J].化学通报,1993,(2):30-34.
    [50] 张成孝.超声电化学及其研究进展[J].陕西师范大学学报,2001,29(2):103-109
    [51] Birkin P R, Silva-Martines S. Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at microelectrode employing sampled voltammetry [J]. Anal. Chem., 1997, 69 (11): 2055-2062.
    [52] Kazuya Matsuda, Mahito Atobe, Tsutomu Nonaka. Ultrosonic effects on electroorganic processes. (Part1). Product-selectivity in electroreduction of benzaldehydes [J]. Chemistry Letters, 1994: 1619-1622.
    [53] Mahito Atobe, Tsutomu Nonaka. Ultrosonic effects on electroorganic processes.Ⅰ Electroreduction of benzaldehydes on ultrasound-vibrating electrodes [J]. Chemistry Letters, 1995: 669-670.
    [54] 顾登平,高俊峰,张宏坤等.间接电氧化法施加超声研制2,6—二氯苯甲醛[J].河北化工,1996,(4):23.
    [55] Kai Hu, Niyazymbetov Murat E., Evans Dennis H..Nucleophilic Aromatic substitution by Paired Electosynthesis: Reactions of Methoxy Arenes with 1H-Tetrazoles [J]. Tetrahedron letters, 1995, 36(39): 7027—7030.
    [56] 张宏坤,顾登平.成对电合成技术[J].电化学,1999,5(3):304—309.
    [57] Eberhard Steckhan, Thomas Arns, William R. Heinman et al.Environmental protection and economization of resources by electroorganic and electroenzymatic synthesis[J]. Chemosphere, 2001, 43: 63—67.
    [58] 张宏坤,张雪英,顾登平.成对电解合成丁二酸和乙醛酸[J].精细化工,1997, 14(5):56—58.
    [59] 李珊,张宏坤,顾登平.成对电解同时合成葡萄糖酸和丁二酸[J].精细化工,1998,15(增刊):282—284.
    [60] Guo Z C, Li W, Gu D P. The paired electrochemical synthesis gluconic acid and sorbitol [J]. Collect Czech Chem Commum, 1995, 60: 928-934.
    [61] 顾登平,张越.成对电解同时合成甘露醇、山梨醇和葡萄糖酸盐[J].精细化工,2000,17(10):576—579.
    [62] 顾登平,张雪英,崔宝秋等.成对电合成技术的新进展[J].精细化工,2000,17(6):336—338 342.
    [63] Abraham F. Jalbout, Suhong Zhang. New paired electrosynthesis route for gloxalic acid [J]. Acta Chim.Slov.,2002, 49: 917—913.
    [64] Chou C-F., Chou T-C.. Paired electrooxidation Ⅳ.Decarboxylation of sodium gluconateto D-arabinose [J]. J. Appl. Electrochem., 2003, 33: 741—745.
    [65] Do J-S., Yeh W-C.. In situ paired electrooxidative degradation of formaldehyde with electrogenerated hydrogen peroxide and hypochlorite ion [J]. J. Appl. Electrochem., 1998, 28: 703—710.
    [66] Tomat R, Vecchi E. Electrocatalytic production of hydroxyl radicals and their oxidative addition to benzene [J]. J. Appl. Electrochem, 1971, 1(3): 185—188.
    [67] Tomat R, Rigo A. Oxidation of cyclohexane to cyclohexanone via the electrochemical reduction of molecular oxygen: the hydrogen chloride effect [J]. J. Appl. Electrochem, 1980, 10(4): 549—552.
    [68] Tomat R, RigoA. Electrochemical Oxidition of toluene promoted by hydroxylradicals [J]. J. Appl. Electrochem, 1984, 14(1): 1—8.
    [69] 张越,段书德,沈铁焕.成对间接电氧化合成有机物研究[J].石家庄师范专科学校学报,2001,3(2):47—50.
    [70] Li Wei, Nonaka Tsutomu. Paired electrosynthesis ofa nitrone [J]. Chemistry Letters, 1997, 1271—1272.
    [71] Li Wei, Nonaka Tsutomu. Paired electrosynthesis of di(2-carboxthy)sulfone [J]. DenkiKagaku, 1997, 12: 1124—1125.
    [72] Li Wei, Nonaka Tsutomu. Paired electrosynthesis of aminoiminomethane-sulfonic acids [J]. Electrochimica Acta, 1999, 44: 2605—2612.
