嵌段、星形及超支化聚合物的合成与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
嵌段共聚物具有特殊的物理化学特性,作为热塑性弹性体、表面活性剂、表面修饰剂、分散剂和聚合物共混的增溶剂等有着广泛的应用前景,已受到了学术界和工业界的广泛关注。活性自由基聚合技术的发展,为嵌段聚合物的合成提供了更多的手段,很多新型的结构规整、分子量和分子量分布可控的嵌段聚合物不断被人们合成出来。
     嵌段共聚物在选择性溶剂中自组装可以形成高分子胶束。聚合物胶束在药物缓释、分离、催化和纳米材料方面具有潜在的应用前景,引起人们的浓厚兴趣。通过物理包埋、静电作用或化学键联等方法,将不溶性药物与聚合物胶束相结合,可以增加药物的溶解性,延长药物的体内循环时间,控制药物定时定点释放,在医药学领域得到了广泛的应用。在化学键联法中,要求用于连接载药胶束与药物的化学键具有环境响应特性,目前可以选择的这类化学键还十分有限,这一领域还有待更多的研究。
     聚合物胶束的聚集形态与其应用密切相关,目前除常见的球形胶束外,已经可以得到棒状、层状、碗形、管状、囊泡及其他多种具有复杂的复合结构的胶束。通过改变嵌段聚合物的自组装条件,控制形成的聚合物胶束的形态已有很多报道,但目前的研究工作大多集中在亲溶剂段较短的嵌段聚合物自组装形成的平头胶束上,研究星形胶束的形态多样性的报道还很少。
     近年来在常规制备聚合物胶束的方法的基础上,出现了许多利用聚合物的特殊性质或聚合物分子间的特殊相互作用,实现高分子胶束化的新方法。两种含有相同嵌段长度并带有相反电荷的聚电解质链段的两亲性聚合物,通过静电相互作用,共同自组装形成复合胶束据我们所知还没有报道过。
     星形聚合物是一类具有简单支化结构和特殊性能的聚合物,无论采用先臂后核还是先核后臂的路径合成星形聚合物,核或臂都要通过一个单独的步骤预先合成,或者需要分多步投入反应原料,这给工业规模的制备带来不便。一步法合成星形聚合物使核的形成与臂的生长能通过“一锅”反应来实现,不需要中间产物的分离与纯化,也不需要分两步加入反应原料,可以使星形聚合物的合成更为简单、有效。
     静电纺丝技术是目前大规模制备纳米纤维最合适的方法,近几年来已经用于几十种不同的聚合物,并且通过溶胶-凝胶法配制溶液,适用范围已经扩大到无机物领域。但目前人们研究所用的聚合物还仅限于均聚物、共混聚合物和嵌段聚合物等,因而对具有特殊性能的超支化聚合物的静电纺丝的研究是一项很有意义的工作。
     据此,本文的主要工作和取得的研究成果摘要如下:
     1)以单端带有C-Br键的聚环氧乙烷(PEO-Br)作为大分子引发剂,引发丙烯酸缩酮甘油酯(SA)的ATRP,合成了PEO-b-PSA的嵌段聚合物,研究了这一聚合反应的活性特征,进一步通过脱去缩酮保护基将聚丙烯酸缩酮甘油酯嵌段(PSA)转化为聚丙烯酸甘油酯嵌段(PGA)。以具有荧光特性的1-醛基芘(Pyrene-CHO)做为药物模型,通过与PGA上邻-二羟基的缩合反应连到嵌段聚合物PEO-b-PGA的PGA上,所得的聚合物在选择性溶剂中自组装,形成以疏水的PGA-Py为核,亲水的PEO为壳的聚合物胶束。用荧光跟踪研究了芘在不同pH值(1.0,5.0和7.4)缓冲溶液中,从聚合物胶束中的释放动力学。研究结果表明,双亲水性嵌段聚合物PEO-b-PGA,可与含有羰基的药物,通过缩酮键连接并自组装形成酸敏感性载药胶束,在药物缓释领域具有潜在的应用前景。
     2)用PEO-Br作为大分子引发剂,以ATRP法合成了环氧乙烷和甲基丙烯酸对硝基苯酚酯的嵌段共聚物(PEO-b-PNPMA),研究了聚合物PEO_(113)-b-PNPMA_(28)在选择不同的共溶剂(四氢呋喃、二甲亚砜和硝基甲烷)和选择性溶剂(甲醇、乙醇和水)时的稀溶液自组装行为,通过TEM观察到具有球形、棒状、囊泡、花椰菜形、双连续棒状等不同形态的星形聚集体。测试了所用的不同溶剂的临界选择性溶剂含量和PNPMA富集相溶剂含量,具有乙醇>甲醇>水,四氢呋喃>硝基甲烷>二甲亚砜的相对大小顺序。以此为基础讨论了这些不同形态的聚集体可能的形成机理。研究结果表明,采用改变共溶剂或选择性溶剂的方法,可以很方便地使成壳链段相对较长的两亲性嵌段聚合物形成的星形胶束,如平头胶束一样呈现多样的形态。
     3)以对二溴苄(DBX)引发苯乙烯和甲基丙烯酸对硝基苯酚酯(NPMA)相继进行ATRP,合成了三嵌段聚合物PNPMA-b-PS-b-PNPMA。利用PNPMA嵌段易于水解和被氨基取代的特点,以相同PNPMA链长的三嵌段共聚物分别进行水解反应及与2-氨基吡啶的取代反应,制备了具有相反电荷的阴离子型PMAA-b-PS-b-PMAA和阳离子型PNPMAAm-b-PS-b-PNPMAAm两种三嵌段共聚物。将这两种三嵌段共聚物以等摩尔比混合,在水中自组装形成了碗形的聚集体结构,讨论了这种结构可能的形成机理。这些由聚电解质复合物自组装形成的聚集体,在微反应器和药物释放等领域具有潜在的应用前景。
     4)合成了双乙烯基的2,7-二亚甲基-1,4,6-三氧杂螺环烷,作为给电子单体和交联剂,与吸电子单体马来酸酐(MAh)或过量的丙烯酸甲酯(MA)形成电荷转移络合物(CTC)共同聚合,尝试了用ATRP和RAFT方法一步法合成星形聚合物。在ATRP共聚合中,由于螺环交联剂与MA不能有效组成CTC,因而不能优先聚合而成核,它们的共聚合反应主要产生均聚物。在RFAT共聚合中,在S-1-十二烷基-S'-(α,α'-甲基-α”-乙酸)三硫代碳酸酯链转移剂存在下,摩尔比2:1的MAh和螺环交联剂,与过量MA进行共聚合成了星形聚合物。对聚合反应初期反应混合物的核磁共振氢谱跟踪结果证实了我们假定的聚合机理,即MAh与螺环交联剂形成CTC,并优先聚合形成了交联的带有多个转移基团的核,继而引发MA单体均聚形成了星形聚合物。可以预见,这种方法还可以方便地扩展到其他单体的聚合上,因而我们找到了一条比较简单的一步法合成星形聚合物的路线。
     5)通过三元胺单体2-氨基乙基哌嗪(AEPZ)和等摩尔的二乙烯基单体胱胺双丙烯酰胺(CBA)进行迈克尔加成反应,获得了主链上含有三级胺、端基为一级胺的超支化聚(酰胺-胺)。对超支化聚(酰胺-胺)的甲醇溶液进行静电纺丝可制备聚合物纤维,研究了聚合物溶液浓度、外加电压和接收距离对电纺纤维的形态的影响。在荧光显微镜下观察,这种聚合物纤维可在不同波长的激发光作用下发出蓝色、绿色和红色的荧光。这种可以光致发光的聚合物纤维在显示领域有着潜在的应用前景。
Recently, block copolymers have attracted considerable attention because of their unique behaviors and potential applications, such as thermoplastics, surfactants, modifiers, dispersants, and tackifier etc. With the development of living radical polymerizations, such as SFRP, ATRP, RAFT and Iniferter, a large number of novel well-defined block copolymers with controlled molecular weights and narrow molecular weight distributions were prepared.
     Polymer micelles, formed by self-assembly of block copolymers in selective solvent, have been extensively investigated for their potential applications in drug delivery, separation, catalysis and nanomaterials fields. For example, Hydrophobic drugs loaded by polymer micelles with physically entrapment or chemically conjugation are improved their water solubility and bioavailability. The drug-loaded micelles prolong their circulation in body and release selectively their payload in tumor tissue or within cells. However, the "smart" stimuli-responsive linkages, which are used to link drug and micelle in chemically conjugation method, are still limited.
     The applications of polymer micelles are related to their morphologies. Beside frequently observed spherical core-shell micelles, Many other morphologies have been obtained, such as rod, worm-like, vesicle, lamellae and other complicated aggregates. These morphologies were usually prepared from crew-cut micelles by controlling the preparation conditions until now. There are few reports on the multiple morphologies of star micelles.
     Polyion complex micelle, a novel micelle with its unique behaviors, is formed by a pair of opposite charged polymers in aqueous solution. The charged polymers used are usually homo-polyelectrolytes and double hydrophilic block copolymers consist of a polyelectrolyte block and a nonionic hydrophilic block such as PEO. The self-assemly of the mixture, which is composed of a pair of amphiphilic block copolymers with opposite charge and equal length, has not been researched.
     Star polymer is a class of simplest branched polymer, which is usually prepared by "arm-first" and "core first" approach. No matter which approach is used in the literature, two steps are needed to get a star polymer. Either the core or the arms should be synthesized in a separate step; at least chemicals were added step by step. Therefore, a simple way of synthesis is highly appreciated.
     Electrospinning is a very suitable method to obtained nanofibers. Many kinds of polymers, such as homopolymers, block copolymers and polymer blends, had been used to prepare nanofibers by electrospinning. In addition, inorganic nanofibers were fabricated by this method in recent years. The research of electrospinning of functional hyperbranched polymer is still an outgoing challenge.
     All these facts are the origin and impetus of this thesis. The main results obtained in this thesis are as follows:
     1) A new type of double hydrophilic block copolymer, poly(ethylene oxide) (PEO)-block-poly(glycerol monoacrylate) (PGA) have been synthesized via atom transfer radical polymerization of solketal acrylate (SA) using PEO-Br as macro-initiator, and subsequent hydrolysis of the acetal-protecting group. A hydrophobic fluorescent compound, 1-pyrenecarboxaldehyde, was used as a model drug, which was covalently bound to the PEO-b-PGA block copolymer via a pH-sensitive acetal linkage. The kinetics of the pyrene release was studied in THF/aqueous buffers at pH 1.0, pH 5.0 (close to pH in endosomes) and 7.4 (pH of blood plasma) by fluorescent spectroscopy. The results demonstrate that the double hydrophilic block copolymer PEO-b-PGA is a promising candidate for potential application as pH-sensitive carrier for carbonyl-containing hydrophobic drugs.
     2) Novel amphiphilic block copolymers, poly(ethylene oxide)-b-poly(p-nitrophenyl methacrylate) (PEO-b-PNPMA) with controlled molecular weights and narrow molecular weight distributions were successively synthesized by ATRP of NPMA, using PEO-Br as macro-initiator. Self-assembling of the diblock copolymer PEO_(113)-b-PNPMA28 in the different solvent mixtures yielded various morphologies of star micelle-like aggregates, such as spheres, vesicles, cauliflower-like aggregates and rod-like aggregates, which were determined by the nature of the common solvents and the selective solvents. Thus the critical selective solvent contents and the solvent contents in PNPMA-rich phase were measured, and they have the following orders, ethanol>methanol>water, and THF>CH_3NO_2>DMSO. Based on this, the probable self-assembling mechanism was discussed. This method is convenient for preparation of multiple morphological star micelle-like aggregates in solution, especially from amphiphilic block copolymers with long shell block.
     3) Triblock copolymers PNPMA-b-PS-b-PNPMA with 146 St units and 8, 20 and 36 NPMA units were prepared by ATRP of St using dibromoxylene as initiator, and following ATRP of NPMA. The anionic copolymer PMAA-b-PS-b-PMAA was synthesized by the hydrolysis of the PNPMA-b-PS-b-PNPMA, and the cationic copolymer PNPMAAm-b-PS-b-PNPMAAm was prepared by the amino substitution of the same PNPMA-b-PS-b-PNPMA. Equal mole of PMAA-b-PS-b-PMAA and PNPMAAm-b-PS-b-PNPMAAm both having the same chain lengths were mixed and dissolved in common solvent THF with 20% deionized water, and the solution was dialyzed against water to induce the copolymers self-assembly to form aggregates. Polydisperse spheres were observed containing an asymmetrically placed single void space, which has broken through the surface (so-called bowl-shaped aggregates).The possible mechanism was discussed. These bowl-shaped aggregates are promising candidates for nano reactor or drug carrier.
     4) 2,7-dimethylene-1,4,6-trioxaspiro[4, 4]nonane with two vinyls was prepared to be used as electron-donor and crosslinker. The ATRP of this crosslinker and excess methylacrylate (used as electron-accpetor) was proved to mainly form homopolymers. With the chain-transfer agent S-1-Dodecyl-S'-(α,α'-dimethyl-α"-acetic acid)trithiocarbonate, the copolymerization of the spiro hydrocarbon, maleic anhydride (Mah) and MA by RAFT method produced star PMA. The molecular weights of obtained polymers measured by GPC were much higher than that of the linear polymers with the same monomer conversion. Samples taken with different time intervals in the polymerization initial stage were analyzed by ~1H NMR spectroscopy. The results demonstrated the possible mechanism. Charge transfer complexes of spiro hydrocarbon and Mah were formed, and first consumed in the initial stage, which produce a core with many chain-transfer groups on its surface. Then MA monomers were polymerized onto the core to form star polymers. This method can be expanded to other monomers. It is a simply way to prepare star polymers by one-pot.