    [73] Shen Yi, Atobe Mahito, Li Wei et al. Paired elctrosynthesis of epoxides and dibromides from olefinic compounds [J]. Electrochimica Acta, 2003,48: 1041-1046.
    [74] 王家荣.间接成对电解合成间氨基苯甲酸[J].精细石油化工,1999,(2):39-40.
    [75] 李伟,顾登平,张宏坤等.成对电解技术在有机电合成中的应用[J].精细化工,1998,15(增刊):271—277.
    [76] Shigenori Kashimura, Hajime Yamashita, Yoshihiro Murai et al. Magnesium and lanthanide ions promoted electrochemical coupling of aliphatic esters and tetrahydrofuran for the synthesis of acetals [J]. Eletrochimica Acta, 2002, 48: 7-10.
    [77] Shokaku Kim, Rikiya Uchiyama, Yoshikazu Kitano et al. Benzylic nitroalkylation by paired electrolysis of benzyl sulfides in nitroalkane [J]. Journal of Electroanalytical Chemistry, 2001, 507: 152—156.
    [78] Belen Batanero, Fructuoso Barba. Paired electrosynthesis of cyanoacetic Acid [J]. J.Org.Chem., 2004, 69: 2423—2426.
    [79] Belen Batanero, Fructuoso Barba. Preparation of 2,6-Dimethyl-4-arytpyridine-3,5-dicarbonitrile: A Paired Electrosynthesis [J]. J.Org.Chem., 2002, 67: 2369—2371.
    [80] 林书玉.功率超声技术的研究现状及其最新进展[J].陕西师范大学学报(自然科学版),2001,29(1):101—106.
    [81] Thompson L H, doraisamy L K. Sonochemistry:science and engineering [J]. Ind Eng Chem Res, 1999, 38 (4): 101—106.
    [82] Suslick K S. Sonochemistry [J]. Science, 1990, 247: 1439—1445.
    [83] Doktycz S J, Suslick K S. Interparticle collisions driven by ultrasound [J]. Science, 1997, 247: 1067—1069.
    [84] 韩俊芬.超声辐射在环化缩合反应中的应用研究[学位论文].石家庄:河北大学,2004.
    [85] Richards W T, Loomis A L. Chemical effects of high frequent sound wave [J]. Am Chem Soc, 1927, 49: 3086.
    [86] 阚显文,赵广超,胡斌等.药物中间体电合成技术的研究与应用[J].合成化学,2002,10:391—396.
    [87] Suslick K S, Doktycz S J, Flint E B. On the origin of sonoluminescence and sonochemistry [J]. Ultrasonics, 1990, 28 (5): 280-290.
    [88] Mason T. Practical Sonochemistry [M]. Singapore: Eills Horwood Limited, 1991, 15—17.
    [89] Luche J L. Synthetic Organic Sonochemistry [M]. Kluwer Academic/Plenum Publishers, 1998: 3—8.
    [90] 顾登平,张星辰.有机电合成[M].石家庄:河北教育出版社,2004(2):111—112.
    [91] 刘翠娟,杨治伟,慎爱民.超声化学的发展与应用[J].佳木斯大学学报(自然科学版),2005,23(2):273—276.
    [92] Timothy J M, J Philliplorimer. Sonochemistry [M]. Chichester: Ellis Horwood Limited Publishers, 1985: 17—47.
    [93] Bhatkhande B S, Samant S D. Ultrasound assisted PTC catalyzed saponificat ion of vegetable oils using aqueous alkali [J]. Ultrasonics Sonochem, 1998, 5 (1): 7—12.
    [94] Gryglewicz S. Rapeseed oil methyl esters preparation using heterogeneous catalysts[J]. Bioresource Techn, 1999, 70(3): 249—253.
    [95] Oussaid B, Soufiaoui M, Garrigues B. The atherton-todd reactions under sono-chemical activation [J]. Synth Commun, 1995, 25 (6): 871—875.
    [96] 边延江,李记太,李同双.超声波在金属参与的有机合成方面的应用[J].有机化学,2002,22(4):227-232.
    [97] 王娜,李保庆.超声催化反应的研究现状和发展趋势[J].化学通报,1999,5:26 —32.
    [98] Compton R G, Eklund J C, Marken F, et al. Coupling ultrasound to elect tochemistry [J]. ElectrochimicaActa, 1997, 42 (19): 2919—2927.
    [99] 张成孝.超声电化学及其研究进展[J].陕西师范大学学报(自然科学版),2001,29(2):103—109.
    [100] Davis J, Compton R G. Sonoelectrochemically enhanced nitrite detection [J]. Anal Chim Acta, 2000 , 44(2): 241—247.
    [101] Chmilenko F A, Baklanova L V. Atomic absorption determination of standardized metal impurities in winesusing ultrasound [J].J Anal Chem, 1997, 52(11): 1093—1098.
    [102] Hianik T,. Rybar P, Kostner G N, et al. Molecular acoustic as a new tool for the study of biophysical properties oflipoproteins [J]. Biophys. Chem., 1997, 67(1—3): 221—228.
    [103] Walton D J, Phull S S, Bates D M, et al. Ultrasonic enhancement of electrochemiluminescence [J].Electrochim Acta, 1993, 38(2—3): 307—310.
    [104] 顾登平,张星辰.有机电合成[M].石家庄:河北教育出版社,2004(2):114—117.
    [105] Birkin P R, Silva-Martines S. Determination of heterogeneous electron transfer kinetics in the presence of ultrasound at micro-electrode employing sampled voltammetry [J]. Anal Chem, 1997, 69(11): 2055—2062.
    [106] Mahito Atobe, Tsutomu Nonaka. Ultrosonic effects on electroorganic processes (Part 3). Electroreduction of benzaldehydes on ultrasound-vibrating electrodes [J]. Chemistry Letters, 1995: 669—670.
    [107] Andreas Lindermeir, Christian Horst, Ulrich Hoffmann. Ultrasound assisted electrochemical oxidation of substituted toluenes [J]. Ultrasonics Sonochemistry, 2003, 10(4): 223—229.
    [108] 顾登平,高峻峰,张宏坤等.间接电氧化法施加超声研制2,6—二氯苯甲醛[J]. 河北化工,1996,4:24.
    [109] 阚显文,王聪,陶海升等.Mn(Ⅱ)在铅电极上的超声电氧化[J].应用化学,2003,20(2):186—188.
    [110] 阚显文,陶海升,高迎春等.超声电解氧化Mn(Ⅱ)电流效率的研究[J].安徽师范大学学报(自然科学版),2004,27(1):52—53.
    [111] 孙治荣,胡翔,周定.以Mn(Ⅲ)/Mn(Ⅱ)为氧化还原电对间接电合成苯甲醛的机理研究[J].高技术通讯,2001,11(2):98—102.
    [112] 张惠.超声波对传质过程强化的研究[学位论文].杭州:浙江工业大学,2002.
    [113] 张振英,沈玮,王光信.电合成对氟苯甲醛产品分析方法的比较[J].山东化工,2000,29(1):42-44.
    [114] 刘俊峰,易平贵,金一粟.亚硫酸氢钠法测定间羟基苯甲醛[J].精细石油化工,1996,(6):70-72.
    [115] 巫淼鑫,张宝玲.过氧化氢氧化酸碱滴定法测定苯甲醛的含量[J].分析化学,1995,23(5):536-538.
    [116] 刘俊峰,易平贵,李晓湘.电位滴定法测定间羟基苯甲醛[J].分析化学,1996,24(9):1111.
    [117] 刘俊峰.间甲酚直接氧化合成间羟基苯甲醛产品的检出与测定[J].理化检验—化学分册,2001,37(4),168-169.
    [118] 阚显文,李茂国,陶海升.电位滴定法同时测定电合成产物苯甲醛和苯甲酸[J].应用化学,2003,20(7):699—701.
    [119] 姜克威,许淑芳,徐灵.精确测定微量2,4一二磺酸苯甲醛[J].沈阳化工,1995,(1):42—44.
    [120] 靳广洲,丁福臣,刘壮.电位滴定法测定乙醇—对甲酚混合介质中对羟基苯甲醛的含量[J].北京石油化工学院学报,1996,4(1):25—29.
    [121] 王雷,陈拯民.示波极谱法测定乙酰苯甲醇发酵液中苯甲醛的含量[J].药物分析杂志,1995,15(5):23—25.
    [122] 韦进宝,唐智勇,张琳.苯甲醛极谱吸附波及其应用[J].分析化学,1996, 24(6):696—698.
    [123] 宋俊峰,薛静,过玮.极谱催化波法测定苯甲醛[J].分析化学,2001,29(1):38—41.