     5) Hyperbranched Poly(amidoamine) was obtained by the Michael addition polymerization of N,N'-cystaminebisacrylamide (CBA) and 1-(2-aminoethyl) piperazine (AEPZ). The electrospinning of hyperbranched Poly(amidoamine)s in methanol solution was performed. The effects of solution concentration, added voltage and accepting distance on the morphology of the obtained fibers were discussed. These polymer fibers could emit blue, green or red photoluminescence when excited by lights of different wavelength. The colorful photoluminescent fibers have potential applications in display field.
引文
1.Reiss G,Hurtrez G,Bahadur P.1985.Block copolymers in "Encyclopedia of Polymer Science and Engineering"[M]Korschwitz,J.I.Ed.;Wiley-Intersicienee:New York.
    2.He XH,Liang HJ,Pan CY.2001.Monte Carlo simulation of morphologies of self-assembled amphiphilic diblock copolymers in solution[J].Phys.Rev.E,63:31804.
    13.He XH,Huang L,Liang HJ et al.2002.Self-assembly of star block copolymers by dynamic density functional theory[J].J.Chem.Phys.,116:10508-10513.
    4.Stadler R,Auschra C,Beckmann J et al.1995.Morphology and Thermodynamics of Symmetric Poly(A-block-B-block-C)Triblock Copolymers[J].Macromolecules,28:3080-3097.
    15.Zheng W,Wang ZG.1995.Morphology of ABC Triblock Copolymers[J].Macromolecules,28:7215-7223.
    16.Wang JS,Matyjaszewski K.1995.Controlled/"living" radical polymerization,atom transfer radical polymerization in the presence of transition-metal complexes[J]. J. Am. Chem. Soc, 117,5614-5615.
    7. Kato M, Kamigaito M, Sawamoto M et al. 1995. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenyl-phosphine)ruthenium(II)/Methylaluminurn Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization[J]. Macromolecules, 28: 1721-1723.
    8. Xia JH, Matyjaszewski K. 1997. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization Using Multidentate Amine Ligands[J]. Macromolecules, 30: 7697-7700.
    9. Chiefari J, Chong YK, Ercole F et al. 1998. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process[J]. Macromolecules, 31:5559-5562.
    10. Le TP, Moad G, Rizzardo E et al. 1998. Polymerization with Living Characteristics. PCT Int. Appl. WO: 9801478[P].
    11. Chiefari J, Mayadunne RT, Moad G et al. 1999. Polymerization with Living Characteristics and Polymer Made therefrom. PCT Int. Appl. WO: 9931144[P].
    12. De Leon-Saenz E, Morales G, Guerrero-Santos R et al. 2000. New insights into the mechanism of 1,2-bis(trimethyl-silyloxy)-tetraphenylethane-induced free radical polymerization: application to the synthesis of block and graft copolymers[J]. Macromol. Chem. Phys., 201: 74-83.
    13. Yamada B, Nobukane Y, Miura Y. 1998. Radical polymerization of styrene mediated by l,3,5-triphenylverdazyl[J]. Polym. Bull., 41: 539-544.
    14. Steenbock M, Klapper M, Mullen K. 1998. Triazolinyl radicals - new additives for controlled radical polymerization[J]. Macromol. Chem. Phys., 199, 763-769.
    15. Puts RD, Sogah DY. 1996. Control of Living Free-Radical Polymerization by a New Chiral Nitroxide and Implications for the Polymerization Mechanism[J]. Macromolecules, 29, 3323-3325.
    16. Otsu T, Yoshida M, Kuriyama A. 1982. Living radical polymerizations in homogeneous solution by using organic sulfides as photoiniferters[J]. Polym. Bull., 7: 45-50.
    17. Otsu T, Yoshida M. 1982. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters[J]. Macromol. Rapid Commun., 3: 127-132.
    18. Curran DP. 1992. Comprehensive Organic Synthesis[M], Pergamon, New York.
    19. Patten TE, Xia JH, Abernathy T. et al. 1996. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization[J]. Science, 272: 866-868.
    20. Percec V, Barboiu B, Neumann A et al. 1996. Metal-Catalyzed "Living" Radical Polymerization of Styrene Initiated with Arenesulfonyl Chlorides. From Heterogeneous to Homogeneous Catalysis[J]. Macromolecules, 29: 3665-3668.
    21. Sawamoto M, Kamigaito M. 1997. [J]. Polym. Prep., 38: 740.
    22. Wang JS, Matyjaszewski K. 1995. "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator[J]. Macromolecules, 28:7572-7573.
    23. Moineau G, Dubois P, Jerome R et al. 1998. Alternative Atom Transfer Radical Polymerization for MMA Using FeCl_3 and AIBN in the Presence of Triphenylphosphine: An Easy Way to Well-Controlled PMMA[J]. Macromolecules, 31: 545-547.
    24. Xia JH, Matyjasewski K. 1997. Control led/" Living" Radical Polymerization. Homogeneous Reverse Atom Transfer Radical Polymerization Using AIBN as the Initiator[J]. Macromolecules, 30: 7692-7696.
    25. Haddleton DM, Kukulj D, Duncalf DJ et al. 1998. Low-Temperature Living "Radical" Polymerization (Atom Transfer Polymerization) of Methyl Methacrylate Mediated by Copper(I)N-Alkyl-2-Pyridylmethanimine Complexes[J]. Macromolecules, 31: 5201-5205,
    26. Wang XS, Lascelles SF, Jackson RA et al. 1999. Facile synthesis of well-defined water-soluble polymers via atom transfer radical polymerization in aqueous media at ambient temperature[J]. Chem. Commun., 18: 1817-1818.
    27. Munirasu S, Ruhe J, Dhamodharan R. 2006. Ambient Temperature ATRP of Benzyl Methacrylate as a Tool for the Synthesis of Block Copolymers with Styrene[J]. J. Polym. Sci. Part A: Polym. Chem., 44: 2848-2861
    28. Kotani Y, Kato M, Kamigaito M et al. 1996. Living Radical Polymerization of Alkyl Methacrylates with Ruthenium Complex and Synthesis of Their Block Copolymers[J]. Macromolecules, 29: 6979-6982.
    29. Liu B, Hu CP. 2001. The reverse atom transfer radical polymerization of methyl methacrylate in the presence of some polar solvents[J]. Eur. Polym. J., 37: 2025-2030.
    30. Xia JH, Johnson T, Gaynor SG et al. 1999. Atom Transfer Radical Polymerization in Supercritical Carbon Dioxide[J]. Macromolecules, 32: 4802-4805.
    31. Ohno K, Tsujii Y, Fukuda T. 1998. Synthesis of a well-defined glycopolymer by atom transfer radical polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 36: 2473-2481.
    32. Lu JM, Xu QF, Yuan X et al. 2007. Synthesis of AB-Type Block Copolymers Containing Benzoxazole and Anthracene Groups by ATRP and Fluorescent Property[J]. J. Polym. Sci. Part A: Polym. Chem., 45: 3894-3901
    33. Shipp DA, Wang JL, Matyjaszewski K. 1998. Synthesis of Acrylate and Methacrylate Block Copolymers Using Atom Transfer Radical Polymerization[J]. Macromolecules, 31: 8005-8008.
    34. Muhlebach A, Gaynor SG, Matyjaszewski K. 1998. Synthesis of Amphiphilic Block Copolymers by Atom Transfer Radical Polymerization (ATRP)[J]. Macromolecules, 31: 6046-6052.
    35. Ma QG, Wooley KL. 2000. The preparation of t-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials[J]. J. Polym. Sci., Part A: Polym. Chem., 38: 4805-4820.
    36. Pan CY, Tao L, Wu DC. 2001. Synthesis and characterizations of the four-armed amphiphilic block copolymer S[poly(2,3-dihydroxypropyl acryIate)-block-poly(methyl acrylate)]_4[J]. J. Polym. Sci., Part A: Polym. Chem., 39: 3062-3072.
    37. Liu Y, Wang LX, Pan CY. 1999. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization[J]. Macromolecules, 32: 8301-8305.
    38. Xia JH, Zhang X, Matyjaszewski K. 1999. Atom Transfer Radical Polymerization of 4-Vinylpyridine[.I]. Macromolecules, 32: 3531-3533.
    39. Beers KL, Boo S, Gaynor SG et al. 1999. Atom Transfer Radical Polymerization of 2-Hydroxyethyl Methacrylate[J]. Macromolecules, 32: 5772-5776.
    40. Wang XS, Luo N, Ying SK. 1999. Controlled radical polymerization of methacrylates at ambient temperature and the synthesis of block copolymers containing methacrylates[J]. Polymer, 40: 4157-4161.
    41. Chiefari J, Chong YK, Ercole F et al. 1998. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process[J]. Macromolecules, 31:5559-5562.
    42. Chong YK, Le TPT, Moad G et al. 1999. A More Versatile Route to Block Copolymers and Other Polymers of Complex Architecture by Living Radical Polymerization: The RAFT Process[J]. Macromolecules, 32: 2071 -2074.
    43. Mayadunne RTA, Rizzardo E, Chiefari J et al. 2000. Living Polymers by the Use of Trithiocarbonates as Reversible Addition-Fragmentation Chain Transfer (RAFT) Agents: ABA Triblock Copolymers by Radical Polymerization in Two Steps[J]. Macromolecules, 33: 243-245.
    44. Kanagasabapathy S, Sudalai A, Benicewicz BC. 2001. Reversible Addition-Fragmentation Chain-Transfer Polymerization for the Synthesis of Poly(4-acetoxystyrene) and Poly(4-acetoxystyrene)-block-polystyrene by Bulk, Solution and Emulsion Techniques[J]. Marcromol. Rapid. Commun., 22: 1076-1080.
    45. Mitsukami Y, Donovan MS, Lowe AB et al. 2001. Water-Soluble Polymers. 81. Direct Synthesis of Hydrophilic Styrenic-Based Homopolymers and Block Copolymers in Aqueous Solution via RAFT[J]. Macromolecules, 34: 2248-2256.
    46. Monteiro MJ, Sjoberg M, van der Vlist J et al. 2000. Synthesis of butyl acrylate-styrene block copolymers in emulsion by reversible addition-fragmentation chain transfer: Effect of surfactant migration upon film formation[J]. J. Polym. Sci. Part A: Polym. Chem., 38: 4206-4217.
    47. Monteiro MJ, de Barbeyrac J. 2001. Free-Radical Polymerization of Styrene in Emulsion Using a Reversible Addition-Fragmentation Chain Transfer Agent with a Low Transfer Constant: Effect on Rate, Particle Size, and Molecular Weight[J]. Macromolecules, 34: 4416-4423.
    48. Arotcarena M, Heise B, Ishaya S et al. 2002. Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity[J]. J. Am. Chem. Soc, 124: 3787-3793.
    49. You YZ, Zhou QH, Manickam DS et al. 2007. Dually Responsive Multiblock Copolymers via Reversible Addition-Fragmentation Chain Transfer Polymerization: Synthesis of Temperature- and Redox-Responsive Copolymers of Poly(N-isopropylacrylamide) and Poly(2-(dimethylamino)ethyl methacrylate)[J]. Macromolecules, 40: 8617-8624
    50. Gemici H, Legge TM, Whittaker M et al. 2007. Original Approach to Multiblock Copolymers via Reversible Addition-Fragmentation Chain Transfer Po1ymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 45: 2334-2340.
    51. Zhang QW, Ye J, Lu YJ et al. 2008. Synthesis, Folding, and Association of Long Multiblock (PEO_(23)-b-PNIPAM_(124))_(750) Chains in Aqueous Solutions[J]. Macromolecules, 41: 2228-2234
    52. Bussels R, Gottgens CB, Meuldijk J et al. 2004. Multiblock Copolymers Synthesized by Miniemulsion Polymerization Using Multifunctional RAFT Agents[J]. Macromolecules, 37: 9299-9301
    53. Bussels R, Gottgens CB, Meuldijk J et al. 2005. Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents[J]. Polymer, 46: 8546-8554
    54. Hong J, Wang Q, Fan ZQ. 2006. Synthesis of Multiblock Polymer Containing Narrow Polydispersity Blocks[J]. Macromol. Rapid Commun. 27: 57-62
    55. Lei P, Wang Q, Fan ZQ et al. 2006. Synthesis of Poly(n-butyl acrylate) Containing Multiblocks with a Narrow Molecular Weight Distribution Using Cyclic Trithiocarbonates[J]. J. Polym. Sci. Part A: Polym. Chem., 44: 6600-6606.
    56. Georges MK, Veregin RPN, Kazmaier PM et al. 1993. Narrow molecular weight resins by a free-radical polymerization process[J]. Macromolecules, 26: 2987-2988.
    57. Hawker CJ. 1994. Molecular Weight Control by a "Living" Free-Radical Polymerization Process[J]. J. Am. Chem. Soc, 116:11185-11186.
    58. Hawker CJ, Barclay GG, Orellana A et al. 1996. Initiating Systems for Nitroxide-Mediated "Living" Free Radical Polymerizations: Synthesis and Evaluation[J]. Macromolecules, 29: 5245-5254.
    59. Benoit D, Chaplinski V, Braslau R et al. 1999. Development of a Universal Alkoxyamine for "Living" Free Radical Polymerizations[J]. J. Am. Chem. Soc, 121: 3904-3920.
    60. Benoit D, Grimaldi S, Robin S et al. 2000. Kinetics and Mechanism of Controlled Free-Radical Polymerization of Styrene and n-Butyl Acrylate in the Presence of an Acyclic β-Phosphonylated Nitroxide[J]. J. Am. Chem. Soc, 122: 5929-5939.
    61. Farcet C, Lansalot M, Charleux. B et al. 2000. Mechanistic Aspects of Nitroxide-Mediated Controlled Radical Polymerization of Styrene in Miniemulsion, Using a Water-Soluble Radical Initiator[J]. Macromolecules, 33: 8559-8570.
    62. Benoit D, Harth E, Fox P et al. 2000. Accurate Structural Control and Block Formation in the Living Polymerization of 1,3-Dienes by Nitroxide-Mediated Procedures[J]. Macromolecules, 33: 363-370.
    63. Bohrisch J, Wendler U, Jaeger W. 1997. Controlled radical polymerization of 4-vinylpyridine[J]. Macromol. Rapid Commum., 18:975-982.
    64. Baumann M, Naake GS. 2000. Controlled radical copolymerization of styrene and 4-vinylpyridine[J]. Macromol. Chem. Phys., 201: 2751-2755.
    65. Zou YS, Lin J, Zhuang RC et al. 2000. Synthesis of Block Copolymer from Dissimilar Vinyl Monomer by Stable Free Radical Polymerization[J]. Macromolecules, 33:4745-4749.
    66. Baethge H, Butz S, Naake, GS. 1997. "Living" free radical copolymerization of styrene and N-vinylcarbazole[J]. Macromol. Rapid Commum., 18: 911-916.
    67. Desmazes PL, Delair T, Pichot C et al. 2000. Synthesis of poly(chloromethylstyrene-b-styrene) block copolymers by controlled free-radical polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 38: 3845-3854.
    68. Wendler U, Bohrisch J, Jaeger W. et al. 1998. Amphiphilic cationic block copolymers via controlled free radical polymerization[J]. Macromol. Rapid Commum., 19: 185-192.
    69. Keoshkerian B, Georges MK, Boilsboisser D. 1995. Living Free-Radical Aqueous Polymerization[J]. Macromolecules, 28: 6381-6382.
    70. Bouix M, Gouzi J, Charleux B et al. 1998. Synthesis of amphiphilic polyelectrolyte block copolymers using "living" radical polymerization. Application as stabilizers in emulsion polymerization[J]. Macromol. Rapid Commum., 19: 209-213.
    71. Appelt M, Naake GS. 2004. Stable Free-Radical Copolymerization of Styrene with Acrylates Using OH-TEMPO[J]. Macromol. Chem. Phys., 205: 637-644.
    72. Keoshkerian B, MacLeod PJ, Georges MK. 2001. Block Copolymer Synthesis by a Miniemulsion Stable Free Radical Polymerization Process[J]. Macromolecules, 34: 3594-3599.
    73. Marque S, Fischer H, Baier E. et al. 2001. Factors Influencing the C-O Bond Homolysis of Alkoxyamines: Effects of H-Bonding and Polar Substituents[J]. J. Org. Chem., 66: 1146-1156.
    74. Harth E, Van Horn B, Hawker CJ. 2001. Acceleration in nitroxide mediated 'living' free radical polymerizations[J]. Chem. Commum., 823-824.
    75. Higaki Y, Otsuka H, Takahara A. 2003. Synthesis of well-defined poly(styrene)-b-poly(p-tert-butoxystyrene) multiblock copolymer from poly(alkoxyamine) macroinitiator[J]. Polymer, 44: 7095-7101
    76. Higaki Y, Otsuka H, Takahara A. 2006. Facile synthesis of multiblock copolymers composed of poly(tetramethylene oxide) and polystyrene using living free-radical polymerization macroinitiator[J]. Polymer, 47: 3784-3791
    77. Otsu T, Yoshida M, Kuriyama A. 1982. Living radical polymerizations in homogeneous solution by using organic sulfides as photoiniferters[J]. Polym. Bull., 7: 45-50.
    78. Otsu T, Yoshida M. 1982. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: Polymer design by organic disulfides as iniferters[J]. Macromol. Rapid Commum., 3: 127-132.
    79. Otsu T, Kuriyama A. 1984. Living mono- and biradical polymerizations in homogeneous system synthesis of AB and ABA type block copolymers[J]. Polym. Bull., 11: 135-142.
    80. Ostu T, Kuriyama A. 1985. Polymer Design by Iniferter Technique in Radical Polymerization: Synthesis of AB and ABA Block Copolymers Containing Random and Alternating Copolymer Sequences[J]. Polym. J., 17:97-104.
    81. Sebenik A. 1998. Living free-radical block copolymerization using thio-iniferters[J]. Prog. Polym. Sci., 23: 875-917.
    82. You YZ, Bai RK, Pan CY. 2001. A Novel Approach to Triblock Copolymers: ~(60)Co γ-Irradiation-Induced Copolymerization in the Presence of a Trithiocarbonate Macroinitiator[J].Macromol.Chem.Phys.,202:1980-1985.
    83.Bai RK,You YZ,Zhong P et al.2001.Controlled Polymerization Under ~(60)Coγ-Irradiation in the Presence of Dithiobenzoic Acid[J].Macromol.Chem.Phys.202:1970-1973.
    84.He T,Zou YF,Pan CY.2002.Synthesis of comb-shaped poly(methyl methacrylate)-b-poly(polytetrahydrofuran acrylate)under ~(60)Coγ-ray irradiation[J].J.Polym.Sci.Part A:Polym.Chem.40:3367-3378.
    85.Kajiwara A,Matyjaszewski K.1998.Formation of Block Copolymers by Transformation of Cationic Ring-Opening Polymerization to Atom Transfer Radical Polymerization(ATRP)[J].Macromolecules,31:3489-3493
    86.Xu YJ,Pan CY.2000.Block and Star-Block Copolymers by Mechanism Transformation.3.S-(PTHF-PSt)_4 and S-(PTHF-PSt-PMMA)_4 from Living CROP to ATRP[J].Macromolecules 33:4750-4756.
    87.Liu B,Liu F,Luo N et al.2000.Synthesis of Block Copolymer by Integrated Living Anionic Polymerization-Atom Transfer Radical Polymerization(ATRP)[J].Chinese J.Polym.Sci.,18:39-43.
    88.Kobatake S,Harwood HJ,Quirketal RP et al.1997.Synthesis of Nitroxy-Functionalized Polybutadiene by Anionic Polymerization Using a Nitroxy-Functionalized Terminator[J].Macromolecules,30:4238-4242
    89.Hua FJ,Yang YL.2001.Synthesis of block copolymer by "living" radical polymerization of styrene with nitroxyl-functionalized poly(ethylene oxide)[J].Polymer,42:1361-1368
    90.Shi Y,Fu ZF,Li BY et al.2006.Synthesis of Diblock Copolymers by Combining Stable Free Radical Polymerization and Atom TransferRadical Polymerization[J].J.Polym.Sci.Part A:Polym.Chem.44:2468-2475
    91.Tunca U,Karliga B,Ertekin S et al.2001.Synthesis of Asymmetric Difunctional Initiators and their use in the Preparation of Block Copolymers via ATRP and SFRP[J].Polymer,42:8489-8493.
    92.Antonietti M,Forster S,Hartmann J et al.1996.Novel Amphiphilic Block Copolymers by Polymer Reactions and Their Use for Solubilization of Metal Salts and Metal Colloids[J].Macromolecules,29:3800-3806.
    93.Moffitt M,Eisenberg A.1997.Scaling Relations and Size Control of Block Ionomer Microreactors Containing Different Metal Ions[J].Macromolecules,30:4363-4373.
    94.何天白,胡汉杰著.1997.海外高分子科学的新进展[M].北京:化学工业出版社,43.
    95. Kwon CS, Kataoka K. 1995. Block copolymer micelles as long-circulating drug vehicles[J]. Adv. Drug Delivery Rev., 16: 295-309.
    96. Allen C, Maysinger D, Eisenberg A. 1999. Nano-engineering block copolymer aggregates for drug delivery [J]. Colloids and Surfaces B-Biointerfaces, 16:3-27
    97. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Adv. Drug Delivery Rev., 47: 113-131.
    98. Villacampa M, Quintana JR, Salazar R et al. 1995. Micellization of Polystyrene-b-Poly(ethylene/butylene)-b-Polystyrene Triblock Copolymers in 4-Methyl-2-pentanone[J]. Macromolecules, 28: 1025-1031.
    99. Zhang L, Eisenberg A. 1996. Multiple Morphologies and Characteristics of "Crew-Cut" Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions[J]. J.Am. Soc. Chem., 118: 3168-3181.