    [124] Amir G. Kazemifard ,Douglas E. Moore, A. Mohammadi. Polarographic determination of benzaldehyde in benzyl alcohol and sokium diclofenac injection for mulations [J]. Jounal of pharmaceutical and biomedical Analysis, 2002, 30: 257—262.
    [125] Salem FB, Walash MI. Spectrophotometric determination of certain sympothomimetric amines [J]. Analyst, 1985, 110(9): 1125—1129.
    [126] 邬国英,金淑萍,邢建良.分光光度法测定邻对位羟基苯甲醛含量[J].化学工程师,1990,(5):16.
    [127] 王钊,林琳,邹邦银.无花果不同部位中的营养成分分析[J].食品科学,2002,23(9):135—137.
    [128] 夏四清,孙剑辉,潘忠孝.目标因子分析—光度法测定芳香化合物混合体系[J].计算机与应用化学,1995,12(4):314—318.
    [129] 赵常志,潭忠印.互参比二阶导数分光光度法同时测定邻、对位羟基苯甲醛[J].分析实验室,1993,12(2):47—49.
    [130] 刘杰,卫放芳.紫外分光法测定无花果中苯甲醛[J].无锡轻工大学学报,1998,17(2):71—73.
    [131] 乔元彪,杜江平,闫卫等.比值导数光谱与多波长最小二乘回归分光光度法同时测定苯甲酸、苯甲醛和苯甲醇[J].分析测试技术与仪器,1999,5(4):237—239.
    [132] 施剑华,王胜利,朱文明.气相色谱法测定3—溴—4—羟基苯甲醛研究[J].浙江工业大学学报,2000,28(1):58—61.
    [133] 张前前,牛淑妍,王光信.气相色谱分析电合成法制备对氟苯甲醛[J].理化检验—化学分册,2000,36(12):559—560.
    [134] 中华人民共和国国家技术监督局.GB-9722-88,气相色谱法通则[M].中国标准 出版社,1988.
    [135] Naughton A B J, Jespersen N D. Determination of mitroaromatecs as mutagenic components of used motor oils [J]. Anal Acta. 1991, 251(1/2):95—99.
    [136] 王建中.间苯氧基苯甲醛的气相色谱测定[J].中国医药工业杂志,2000,31(2):72—73.
    [137] 樊绍文,仇德乐.气相色谱法分析N—烷基取代氨基苯甲醛类化合物[J].染料工业,2000,37(4):21—23.
    [138] 沈纬,刘建稳,王光信.电合成对溴苯甲醛的气相色谱分析[J].精细化工,2001,18(3):181—182.
    [139] 陈银南.对甲氧基苯甲醛的气相色谱分析[J].安徽化工,1998,(3):38—40.
    [140] 刘敬兰,周鸿娟.气相色谱法测定甲苯氧化产物中的苯甲醛及苯甲酸[J].色谱,1996,14(1):79.
    [141] 童钢生、杨运泉,段正康.毛细管气相色谱法定量分析问氯苯甲醛[J].精细化工中间体,2001,31(6):43—44.
    [142] 梁力,王甲亮.邻氯苯甲醛硝化产物的气相色谱分析[J].化学世界,1998,(8):430—431.
    [143] 杨艳君,候晓萍,吴虹宇等.内标法气相色谱定量分析对羟基苯甲醛[J].沈阳化工学院学报,1999,13(2):155—157.
    [144] 荣星.2,6—二氯苯甲醛的气相色谱分析[J].丹东纺专学报,2001,8(2):5—6
    [146] Amir G. Kazemifard, Douglas E.Moore, A.Mohammadi et al. Capillary gas chromatography determination of benzaldehyde arising from benzyl alcohol used as preservative in injectable formulations [J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 31: 686—691.
    [146] Scott R P W. Liquid chromatography detectors.2nd ed [M]. New York: Elsevier Science public, Shers BV, 1986.
    [147] Antonello Viola, Giacomo Cao. Rapid direct analysis of p-xylene oxidation products by reversed phase high performance liquid chromatography [J]. Journal of Chromatographic Science, 1996, 34(1):17~33.
    [148] Archer A W. Analysis of Vanilla Essences by High-performance Liquid Chromatography [J]. J. Chromatogar, 1989, 462: 461.
    [149] Kahan S. Liquid-chromatographic Method for Determination of Vanillin and Related Flavor Compounds in Vanilla Extract: Collaborative Study [J]. J. Assoc. of Anal. Chem., 1989, 72(4):614.