    100. Zhu PW. 2004. Particle formation and aggregation-collapse behavior of poly(N-isopropylacrylamide) and poly(ethylene glycol) block copolymers in the presence of cross-linking agent[J]. J. Mater. Sci.-Mater. Med., 15: 567-573.
    101. Qin SH, Geng Y, Discher DE et al. 2006. Temperature-controlled assembly and release from polymer vesicles of poly(ethylene oxide)-block -poly(N-isopropylacrylamide)[J]. Adv. Mater. 18:2905-2909
    102. Martin TJ, Prochazka K, Munk P et al. 1996. pH-Dependent Micellization of Poly(2-vinylpyridine)-block-poly(ethylene oxide)[J]. Macromolecules, 29: 6071-6073.
    103.Butun V, Billingham NC, Armes SP. 1998. Unusual Aggregation Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock Copolymer: Formation of Micelles and Reverse Micelles in Aqueous Solution[J]. J. Am. Chem. Soc, 120: 11818-11819.
    104. Jenekhe SA, Chen XL. 1998. Self-Assembled Aggregates of Rod-Coil Block Copolymers and Their Solubilization and Encapsulation of Fullerenes[J]. Science, 279: 1903-1907.
    105. Jenekhe SA, Chen XL. 1999. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers[J]. Science, 283: 372-375.
    106. Kataoka K, Togawa H, Harada A et al. 1996. Spontaneous Formation of Polyion Complex Micelles with Narrow Distribution from Antisense Oligonucleotide and Cationic Block Copolymer in Physiological Saline[J]. Macromolecules, 29: 8556-8557.
    107. Harada A, Kataoka K. 1998. Novel Polyion Complex Micelles Entrapping Enzyme Molecules in the Core: Preparation of Narrowly-Distributed Micelles from Lysozyme and Poly(ethylene glycol)-Poly(aspartic acid) Block Copolymer in Aqueous Medium[J]. Macromolecules, 31: 288-294.
    108. Liu S, Zhu H, Zhao H et al. 2000. Interpolymer Hydrogen-Bonding Complexation Induced Micellization from Polystyrene-b-poly(methyl methacrylate) and PS(OH) in Toluene[J]. Langmuir, 6: 3712-3717.
    109. Nishiyama N, Yokoyama M, Aoyagi T et al. 1999. Preparation and Characterization of Self-Assembled Polymer-Metal Complex Micelle from cis-Dichlorodiammineplatinum(II) and Poly(ethylene glycol)-Poly(α, β-aspartic acid) Block Copolymer in an Aqueous Medium[J]. Langmuir, 15: 377-383.
    110. Zhang L, Eisenberg A. 1995. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science, 268: 1728-1731.
    111. Zhang L, Yu K, Eisenberg A. 1996. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers[J]. Science, 272: 1777-1779.
    112. Zhang L, Eisenberg A. 1998. Formation of Crew-cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution[J]. Polym. Adv. Technol., 9:677-699.
    113. Burke S, Shen HW, Eisenberg A. 2001. Multiple Vesicular Morphologies from Block Copolymers in solution[J]. Macromol. Symp., 175: 273-283
    114. Yu K, Eisenberg A. 1996. Multiple Morphologies in Aqueous Solutions of Aggregates of PS-b-PEO[J]. Macromolecules, 29:6359-6361.
    115. Yu K, Zhang L, Eisenberg A. 1996. Novel Morphologies of Crew-Cut Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution[J]. 12: 5980-5984.
    116. Yu K, Eisenberg A. 1998. Bilayer Morphologies of Self-Assembled Crew-Cut Aggregates of Amphiphilic PS-b-PEO Diblock Copolymers in Solution[J]. Macromolecules, 31: 3509-3518.
    117. Yu YS, Eisenberg A. 1997. Control of Morphology through Polymer-Solvent Interactions in Crew-Cut Aggregates of Amphiphilic Block Copolymers[J]. J. Am. Chem. Soc. 119: 8383-8384.
    118. Yu YS, Zhang L, Eisenberg A. 1998. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Amphiphilic Diblock Copolymers[J]. Macromolecules, 31: 1144-1154.
    119. Desbaumes L, Eisenberg A. 1999. Single-Solvent Preparation of Crew-cut Aggregates of Various Morphologies from an Amphiphilic Diblock Copolymer[J]. Langmuir, 15: 36-38
    120. Tao J, Stewart S, Liu GJ et al. 1997. Star and Cylindrical Micelles of Polystyrene-block-poly(2-cinnamoylethyl methacrylate) in Cyclopentane[J]. Macromolecules, 30: 2738-2745.
    121. Ding JF, Liu GJ, Yang ML. 1997. Multiple morphologies of polyisoprene-block-poly(2-cinnamoylethyl methacrylate) and polystyrene-block-poly(2-cinnamoylethyl methacrylate) micelles in organic solvents[J]. Polymer, 38: 5497-5502.
    122. Li ZC, Liang YZ, Li FM. 1999. Multiple morphologies of aggregates from block copolymers containing glycopolymer segments[J]. Chem. Common., 16: 1557-1558.
    123. Liang YZ, Li ZC, Li FM. 2000. Morphological behavior for micelle from polystyrene-b-poly [2-(beta-D-glucopyranosyloxy)ethyl acrylate] upon changing the copolymer concentration[J]. Chem. Lett., 4: 320-321.
    124. Yuan JJ, Li YS, Li XQ et al. 2003. The "crew-cut" aggregates of polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymers in aqueous media[J]. Euro. Polym. J., 39: 767-776.
    125. Chen XR, Ding XB, Zheng ZH et al. 2005. Intelligent Crew-Cut Aggregates Formed by Thermosensitive Block Copolymers and Their Multiple Morphologies[J]. Macromol. Biosci., 5: 157-163.
    126. Maskos M. 2006. Influence of the solvent and the end groups on the morphology of cross-linked amphiphilic poly(1,2-butadiene)-b-poly(ethylene oxide) nanoparticles[J]. Polymer, 47: 1172-1178.
    127. Tung PH, Kuo SW, Chen SC et al. 2007. Micellar morphologies of self-associated diblock copolymers in acetone solution[J]. Polymer, 48: 3192-3200.
    128. Cameron NS, Corbierre MK, Eisenberg A. 1999. 1998 E.W.R. Steacie Award Lecture Asymmetric amphiphilic block copolymers in solution: a morphological wonderland[J]. Can. J. Chem.-Rev. Can. Chim., 77: 1311-1326
    129. Zhang WQ, Shi LQ, An YL et al. 2004. A Convenient Method of Tuning Amphiphilic Block Copolymer Micellar Morphology[J]. Macromolecules, 37: 2551-2557.
    130. Zhang WQ, Shi LQ, An YL et al. 2004. Block-Selective Solvent Influence on Morphology of the Micelles Self-Assembled by PS38-b-P(AA190-co-MA20)[J]. Macromol. Chem. Phys., 205:2017-2025.
    131. Allen C, Han J, Yu Y et al. 2000. Polycaprolactone-b-poly(ethylene oxide) copolymer micelles as a delivery vehicle for dihydrotestosterone[J]. J. Control. Release, 63 : 275-286
    132. Kim IS, Jeong Y, Cho CS et al. 2000. Core-shell type polymeric nanoparticles composed of poly(L-lactic acid) and poly(N-isopropylacrylamide)[J]. Int. J. Pharm., 211: 1-8
    133. Shen WC, Ryser HJP. 1981. Cis-aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate[J]. Biochem. Biophys. Res. Commun., 102: 1048-1054.
    134. Choi WM, Kopeckova P, Minko T et al. 1999. Synthesis of HPMA copolymer containing adriamycin bound via and acid-labile spacer and its activity toward human ovarian carcinoma cells[J]. J. Bioact. Compat. Polym., 14:447-456.
    135. Park JH, Cho YW, Son YJ et al. 2006. Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin[J]. Colloid Polym. Sci., 284: 763-770.
    136. Patel VF, Hardin JN, Mastro JM et al. 1996. Novel acid labile COL1 trityl-linked difluoronucleoside immunoconjugates: synthesis, characterization, and biological activity[J]. Bioconjugate Chem., 7: 497-510.
    137. Patel VF, Hardin JN, Starling JJ et al. 1995. Novel trityl linked drug immunoconjugates for cancer therapy[J]. Bioorg. Med. Chem. Lett., 5: 507-512.
    138. Gillies ER, Frechet JMJ. 2003. A new approach towards acid sensitive copolymer micelles for drug delivery [J]. Chem. Commun., 14: 1640-1641.
    139. Etrych T, Jelinkova M, Rihova B et al. 2001. New HPMA copolymers containing doxorubicin bound via pH sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties[J]. J. Control. Release, 73: 89-102.
    140. Padilla De Jesus OL, Ihre HR, Gagne L et al. 2002. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation[J]. Bioconjugate Chem., 13: 453-461.
    141. Bae Y, Fukushima S, Harada A. 2003. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH Change[J]. Angew. Chem. Int. Ed., 42: 4640-4643
    142. Hruby M, Konak C, Ulbrich K. 2005. Polymeric micellar pH-sensitive drug delivery system for doxorubicin[J]. J. Control. Release, 103: 137-148.
    143. Schaefgen JR, Floty PJ. 1948. Synthesis of Multichain Polymers and Investigation of their Viscosities[J]. J. Am. Chem. Soc, 70:2709-2718.
    144. Morton M, Helminiak TE, Gadkary SD et al. 1962. Preparation and properties of monodisperse branched polystyrene[J]. J. Polym. Sci., 57: 471-482.
    145. Orofino TA, Wenger F. 1963. Dilute Solution Properties of Branched Polymers. Polystyrene Trifunctional Star Molecules[J]. J. Phys. Chem., 67: 566-575.
    146. Mayer R. 1974. Organized structures in amorphous styrene/cis-1,4-isoprene block copolymers: low angle X-ray scattering and electron microscopy [J]. Polymer, 15: 137-145.
    147. Meunier JC, Van Leemput R. 1971. Synthese anionique de polystyrenes ramifies en eatoile a quatre et six branches[J]. Die Makromol. Chem., 142:1-20.
    148. Gervasi JA, Gosnell AB. 1966. Synthesis and characterization of branched polystyrene. Part I. Synthesis of four- and six-branch star polystyrene[JJ. J. Polym. Sci. Part A-1: Polym. Chem., 4: 1391-1399.
    149. Herz JE, Hert M, Strazielle C. 1972. Synthese et caracterisation de polystyrenes en etoile a trois branches[J]. Die Makromol. Chem., 160: 213-225.
    150. Strazielle C, Herz JE. 1977. Synthese et etude physicochimique de polystyrenes ramifies en "etoile" et en "peigne"[J]. Eur. Polym. J., 13: 223-233.
    151.Uraneck CA, Short JN. 1970. Solution-polymerized rubbers with superior breakdown properties[J]. J.Appl. Polym. Sci., 14: 1421-1432.
    152.Dnecker D,Rempp PCR. 1965. [J]. Acad. Sci. 261: 1977.
    153.Eschwey H, Hallensleben ML, Barchard W. 1973. Preparation and some properties of star-shaped polymers with more than hundred side chains[J]. Makromol. Chem., 173: 235-239.
    