    [150] Carnero Ruiz C, Heredia Bagona A, Garcia Sanchez F. Derivative Spectrophoto-metric Determination of Vanillin And p-Hydrobenzaldehyde in Vanilla Bean Extracts [J]. J. Agric.Food Chem., 1990, 38(1):178.
    [151] 尤进茂,孙学军,朱庆存.对硝基苯甲酸产品中微量杂质的高效液相色谱分析[J].分析化学,1996,24(5):599~602.
    [152] 孙雅茹.反相液相色谱法测定PTA中的4—CBA和PT酸含量[J].石油化工,2003,32(9):805~807.
    [153] 贾建,郝文明,张峥.高效液相色谱法分析3,5—二溴—4—羟基苯甲醛[J].山东化工,2004,33(4):33~34.
    [154] 许红兵,刘炜,畅延青.高效液相色谱法测定精对二甲苯酸中微量杂质[J].分析测试技术与仪器,2003,9(1):10—13.
    [155] 平德来.高效液相色谱法测定对苯二甲酸中的4—羧基苯甲醛和对甲基苯甲酸[J].石油化工,1995,24(7):493—497.
    [156] 杜曦,施颖,刘晓华等.对二甲苯氧化产物的高效液相色谱分析[J].化学研究与应用,2004,16(1):107—108.
    [157] 黄越,卢忠魁,常海华.反相高效液相色谱法同时测定香兰素及咖啡因[J].中国卫生工程学报,2003,1(3):174—175.
    [158] 王建华.高效液相色谱法检测食品中香兰素的方法研究[J].中国卫生检验杂志,2001,11(2):164.
    [159] 冯钰安,庄海青,周辉.高效液相色谱法分析精对二苯甲酸中的微量杂质[J]. 色谱,1996,14(3):199—201.
    [160] 魏东炜,范冬平,耿安利等.对甲基苯酚氧化反应液的高效液相色谱分析[J].天津大学学报,1995,28(5):706—708.
    [161] 魏东炜,孙爱侠,井欣等.对羟基苯甲醛的溴化及甲氧基取代反应液的高效液相色谱分析法[J].色谱,1994,12(5):371—372.
    [162] Motamed B., Bohm J.-L., Hennepuin D. et al. Development of an HPLC method for the determination of phenolic by-products:optimization of the separation by means of the experimental designs methodology [J]. Chemometrics, 2000, 592—599.
    [163] 马志芳,黄兰萍,薛月霞.利用毛细管电泳仪同时测定对羧基苯甲醛和对甲氧基苯甲酸[J].合成技术及应用,1998,14(2):54—55.
    [164] 王继池.毛细管电泳法测定对苯二甲酸中的4-CBA和p-TOL[J].石油技术与应用,2001,19(4):264—265.
    [165] 王玺,冯钰安.高效毛细管电泳法测定工业用精对苯二甲酸中的主要杂质[J].化学世界,2001,(6):296—298.
    [166] 张满.质量色谱法在粗对苯二甲酸精制反应产物分析中的应用[J].聚酯工业,1995,(4):20—22
    [167] McFadden W. H.. Techniques of Combined Gas Chromatography/Mass Spectrometry [M]. John. Wiley and Sons, New York, NY, 1973.
    [168] 刘建宁,张兵,尚虹等.苯甲醛与苯肼的衍生化反应及其应用于苯甲醛的荧光光度测定[J].中国卫生检验杂志,2002,13(1):50—51.
    [169] 郑洪,朱广华.邻苯二甲醛的荧光光度法测定[J].光谱实验室,2003,20(4):533—536.
    [170] 姚公安,刘谦光,耿征.流动注射—化学发光法测定苯甲醛[J].分析化学,1996,24 (12):1441~1443
    [171] Zhang Wei, Danielson N. D.. Dtermination of phenols by flow injection and liquid chromatography with on-line quinine-sensitized photo-oxidation and quenched luminal chemiluminescence detection [J]. Analytical Chemica Acta,2003, 493:167 —177.
    [172] Gary P.Kushto, Paul W. Jagodzinski. Vibrational spectra and normal coordinate analysis of 4-(dimethylamino)benzaldehyde and selected isotopic derivatives [J]. Spectrochimica Acta Part A, 1998, 54: 799—819.
    [173] Anjaneyulu A., G.Ramana Rao. Vibrational analysis of substituted benzaldehydes. Part Ⅰ. Vibrational spectra, normal co-ordinate analysis and transferability of force constants of monohalogenated benzaldehydes [J]. Spectrochimica Acta Part A, 1999, 55: 749—760.
    [174] Md.Qayyum, B.Venkatram Reddy, G.Ramana Rao. Vibrational of mononitro substituted benzamides, benzaldehydes and toluenes. Part Ⅰ. Vibrational spectra, normal coordinate analysis and transferability of force constants of nitrobenzamides, nitrobenzaldehydes and nitrotoluene [J]. Spectrochimica Acta Part A, 2004, 60: 279—290.
    [175] Md.Qayyum, B.Venkatram Reddy, G..Ramana Rao. Vibrational analysis of mononitro substituted benzamides, benzaldehydes and toluenes Part Ⅱ. Transferability of valence force constants [J]. Spectrochimica Acta Part A, 2004, 60: 291—295.
    [176] 刘密新,罗国安,张新容等.仪器分析(第二版)[M].北京:清华大学出版社,2002,257.
    [1] 刘敬兰,周鸿娟.气相色谱法测定甲苯氧化产物中的苯甲醛及苯甲酸[J].色谱,1996,14(1):79.
    [2] 阚显文,李茂国,陶海升.电位滴定法同时测定电合成产物苯甲醛和苯甲酸[J].应用化学,2003,20(7):699~701.
    [1] 狄滨英,景丽洁.新编化验员手册[M].长春:吉林科学技术出版社,1994:250—326.
    [2] 胡万里,周定,秦天雄等.间接电氧化制苯甲醛的研究[J].哈尔滨工业大学学报,1994,26(1):59—62.
    [3] 王仲华,华庆明,陈贵才等.甲苯间接电氧化作用——铅电极上Mn(Ⅱ)的阳极氧化[J].电化学,1995,1(2):202—208.
    [4] 王萍辉.超声空化影响因素[J].河北理工学院学报,2003,25(4):154—161.
    [5] 雒廷亮,李玉,许庆利等.间接电氧化制苯甲醛最佳工艺条件的研究[J].郑州大学学报(工学版),2004,25(2):7—10.
    [6] 鲍善惠,陈玲.超声清洗的原理及最新进展[J].陕西师范大学继续教育学报(西安),2004,21(2):107—109.
    [7] 林仲茂,方启平.超声波清洗(Ⅲ)[J].化学清洗,1998,14(6):44—46.
    [8] 冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社,1992:78—79.
    [9] 周珊.超声降解造纸黑液的研究[学位论文].武汉:华中科技大学,2004.
    [10] 李淑芹,于秀娟,徐雅琴等.对甲基苯甲醛电合成少废工艺的研究[J].东北农业大学学报,2003,34(3):254—257.
    [11] 王光信,周志强,刘道军等.邻甲基苯甲醛的电合成[J].精细化工,1995,12(5):48-50.
    [12] 张国衡,刘淑兰,齐欣.Mn(Ⅲ)/Mn(Ⅱ)体系电极过程的研究[J].天津大学学报,1989,(4):65-72.
    [13] 天津大学有机化学教研室,华东石油学院有机化学教研室.有机化学[M].北京人民教育出版社,1978:205—217.
    [14] 巴比科夫,(著),查济璇,范国良(译).超声波在化工过程中的应用[M].大连:大连工业学院出版社,1962:7—8.
    [15] 胡万里,范延臻,周定.对甲基苯甲醛的间接电合成研究[J].化学反应工程与 工艺,1998,14(1):101-105.
    [16] Suslick K S. Sonochemistry [J]. Science, 1990, 247: 1439—1445.
    [1] Ramaswamy R., Venkatachalapthy M.S., Udupa H.V.K.. Electrolytically regenerated ceric sulfate for the oxidation of organic compounds I.Oxidation of P-Xylene to P-toluealdehyde [J]. Bull.Chem Soc. Jpn., 1962, 35: 1751—1753.
    [2] Wendt H., Schncider H.. Reaction kinetics and reaction techiniques for mediated oxidation of methyarenes to aromatic ketones [J]. J.Appl. Electrochem., 1986, 16: 134—136.
    [3] Kreysa G., Medin H.. Indirect electrosynthesis of P-methoxybenzaldehyde [J]. J.Appl. Electrochem., 1986, 16: 757—767.
    [4] Dalrymple I.M., Millington J. P.. An indirect electrochemical process for theproduction of Naphthaquinone[J]. J.Appl.Electrochem., 1986, 16: 885—893.
    [5] 曾跃,姚素薇.邻硝基苯甲醛的成对电合成[J].化学工业与工程,1994,4:21—23.