    154. Roovers J, Hadjichristitlis N, Fetters LJ. 1983. Analysis and dilute solution properties of 12-and 18-arm-star polystyrenes[J]. Macromolecules, 16: 214-220.
    155. Hadjichristidis N, Fetters LJ. 1980. Star-Branched Polymers. 4. Synthesis of 18-Arm Polyisoprenes[J]. Macromolecules, 13: 191-193.
    156. Roovers J, Zhou LL, Toporowski PM et al. 1993. Regular star polymers with 64 and 128 arms. Models for polymeric micelles[J]. Macromolecules, 26: 4324-4331.
    157. Roovers J, Toporowski PM, Martin J. 1989. Synthesis and characterization of multiarm star polybutadienes[J]. Macromolecules, 22: 1897-1903.
    158. Douglas JF, Boovers J, Freed KF. 1990. Characterization of branching architecture through "universal" ratios of polymer solution properties[J]. Macromolecules, 23: 4168-4180.
    159. Zhang X, Xia JH, Matyjaszewski K. 2000. End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization[J]. Macromolecules, 33: 2340-2345.
    160. Bosman AW, Vestberg R, Heumann A et al. 2003. A Modular Approach toward Functionalized Three-Dimensional Macromolecules: From Synthetic Concepts to Practical Applications[J]. J. Am. Chem. Soc. 125: 715-728.
    161. Xia JH, Zhang X, Matyjaszewski K. 1999. Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an "Arm First" Approach[J]. Macromolecules, 32: 4482-4484.
    162.Baek KY, Kamigaito M, Sawamoto M. 2001. Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization. 1. Synthesis and Characterization of Star Polymers with PMMA Arms and Amide Cores[J]. Macromolecules, 34: 7629-7635.
    163. Ray B, Isobe Y, Morioka K et al. 2003. Synthesis of Isotactic Poly(N-isopropylacrylamide) by RAFT Polymerization in the Presence of Lewis Acid[J]. Macromolecules, 36: 543-545.
    164. Ray B, Isobe Y, Matsumoto K et al. 2004. RAFT Polymerization of N-lsopropylacrylamide in the Absence and Presence of Y(OTf)_3: Simultaneous Control of Molecular Weight and Tacticity[J]. Macromolecules, 37:1702-1710.
    165.Miura Y, Yoshida Y. 2002. Synthesis of Six-Arm Star Polymer by Nitroxide-Mediated "Living" Radical Polymerization[J]. Polymer Journal, 34: 748-754.
    