    [6] Scott K.. Membrane Reacters for electrochemical synthesis processes [J]. J.Memb. Sci.,1994, 90: 161—172.
    [7] Derek Pletcher, Frank C.Walsh. Industrial Electrochemistry [J]. Chapman and Hall. 1990, 67—65.
    [8] 张松林,李毅,李志鸿等.苄醇的选择性间接电氧化[J].合成化学,1995,3(2):180—182.
    [9] 罗世忠,冯柏成,王光信.芳醛电合成研究[J].精细化工,1996,13(增):41—45.
    [10] Jiang Jun-Hua, Wu Bing-liang, Cha Chuan-sin. Eelectrosynthesis of p-methoxyben-zaldehyde on graphite/Nation membrance composite electrodes [J]. Electrochimica Acta, 1998, 43(16-17): 2549—2552.
    [11] Jow J J, Chou J C. Catalytic effects of the silver iron on the indirect electrochemical oxidation of toluene to benzaidehyde using Ce(Ⅲ)/Ce(Ⅳ) as mediator [J].J. Appl. Eelectrochem., 1988, 18: 298—303.
    [12] 张宏坤,李丙焕,顾登平等.间接电氧化法合成大茴香醛的新进展[C].第八全国有机电化学与工业学术会议论文文集,2002,9:102—104.
    [13] 狄滨英,景丽洁.新编化验员手册[M].长春:吉林科学技术出版社,1994:250—326.
    [14] 罗世忠,牛淑妍,冷小飞等.硫酸铈氧化对二甲苯制对甲基苯甲醛[J].精细化工,1997,14(6):57—59.
    [15] 胡瑞省,刘欣,张宏琨等.间接电合成对甲氧基苯甲醛的研究[J].河北师范大学学报(自然科学版),2003,27(6),602—605.
    [16] 魏琦峰,张启修,硫酸介质中铅合金阳极电氧化铈(Ⅲ)的研究[J].稀土,2003,24(2):19—23.
    [17] 津斯特格林.超声波在化工过程中的应用[M].北京:中国工业出版社,1963.
    [18] 柳厚田,王群洲,周伟芳等.硫酸溶液中铅阳极膜研究的几个问题(三)[J].电化学,1997,3(1):1—5.
    [19] Michel Martin,Alain Rollat. Electrolytic separation of cerium/rare earth values[P].USA.4676957,1987—05.
    [20] Derek Pletcher, Erika M. Vades. Studies of the Ce(Ⅲ)/Ce(Ⅳ)couple in multiphase system containing a phase transfer reagent-Ⅱ. Indirect oxidations and the electrolytic preparation of ceric nitrate[J]. Electrochimical Acta, 1988, 33(4): 509—513.
    [21] 张绍琦,邓定机.铈(Ⅲ)的电解氧化和0.3MHDEHP-0.2MEBP煤油萃取分离铈和钷[J].核化学与放射化学,1982,4(4):243—248.
    [22] 杨桂林,罗永,周敬民等.电解氧化—P_(507)(煤油)萃取法制备高纯氧化铈的研究[J].稀土,1995,16(5):55—58.
    [23] 刘建刚,宋洪芳,王文联.硫酸介质中铈的电解氧化研究[J].稀土,1993,14(4):24—30.
    [24] 金家骏.液相化学反应动力学原理[M].上海:上海科学技术出版社,1984,169-343.
    [25] 金世雄,马克勤,周文峰.Mn~(3+)离子阳极形成动力学机理[J].南开大学学报(自然科学版),1991,3:41—46.
    [26] 金世雄,温青.硫酸溶液中Ce(Ⅲ)离子在铂电极上阳极氧化过程动力学[J].物理化学学报,1995,11(8):688—692.
    [27] 金世雄,孙丰.Co(Ⅲ)离子在二氧化铅电极上的阳极形成[J].物理化学学报,1993,9(4):538—540.
    [28] 金世雄,孙丰.Co(Ⅱ)离子在铂电极上阳极氧化为Co(Ⅱ)离子的动力学与机埋[J].南开大学学报(自然科学版),1993,2:11.
    [29] 金世雄,温青.硫酸介质中Ce~(3+)离子在PbO_2电极上阳极氧化过程动力学[J].高 等学校化学学报,1995,16(7):1109-1113.