    166. Zhao YL, Chen YM, Chen CF et al. 2005. Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization[J]. Polymer, 46:5808-5819.
    
    167. Deng GH, Chen YM. 2004. A Novel Way To Synthesize Star Polymers in One Pot by ATRP of N-[2-(2-Bromoisobutyryloxy)ethyl]maleimide and Styrene[J]. Macromolecules, 37: 18-26.
    
    168. Lord HT, Quinn JF, Angus SD et al. 2003. Microgel stars via Reversible Addition Fragmentation Chain Transfer (RAFT) polymerisation — a facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates[J]. J. Mater. Chem., 13:2819-2824.
    
    169. Mayadunne RTA, Jeffery J, Moad G et al. 2003. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers[J]. Macromolecules, 36:1505-1513.
    
    170. Darcos V, Dureault A, Taton D et al. 2004. Synthesis of hybrid dendrimer-star polymers by the RAFT process[J]. Chem. Commun., 4: 2110-2111.
    
    171.Fomhals A. 1934. Process and Apparatus for Preparing Artificial Threads. US Patent: 1975504[P]
    
    172. Deitzel JM, Kleinmeyer J, Hirvonen JK et al. 2001. Controlled deposition of electrospun poly(ethylene oxide) fibers[J]. Polymer, 42: 8163-8170.
    
    173. Fang X, Reneker DH. 1997. DNA fibers by electrospinning[J]. J. Maromol. Sci. Part B: Phys., 36: 169-173.
    
    174. Taylor G. 1969. Electrically Driven Jets[J]. Proc. R. Soc. London Ser. A: Math. Phys. Sci., 313:453-475.
    
    175. Deitzel JM, Kleinmeyer J, Harris D et al. 2001. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer, 42: 261-272
    
    176. Matthew JA, Wnek GE, Simpson DG et al. 2003. Electrospinning of collagen nanofibers[J]. Biomacromolecules, 3: 232-238.
    
    177. Katta P, Alessandro M, Ramsier RD, et al. 2004. Continuous electrospinning of aligned polymer nanofibers onto a wir drum collector[J]. Nano. Lett., 4: 2215-2218.
    
    178. Theron A, Zussman E, Yarin AL. 2001. Electrostatic field-assisted alignment of electrospun nanofibers[J]. NanotechnoJogy, 12: 384-390.
    