    [30] Randle T H, Kuhn A T. Kinetics and mechanism of the cerium (Ⅳ)/cerium (Ⅲ) redox reaction on a platinum electrode [J]. J.Chem.Soc.Faraday Trans.1, 1983, 79: 1741—1756.
    [31] 鄂利海,栾耕时,赵崇军等.功率超声对电化学反应和电极表面的影响研究[J].石油化工高等学校学报,2001,14(2):54—58.
    [1] 金维高.医药中间体生产实用技术手册[M].北京:化学工业出版社,2002.
    [2] 张宏坤,张雪英,顾登平.成对电解同时合成丁二酸和乙醛酸[J].精细化工,1997,14(5):56-57.
    [3] 陈松茂.有机化工产品电解合成[M].上海:上海科学技术文献出版社,1994,52.
    [4] 顾家山,楮道葆,周幸福等.纳米TiO_2膜修饰电极异相电催化还原马来酸[J].化学学报,2003,61(9):1405-1409
    [5] Trujillo-Ferrara J, Ivan Vazquez, Judith Espinosa et al. Reversible and irreversible inhibitory of succinic acid and maleic acid derivatives on acetylcholinesterase[J]. European Journal of Pharmaceutical Sciences, 2003, 18(5): 313—322.
    [6] 凌关庭,王亦芸,唐述潮.食品添加剂于册(上册)[M].北京:化学工业出版社,1989,282.
    [7] Natinoal Institute of Advanced Industrial Science and Technology (AIST, Japen), Spectral Database for Organic Compounds (SDBS) SDBS No. 3001.
    [8] 凌关庭,王亦芸,唐述潮.食品添加剂手册(下册)[M].北京:化学工业出版社,1989,362.
    [1] 赵崇涛,朱则善,曾春柏等.用硫酸锰电生媒质微粒MnO_2氧化甲苯[J].福建师范大学学报(自然科学版),1995,11(3):60~65.
    [2] 舒东,夏熙.改性电解锰制备及可充性研究[J].电池,1993,23:51.
    [3] 刘务华,徐保伯,周琼花等.活性二氧化锰的发展与应用[J].电池,1996,24(6):169-171.
    [4] 谢亚勃,马子川,郑世钧.化学二氧化锰合成方法进展[J].河北师范大学学报 (自然科学版),2001,25(1):96—98.
    [5] 吴江丽,钟宏,符剑刚.化学MnO_2的合成研究进展[J].中国锰业,2004,22(4):10—13.
    [6] 黄坤,刘煦.纳米级电池活性材料的研究进展[J].电池工业,2001,6(3):133—136.
    [7] 马淳安,楼颖伟,赵峰鸣等.纳米MnO_2的制备及电化学性能研究[J].中国有色金属学报,2004,14(10):1736~1740.
    [8] 卢小琳,国伟林,王西奎.超声化学法制备无机纳米材料的研究进展[J].中国粉体技术,2004(1):44~48.
    [9] 孟民权,巩淑清,桑兆昌等.微粒二氧化锰的研制[J].河北化工,1995,(3):1~4.
    [10] 于世林,李寅蔚,夏心泉编.波谱分析法(第二版)[M].湖北:重庆大学出版社,1999,240.
    [11] Abbs H, Nasser S A. Hydroxyl as a defect of the manganese dioxide lattice and its applications to the dry cell battery [J]. J. Power Sources, 1996, 58: 15~21.
    [12] Jeong Y.U.and Manthiram A.. Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes [J]. J. Electrochem. Soc., 2002, 149: A1419.
    [13] 夏熙,刘玲.纳米电极材料制备及其电化学性能研究[J].电池,1998,28(4):147—151.
    [14] Bach. S, Henry. M, Baffier. N et al. Sol-gel synthesis of manganese oxide [J]. J. Solid State Chem., 1990, 88(2): 325-331P.
    [15] 阚显文,陶海升,高迎春等.超声电解氧化Mn(Ⅱ)电流效率的研究[J].安徽师范大学学报(自然科学版),2004,27(7):52~54.
    [1] 施介华,徐秀珠.反相高效液相色谱法分离和测定富马酸[J].分析化学,2000,28(4):470-472.
    [2] 李金昶,赫奕,孙颜等.用反相高效液相色谱法分离和测定丁烯二酸的顺反异构体[J].分析测试学报,2000,19(2):72-74.
    [3] 李金昶,王元鸿,崔秀君等.高效液相色谱法分离和测定酒石酸和马来酸[J].分子科学学报,2000,16(2):125-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700