    
    179. Dalton PD, Klee D, Moller M. 2005. Electrospining with dual collection rings[J]. Polymer, 46:611-614.
    
    180. Smit E, Buttner U, Sanderson RD. 2005. Continuous yarns from electrospun fibers[J]. Polymer, 46:2419-2423.
    
    181. Li D, Wang YL, Xia YN. 2003. Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays[J]. Nano. Lett. 3: 1167-1171.
    
    182. Yang DY, Lu B, Zhao Y et al. 2007. Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning[J]. Adv. Mater., 19:3702-3706
    1.Kwon GS,Kataoka K.1995.Block copolymer micelles as long-circulating drug vehicles[J].Adv.Drug Deliv.Rev.,16:295-309.
    2.Kwon GS,Okano T.1996.Polymeric micelles as new drug carriers.Adv.Drug Deliv.Rev.,21:107-116.
    3.Kataoka K,Harada A,Nagasaki Y.2001.Block copolymer micelles for drug delivery:design,characterization and biological significance[J].Adv.Drug Deliv.Rev.,47:113-131.
    4.Lavasanifar A,Samuel J,Kwon GS.2002.Poly(ethylene oxide)-block-poly(L-amino acid)micelles for drug delivery[J].Adv.Drug Deliv.Rev.,54:169-190.
    5.Kabanov AV,Batrakova EV,Alakhov VY.2002.Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery[J].J.Control.Release,82:189-212.
    6.Kabanov AV,Slepnev Ⅵ,Kuznetsova LE et al.1992.Pluronic micelles as a tool for lowmolecular weight compound vector delivery into a cell:Effect of Staphylococcus aureus enterotoxin B on cell loading with micelle incorporated fluorescent dye[J].Biochem.Int.26:1035-1042.
    7.Luo L,Tam J,Maysinger D et al.2002.Cellular internalization of poly(ethylene oxide)-b-poly(ε-caprolactone)diblock copolymer micelles[J].Bioconjugate Chem.,13:1259-1265.
    8.Pierri E,Avgoustakis K.2005.Poly(lactide)-poly(ethylene glycol)micelles as a carrier for griseofulvin[J].J.Biomed.Mater.Res.Part A.,75A:639-647.
    9.Zhang Y,Zhuo RX.2006.Synthesis,characterization,and in vitro 5-fu release behavior of poly(2,2-dimethyltrimethylene carbonate)-poly(ethylene glycol)poly (2,2-dimethyitrimethylene carbonate)nanoparticles[J].J.Biomed.Mater.Res.Part A., 76A: 674-680.
    10. Peng T, Cheng SX, Zhuo RX. 2006. Synthesis and characterization of poly-α, β-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(L-lactide) biodegradable copolymers as drug carriers[J]. J. Biomed. Mater. Res. Part A., 76A: 163-173.
    11. Feng M, Li P. 2007. Amine-containing core-shell nanoparticles as potential drug carriers for intracellular delivery[J]. J. Biomed. Mater. Res. Part A., 80A: 184-193.
    12. Arotcarena M, Heise B, Ishaya S et al. 2002. Switching the inside and the outside of aggregates of water-soluble block Copolymers with double thermoresponsivity[J]. J. Am. Chem. Soc, 124:3787-3793.
    13. Angelopoulos SA, Tsitsilianis C. 2006. Thermo-reversible hydrogels based on poly(N,N-diethylacrylamide)-block-poly(acrylic acid)-block- poly(N,N-diethylacrylamide) double hydrophilic triblock copolymer[J]. Macromol. Chem. Phys., 207: 2188-2194.
    14. Khousakoun E, Gohy J-F, Jer6me R. 2004. Self-association of double-hydrophilic copolymers of acrylic acid and poly(ethylene oxide) macromonomer[J]. Polymer, 45: 8303-8310.
    15. Bo Q, Zhao Y. 2006. Double-hydrophilic block copolymer for encapsulation and two-way pH change-induced release of metalloporphyrins[J]. J. Polym. Sci. Part A: Polym. Chem., 44: 1734-1744.
    16. Yuan JJ, Armes SP, Takabayashi Y et al. 2006. Synthesis of biocompatible poly[2-(methacryloyloxy)ethyl phosphorylcholine]-coated magnetite nanoparticles[J]. Langmuir,22: 10989-10993.
    17. Huang J, Ren LX, Zhu H et al. 2006. Hydrophilic block copolymer aggregation in solution induced by selective threading of cyclodextrins[J]. Macromol. Chem. Phys., 207: 1764-1772.
    18. Engin K, Leeper DB, Cater JR et al. 1995. Extracellular pH distribution in human tumors[J]. Int. J. Hypertherm., 11: 211-216.
    19. Ojugo ASE, MeSheehy PMJ, Mclntyre DJO et al. 1999. Measurement of the extracellular pH of solid tumors in mice by magnetic resonance spectroscopy: a comparison of exogenous ~(19)F and ~(31)P probes[J]. NMR Biomed., 12:495-504.
    20. Mellman 1, Fuchs R, Helenius A. 1986. Acidification of the endocytic and exocytic pathways[J]. Ann. Rev. Biochem., 55: 663-700.
    21. Greenfield RS, Kaneko T, Daues A et al. 1990. In vitro evaluation of adriamycin immunoconjugates synthesized using an acid-sensitive hydrazone linker[J]. Cancer Res., 50: 6600-6607.
    22. Kaneko T, Willner D, Monkovic I et al. New hydrazone derivatives of adriamycin and their immunoconjugates-a correlation between acid stability and cytotoxicity[J]. Bioconjugate Chem., 2: 133-141.
    23. Etrych T, Jelinkova M, Rihova B et al. 2001. New HPMA copolymers containing doxorubicin bound via pH sensitive linkage: synthesis and preliminary in vitro and in vivo biological properties[J]. J. Control. Release, 73: 89-102.
    24. Padilla De Jesus, OL, Ihre HR, Gagne L et al. 2002. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation[J]. Bioconjugate Chem., 13: 453-461.
    25. Bae Y, Fukushima S, Harada A et al. 2003. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH Change[J]. Angew. Chem. Int. Ed., 42:4640-4643
    26. Hruby M, Konak C, Ulbrich K. 2005. Polymeric micellar pH-sensitive drug delivery system for doxorubicin[J]. J. Control. Release, 103: 137-148.
    27. Shen WC, Ryser HJP. 1981. Cis-aconityl spacer between daunomycin and macromolecular carriers: a model of pH-sensitive linkage releasing drug from a lysosomotropic conjugate. Biochem[J]. Biophys. Res. Commun., 102: 1048-1054.
    28. Choi, WM, Kopeckova P, Minko T et al. 1999. Synthesis of HPMA copolymer containing adriamycin bound via and acid-labile spacer and its activity toward human ovarian carcinoma cells[J]. J. Bioact. Compat. Polym., 14: 447-456.
    29. Park JH, Cho YW, Son YJ et al. 2006. Preparation and characterization of self-assembled nanoparticles based on glycol chitosan bearing adriamycin[J]. Colloid Polym. Sci., 284: 763-770.
    30. Patel VF, Hardin JN, Mastro JM et al. 1996. Novel acid labile COL1 trityl-linked difluoronucleoside immunoconjugates: synthesis, characterization, and biological activity[J]. Bioconjugate Chem., 7: 497-510.
    31. Patel VF, Hardin JN, Starling JJ et al. 1995. Novel trityl linked drug immunoconjugates for cancer therapy[J]. Bioorg. Med. Chem. Lett., 5: 507-512.
    32. Fife TH, Jao LK. 1965. Substituent effects in acetal hydrolysis[J]. J. Org. Chem., 30: 1492-1495.
    33. Gillies ER, Frechet JMJ. 2003. A new approach towards acid sensitive copolymer micelles for drug delivery[J]. Chem. Commun., 14: 1640-1641.
    34. Feng XS, Pan CY, Wang J. 2001. Synthesis of 6-armed amphiphilic block copolymers with styrene and 2,3-dihydroxypropyl acrylate by atom transfer radical polymerization[J]. Macromol. Chem. Phys., 202: 3403-3409.
    35. Pan CY, Tao L, Wu DC. 2001. Synthesis and characterizations of the four-armed amphiphilic block copolymer S[poly(2,3-dihydroxypropylacrylate) -block-poly(methyl acrylate)]_4[J] J. Polym. Sci. Part A: Polym. Chem., 39: 3062-3072.
    
    36. Zhen YE, Wan SR, Liu YQ et al. 2005. Atom transfer radical polymerization of solketal acrylate using cyclohexanone as the solvent[J]. Macromol. Chem. Phys., 206: 607-612.
    
    37. Mackay D. Shiu WY. 1977. Aqueous solubility of polynuclear aromatic hydrocarbons[J]. J. Chem. Eng. Data., 22: 399-402.
    1.Halperin A,Tirrell M,Lodge TP.1992.Tethered Chains in Polymer Microstructures[J].Adv.Polym.Sci.,100:31-71.
    2.Webber SE.1998.Polymer Micelles:An Example of Self-Assembling Polymers[J].J.Phys.Chem.B.,102:2618-2626.
    3.Moffitt M,Khougaz K,Eisenberg A.1996.Micellization of Ionic Block Copolymers[J].Acc.Chem.Res.,29:95-102.
    4.Tao J,Liu GJ,Ding JF et al.1997.Cross-Linked Nanospheres of Poly(2-cinnamoylethyl methacrylate)with Immediately Attached Surface Functional Groups[J].Macromolecules,30:4084-4089.
    5.Zhao JX,Allen C,Eisenberg A.1997.Partitioning of Pyrene between "Crew Cut" Block Copolymer Micelles and H_2O/DMF Solvent Mixtures[J].Macromolecules,30:7143-7150.
    6.Zhang LF,Eisenberg A.1996.Multiple Morphologies and Characteristics of "Crew-Cut"Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid)Diblock Copolymers in Aqueous Solutions[J].J.Am.Chem.Sot.,118:3168-3181.
    7.Zhang LF,Eisenberg A.1996.Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid)Block Copolymers in Solutions[J].Macromolecules,29:8805-8815.
    8.Iyama K,Nose T.1998.Temperature-concentration diagram of polystyrene-block-polydimethylsiloxane associates formed in dilute solution of selective solvent[J].Polymer,39:651-658.
    9.Tao J,Stewart S,Liu GJ et al.Star and Cylindrical Micelles of Polystyrene-block-poly(2-cirmamoylethyl methacrylate)in Cyclopentane[J].Macromolecules,30:2738-2745.
    10.Yu K,Eisenberg A.1996.Multiple Morphologies in Aqueous Solutions of Aggregates of Polystyrene-block-poly(ethylene oxide)Diblock Copolymers[J].Macromolecules,29: 6359-6361.
    11. Yu K, Zhang LF, Eisenberg A. 1996. Novel Morphologies of "Crew-Cut" Aggregates of Amphiphilic Diblock Copolymers in Dilute Solution[J]. Langmuir, 12: 5980-5984.
    12. Zhang LF, Bartels C, Yu Y et al. 1997. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers[J]. Phys. Rev. Lett., 79: 5034-5037.
    13. Luo LB, Eisenberg A. 2001. Thermodynamic Stabilization Mechanism of Block Copolymer Vesicles[J]. J. Am. Chem. Soc, 123:1012-1013.
    14. Zhang LF, Eisenberg A. 1999. Thermodynamic vs Kinetic Aspects in the Formation and Morphological Transitions of Crew-Cut Aggregates Produced by Self-Assembly of Polystyrene-b-poly(acrylic acid) Block Copolymers in Dilute Solution[J]. Macromolecules, 32:2239-2249.
    15. Li ZC, Liang YZ, Li FM. 1999. Multiple morphologies of aggregates from block copolymers containing glycopolymer segments[J]. Chem. Common. 1999; 16: 1557-1558.
    16. Liang YZ, Li ZC, Li FM. 2000. Morphological behavior for micelle from polystyrene-b-poly [2-(beta-D-glucopyranosyloxy)ethyl acrylate] upon changing the copolymer concentration[J]. Chem. Lett., 4: 320-321.
    17. Yuan JJ, Li YS, Li XQ et al. 2003. The "crew-cut" aggregates of polystyrene-b-poly(ethylene oxide)-b-polystyrene triblock copolymers in aqueous media[J]. Euro. Polym. J., 39: 767-776.
    18. Chen XR, Ding XB, Zheng ZH et al. 2005. Intelligent Crew-Cut Aggregates Formed by Thermosensitive Block Copolymers and Their Multiple Morphologies[J]. Macromolecular Bioscience, 5: 157-163.
    19. Riegel IC, Samios D, Petzhold CL et al. 2003. Self-assembly of amphiphilic di and triblock copolymers of styrene and quaternized 5-(N,N-diethylamino) isoprene in selective solvents[J]. Polymer, 44: 2117-2128
    20. Zhang WQ, Shi LQ, An YL et al. 2004. A Convenient Method of Tuning Amphiphilic Block Copolymer Micellar Morphology[J]. Macromolecules, 37: 2551-2555.
    21. Zhang WQ, Shi LQ, An YL et al. 2004. Block-Selective Solvent Influence on Morphology of the Micelles Self-Assembled by PS38-b-P(AA190-co-MA20)[J]. Macromol. Chem. Phys., 205:2017-2125.
    22. Ding JF, Liu GJ, Yang ML. 1997. Multiple morphologies of polyisoprene-block-poly(2-cinnamoylethyl methacrylate) and polystyrene-block-poly(2-cinnamoylethyI methacrylate) micelles in organic solvents[J]. Polymer, 38: 5497-5502.
    23. Maskos M. 2006. Influence of the solvent and the end groups on the morphology of cross-linked amphiphilic poly( 1,2-butadiene)-b-poly(ethylene oxide) nanoparticles[J]. Polymer, 47: 1172-1178.
    24. Tung PH, Kuo SW, Chen SC et al. 2007. Micellar morphologies of self-associated diblock copolymers in acetone solution[J], Polymer 48: 3192-3200
    25. Jiang GH, Wang L, Chen T et al. 2005. Synthesis and self-assembly of hyperbranched polyester peripherally modified by touluene-4-sulfonyl groups[J]. Polymer, 46: 9501-9507
    26. Zhou JF, Wang L, Wang CL et al. 2005. Synthesis and self-assembly of amphiphilic maleic anhydride-stearyl methacrylate copolymer[J]. Polymer, 46: 11157-11164
    27. Zhang LF, Eisenberg A. 1997. Structures of "crew-cut" aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers[J]. Macromol. Symp., 113: 221-232.
    28. Yu YS, Zhang LF, Eisenberg A. 1998. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers[J]. Macromolecules, 31: 1144-1154.
    29. Li T, Lin JP, Chen T et al. 2006. Polymeric micelles formed by polypeptide graft copolymer and its mixtures with polypeptide block copolymer[J]. Polymer, 47: 4485-4489.
    30. Liu XY, Wu J, Kim JS et al. 2006. Self-Assembly of Mixtures of Block Copolymers of Poly(styrene-b-acrylic acid) with Random Copolymers of Poly(styrene-co-methacrylic acid)[J]. Langmuir, 22: 419-424.
    31. Zhang LF, Eisenberg A. 1998. Formation of Crew-cut Aggregates of Various Morphologies from Amphiphilic Block Copolymers in Solution[J]. Polym. Adv. Technol., 9: 677-699.
    32. Won YY, Davis HT, Bates FS. 1999. Giant Wormlike Rubber Micelles[J]. Science, 283: 960-963.
    33. Shen HW, Zhang LF, Eisenberg A. 1999. Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures[J]. J. Am. Chem. Soc, 121:2728-2740.
    34. Ding JF, Liu GJ. 1997. Polyisoprene-block-poly(2-cinnamoylethyl methacrylate) Vesicles and Their Aggregates[J]. Macromolecules, 30: 655-657.
    35. Liang YZ, Li ZC, Li FM. 2000. Multiple morphologies of molecular assemblies formed by polystyrene-block-poly [ 2-(b-D-glucopyranosyloxy)ethyl acrylate ] in water[J]. New J. Chem., 24: 323-328.
    36. Huang HY, Kowalewski T, Remsen EE et al. 1997. Hydrogel-Coated Glassy Nanospheres: A Novel Method for the Synthesis of Shell Cross-Linked Knedels[J]. J. Am. Chem. Soc, 119: 11653-11659.
    37. Bovin NV, Gabius HJ. 1995. Polymer-immobilized Carbohydrate Ligands: Versatile Chemical Tools for Biochemistry and Medical Sciences[J]. Chem. Soc. Rev., 24: 413-421.
    38. Zupan M, Karjnc P, Stavber S. 1998. The Role of Multifunctionalized Amine Structure and Reaction Conditions on the Transformations of Crosslinked Copoly (styrene-p-nitrophenylacrylate)[J]. J. Polym. Sci. Part A: Polym. Chem., 36: 1699-1706.
    39. Ivanov AE, Zubov VP. 1994. Adsorption and Separation of Proteins on Composite Anion-exchangers with Poly(N-diethylaminiethyl acrylamide) Bonded Phases[J]. J. Chromatography A, 673:159-165.
    40. Tadatomi N, Tutomu S, Toshiyuki H et al. 1989. A novel insertion reaction of epoxy compounds into phenyl ester linkages in polymer chains[J]. J. Polym. Sci. Part A: Polym. Chem., 27:2519-2530.
    41. Liu Y, Wang LX, Pan CY. 1999. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization[J]. Macromolecules, 32: 8301-8305.
    42. Liu Y, Wang LX, Pan CY. 2002. Preparation of nanospheres with polystyrene shells and cross-linked poly(methacrylamide) cores: a solution approach[J]. Polymer, 43: 7063-7068.
    43. Pan C, Tao L, Liu Y. 2002. Synthesis and characterization of four-armed block poly(styrene-b-p-nitrophenyl methacrylate) prepared by ATRP method[J]. Chinese J. Polym. Sci., 20: 353-360.
    44. Patai S, Bentov M, Reichmann ME. 1952. Preparation and Polymerization of Aryl Methacrylates and N-Arylmethacrylamides[J]. J. Am. Chem. Soc, 74: 845-847.
    45. Ge'rard R. 2003. Micellization of block copolymers[J]. Prog. Polym. Sci., 28:1107-1170.
    46. Brandrup J, Immergut EH, Grulke EA. 1999. Polymer Handbook[M], 4th Ed. vol.3. Wiley-Interscience New York: VII 699-701, VII 711
    1. Zhang LF, Eisenberg A. 1996. Multiple Morphologies and Characteristics of "Crew-Cut"Micelle-like Aggregates of Polystyrene-b-poly(acrylic acid) Diblock Copolymers in Aqueous Solutions[J]. J. Am. Chem. Soc, 118: 3168-3181.
    2. Li ZC, Liang YZ, Li FM. 1999. Multiple morphologies of aggregates from block copolymers containing glycopolymer segments[J]. Chem. Common., 16: 1557-1558.
    3. Yang RM, Wang YM. 2004. Synthesis and Self-assembly of (Styrene-4-vinyl pyridine) Block Copolymer[J]. Acta Polym. Sin., (3): 401-405.
    4. Tang XZ, Hu YC, Pan CY. 2007. Multiple morphologies of self-assembled star aggregates of amphiphilic PEO-b-PNPMA diblock copolymers in solution, synthesis and micellization[J]. Polymer, 48: 6354-6365.
    5. Zou P, Pan CY. 2007. Synthesis and self-assembly of reactive H-shaped block copolymers [J]. Acta Polym. Sin., (10): 974-978
    6. Harada A, Kataoka K. 1995. Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block Copolymers with Poly(ethylene glycol) Segments[J]. Macromolecules, 28: 5294-5299.
    7. Kabanov AV, Bronich TK, Kabanov VA et al. 1996. Soluble Stoichiometric Complexes from Poly(N-ethyl-4-vinylpyridinium) Cations and Poly(ethylene oxide)-block-polymethacrylate Anions[J]. Macromolecules, 29: 6797-6802.
    8. Chen W, Chen HR, Hu JH et al. Synthesis and characterization of polyion complex micelles between poly(ethylene glycol)-grafted poly(aspartic acid) and cetyltrimethyl ammonium bromide[J]. Colloid Surf. A-Physicochem. Eng. Asp., 278: 60-66
    9. Itaka K, Yamauchi K, Harada A et al. 2003. Polyion complex micelles from plasmid DNA and poly(ethylene glycol)-poly(1-lysine) block copolymer as serum-tolerable polyplex system: physicochemical properties of micelles relevant to gene transfection efficiency[J]. Biomaterials, 24: 4495-4506.
    10. Wakebayashi D, Nishiyama N, Yamasaki Y et al. 2004. Lactose-conjugated polyion complex micelles incorporating plasmid DNA as a targetable gene vector system: their preparation and gene transfecting efficiency against cultured HepG2 cells[J]. J. Control. Release, 95: 653-664
    11. Lysenko EA, Chelushkin PS, Bronich TK et al. 2004. Formation of Multilayer Polyelectrolyte Complexes by Using Block lonomer Micelles as Nucleating Particles[J]. J. Phys. Chem. B, 108: 12352-12359.
    12. Liu Y, Wang LX, Pan CY. 1999. Synthesis of Block Copoly(styrene-b-p-nitrophenyl methacrylate) and Its Derivatives by Atom Transfer Radical Polymerization[J]. Macromolecules, 32: 8301-8305.
    13. Hu YC, Liu Y, Pan CY. 2004. Reversible Addition-Fragmentation Transfer Polymerization of p-Nitrophenyl Acrylate and Synthesis of Diblock Copolymers Poly(p-nitrophenyl acrylate)-b-Polystyrene[J]. J. Polym. Sci.: Part A : Polym. Chem. 2004, 42: 4862-4872.
    14. Patai S, Bentov M, Reichmann ME. 1952. Preparation and Polymerization of Aryl Methacrylates and N-Arylmethacrylamides[J]. J. Am. Chem. Soc, 74: 845-847.
    15. Riegel IC, Eisenberg A. 2002. Novel Bowl-Shaped Morphology of Crew-Cut Aggregates from Amphiphilic Block Copolymers of Styrene and 5-(N,N-Diethylamino)isoprene[J]. Langmuir, 18:3358-3363.
    1.Mishra MK,Kobayashi S.1999.Star and Hyperbranched Polymers[M].Marcel Dekker:New York.
    2.Inoue K.2000.Functional dendrimers,hyperbranched and star polymers[J].Prog.Polym.Sci.,25:453-471.
    3.Taton D,Gnanou Y,Matmour R et al.2006.Controlled polymerizations as tools for the design of star-like and dendrimer-like polymers[J].Polym.Int.,55:1138-1145.
    4.Schaefgen JR,Floty PJ.1948.Synthesis of Multichain Polymers and Investigation of their Viscosities[J].J.Am.Chem.Soc.,70:2709-2718.
    5.Morton M,Helminiak TE,Gadkary SD et al.1962.Preparation and properties of monodisperse branched polystyrene[J].J.Polym.Sci.,57:471-482.
    6.Bosman AW,Vestberg R,Heumann A et al.2003.A Modular Approach toward Functionalized Three-Dimensional Macromolecules:From Synthetic Concepts to Practical Applications[J].J.Am.Chem.Soc.125:715-728.
    7.Klok HA,Becker S,Schuch F et al.2002.Fluorescent Star-Shaped Polystyrenes:"Core-First"Synthesis from Perylene-Based ATRP Initiators and Dynamic Mechanical Solid-State Properties[J].Macromol.Chem.Phys.,203:1106-1113.
    8.Xia JH,Zhang X,Matyjaszewski K.1999.Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an "Ann First" Approach[J].Macromolecules,32:4482-4484.
    9.Baek KY,Kamigaito M,Sawamoto M.2001.Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization.1.Synthesis and Characterization of Star Polymers with PMMA Arms and Amide Cores[J].Macromolecules,34:7629-7635.
    10.Ray B,Isobe Y,Morioka K et al.2003.Synthesis of lsotactic Poly(N-isopropylacrylamide)by RAFT Polymerization in the Presence of Lewis Acid[J].Macromolecules,36:543-545.
    11.Ray B,lsobe Y,Matsumoto K et al.2004.RAFT Polymerization of N-Isopropylacrylamide in the Absence and Presence of Y(OTf)_3:Simultaneous Control of Molecular Weight and Tacticity[J].Macromolecules,37:1702-1710.
    12.Miura Y,Yoshida Y.2002.Synthesis of Six-Arm Star Polymer by Nitroxide-Mediated "Living" Radical Polymerization[J].Polymer Journal,34:748-754.
    13.Zhao YL,Chen YM,Chen CF et al.2005.Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization[J].Polymer,46:5808-5819.
    14.Lord HT,Quinn JF,Angus SD et al.2003.Microgel stars via Reversible Addition Fragmentation Chain Transfer(RAFT)polymerisation - a facile route to macroporous membranes,honeycomb patterned thin films and inverse opal substrates[J].J.Mater.Chem.,13:2819-2824.
    15.Mayadunne RTA,Jeffery J,Moad G et al.2003.Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer(RAFT Polymerization):Approaches to Star Polymers[J].Macromolecules,36:1505-1513.
    16.Darcos V,Dureault A,Taton D et al.2004.Synthesis of hybrid dendrimer-star polymers by the RAFT process[J].Chem.Commun.,4:2110-2111.
    17.Deng GH,Chen YM.2004.A Novel Way To Synthesize Star Polymers in One Pot by ATRP of N-[2-(2-Bromoisobutyryloxy)ethyl]maleimide and Styrene[J].Macromolecules,37:18-26.
    18.Deng GH,Cao M,Huang J et al.2005.One-pot synthesis of star polymer by ATRP of bismaleimide and an excess of styrene with a conventional initiator[J].Polymer,46:5698-5701.
    19.Ishizu K,Park J,Shibuya T et al.2003.One-Pot Synthesis of Star Polymers by Living Radical Polymerization[J].Macromolecules,36:2990-2993.
    20.Ishizu K,Ochi K.2006.Architecture of Star-Block Copolymers Consisting of Triblock Arms via a N,N-Diethyldithiocarbamate-Mediated Living Radical Photo-Polymerization and Application for Nanocomposites by Using as Fillers[J].Macromolecules,39:3238-3244
    21.邬征.1987.氧杂环单体的合成、自由基聚合反应和共聚合反应[M].[硕士].合肥:中国科技大学,33-94.
    22.Lai JT,Filla D,Shea R.2002.Functional Polymers from Novel Carboxyl-Terminated Trithiocarbonates as Highly Efficient RAFT Agents[J].Macromolecules,35:6754-6756
    23.Zhu MQ,Wei LH,Zhou P et al.2001.Radical reverse addition-fragmentation chain transfer polymerization of maleic anhydride with styrene and a novel functional block copolymer prepared therefrom[J]. Acta Polym. Sin. (3): 415-417.
    24. Brouwer HD, Schellekens MAJ, Klumperman B et al. 2000. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization[J]. J. Polym. Sci. Part A: Polym. Chem., 38: 3596-3603
    25. Davies MC, Dawkins JV, Hourston DJ. 2005. Radical copolymerization of maleic anhydride and substituted styrenes by reversible addition-fragmentation chain transfer (RAFT) polymerization[J]. Polymer, 46: 1739-1753.
    26. Hu ZQ, Zhang ZC. 2006. "Gradient" polymer prepared by complex-radical terpolymerization of styrene, maleic anhydride, and N-vinyl pyrrolidone via gamma-ray irradiation by use of a RAFT process: Synthesis, mechanism, and characterization[J]. Macromolecules, 39: 13384-1390
    1.Linden M,Sehacht S,Schuth F et al.1998.Recent advances in nano- and macroseale control of hexagonal,mesoporous materials[J].J.Porous mater.,5:177-193.
    2.Ni YH,Ge XW,Xu XL et al.2000.Developments in preparation of nano-scale materials[J].J.Inorg.Mater.,15:9-15
    3.Huang Z M,Zhang Y Z,Kotaki M R et al.A review on polymer nanofibers by electrospinning and their applications in nanoeomposites[J].Compos.Sci.Technol.,63:2223-2253.
    4.Li D,Xia YN.2004.Electrospinning:Reinvention of the wheel[J].Adv.Mater.,16:1151-1170.
    5.Audrey F,Chronakis IS.2003.Polymer nanofibers assembled by eleetrospinning[J].Curr.Opin.Colloid Interface Sci.,8:64-75.
    6.Ondarcuhu T,Joachim C.1998.Drawing a single nanofibre over hundreds of microns[J].EuroPhys Lett.,42:215-220.
    7.Feng L,Li SH,Li HJ et al.2002.Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers[J].Angew Chem.Int.Ed.,41:1221-1223.
    8.Martin CR.1996.Membrane-Based Synthesis of Nanomaterials[J].Chem.Mater.,8:1739-1746.
    9.Ma PX,Zhang R.1999.Synthetic nano-scale fibrous extracellular matrix[J].J.Biomed.Mat.Res.Part A,46:60-72.
    10.Liu GJ,Ding JF,Qiao LJ et al.1999.Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Nanofibers- Preparation, Characterization, and Liquid Crystalline Properties[J]. Chem.-Euro. J., 5: 2740-2749.
    11. Whitesides GM, Grzybowski B. 2002. Self-Assembly at All Scales. Science, 295: 2418-2421.
    12. Gupta P, Elkins C, Long T E et al. 2005. Electrospinning of linear homopolymers of poly(methyl methacrylate) exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent[J]. Polymer, 46: 4799-4810.
    13. Theron SA, Zussman E, Yarin AL. 2004. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J]. Polymer, 45: 2017-2030.
    14. Okuzaki H, Takahashi T, Miyajima N et al. 2006. Spontaneous Formation of Poly(p-pheny!enevinylene) Nanofiber Yarns through Electrospinning of a Precursor[J]. Macromolecules, 39: 4276-4278.
    15. Sanders EH, Kloefkorn R, Bowlin GL et al. 2003. Two-Phase Electrospinning from a Single Electrified Jet: Microencapsulation of Aqueous Reservoirs in Poly(ethylene-co-vinyl acetate) Fibers[J]. Macromolecules, 3611: 3803-3805.
    16. Schiffman, JD, Schauer CL. 2007. One-Step Electrospinning of Cross-Linked Chitosan Fibers[J]. Biomacromolecules, 8: 2665-2667.
    17. Larsen G, Velarde-Ortiz R, Minchow K et al. 2003. A Method for Making Inorganic and Hybrid (Organic/Inorganic) Fibers and Vesicles with Diameters in the Submicrometer and Micrometer Range via Sol-Gel Chemistry and Electrically Forced Liquid Jets[J]. J. Am. Chem. Soc, 125: 1154-1155.
    18. Jiang HJ, Zhao PC, Zhu KJ. 2007. Fabrication and characterization of zein-based nanofibrous scaffolds by an electrospinning method[J]. Macromolecular bioscience, 4:517-525.
    19. Yoshimitsu S, Toshiki M, Isao Y et al. 2007. Material Design for Piezochromic Luminescence: Hydrogen-Bond-Directed Assemblies of a Pyrene Derivative[J]. J. Am. Chem. Soc, 129: 1520-1521
    20. Wang Q, Xu Y. Zhao X. 2007. A Facile One-Step in situ Functionalization of Quantum Dots with Preserved Photoluminescence for Bioconjugation[J]. J. Am. Chem. Soc. 129: 6380-6381.
    21. Lee WI, Bae YJ, Bard AJ. 2004. Strong Blue Photoluminescence and ECL from OH-Terminated PAMAM Dendrimers in the Absence of Gold Nanoparticles[J]. J. Am. Chem. Soc, 126: 8358-8359.
    22. Wang DJ, Imae T. 2004. Fluorescence Emission from Dendrimers and Its pH Dependence[J]. J. Am. Chem. Soc, 126: 13204-13205.
    23. Wu DC, Liu Y, He CB et al. 2005. Blue Photoluminescence from Hyperbranched Poly(amino ester)s[J]. Macromolecules, 38: 9906-9909.
    24. Li CM, Madsen J, Armes SP et al. 2006. A New Class of Biochemically Degradable, Stimulus-Responsive Triblock Copolymer Gelators[J]. Angew. Chem. Int. Ed. 45: 3510 -3513.
    25. Lin C, Zhong ZY, Lok MC et al. 2007. Novel Bioreducible Poly(amido amine)s for Highly Efficient Gene Delivery[J]. Bioconjugate Chem. 18: 138-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700