基于电纺丝技术的一维功能性纳米材料的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一维纳米材料因其具有巨大的比表面积和量子效应,比传统材料具有更好的光电、磁学、催化、传感等性质。在纳米光电器件、传感器、纳米生物技术、能量存储及转换等领域具有极其重要的作用。近年来,有关一维功能纳米材料的研究受到了越来越多的关注,各种制备方法不断涌现。在众多的制备方法中,高压静电纺丝技术不仅具有成本低、方法简单易行、可大量生产等优势,更重要的是应用范围非常广泛,对材料的要求比较低,而且所得的纤维均匀、连续、直径可控、长度可达到宏观尺度。
     本论文以高压静电纺丝技术为基础,结合溶胶-凝胶技术和模板技术,成功的制备了分别具有催化、电化学、光电、湿度传感等功能的一维纳米材料,并对其相应的性质进行了表征。主要包括以下四部分工作:第一,在高强度的聚丙烯腈纤维内部负载贵金属纳米粒子,选择了催化还原对硝基苯酚的实验作为催化模型,对贵金属负载量、催化效率、循环再生、催化剂残留量等问题进行了研究。第二,通过电纺丝纤维模板法制备了纯的聚苯胺纤维、高分子/聚苯胺核壳纤维以及内部负载银纳米粒子的聚苯胺纳米长管,所得的聚苯胺一维纳米材料具有很好的导电性能,在中性条件下仍具有良好的电化学活性。第三,利用电纺丝法结合表面气固反应技术制备硫化亚铜量子敏化二氧化钛纳米纤维,这些纤维具有很好的光电性能,其光学响应范围扩大至整个可见光区。第四,通过电纺丝纤维模板法制备了碱金属盐掺杂的二氧化钛纳米长管,这些纳米长管具有非常优异的湿敏传感性能。
Nanomaterials have unique electronic, photonic, magnetic and catalytic properties due to their large surface and quantum effect. In recent years, one dimensional(1D) nanostructure materials have been intensive researched and a large number of synthetic and fabrication methods have already been demonstrated for generating 1D nanostructures in the form of fibers, wires and tubes from various materials. Among these methods, electrospinning seems to provide the simplest approach to nanofibers (nanowire or nanotube) that are exceptionally long in length, uniform in diameter, and diversified in composition.
     In this dissertation, we have fabricated a series of functional nanofibers based on electrospinning and template technique.
     1) Noble metal nanoparticles dispersed in polyacrylonitrile nanofiber film were prepared via electrospinning and the catalytic activities for reduction of p-nitrophenol were investigated. The results showed that the nanofiber mats had very excellent catalytic activity and they could be easily seperated from the solution and reused for more than 30 times with very little catalytic activity loss. Besides, the remanet of noble metal nanoparticles in the reaction system was very little.
     2) We have successfully prepared polyaniline nanofibers, polyaniline/other polymers core-shell fibers and polyaniline nanotubes with silver nanoparticles incapsulated by using electrospinning UTFE method. All the polyaniline fibers above showed very good conductivity and especially the polyaniline/Ag nanotubes have a range-expanded electroactivity of pH= 0-7.
     3) We prepared Cu2S-Doped TiO2 nanofibers by elelctrospinning and gas-solid reaction. The dispersion of Cu2S nanoparticles in polymer fibers are studied and the results showed that the Cu2S nanoparticles is uniform and well dispersed in TiO2 fibers. We studied the formation of Cu2S nanoparticles in the TiO2 fibers and their photoelectricity properties. The Cu2S-Doped TiO2 nanofibers were stable and the SPS results showed that the TiO2 fibers’s light response extended from the UV light area to the whole visible light area.
     4) We have fabricated and investigated a highly sensitive and stable humidity nanosensor based on alkali metal salts-doped TiO2 nanofibers through electrospinning and calcination techniques. The sensor exhibited excellent characteristics including ultrafast response and recovery behavior, good reproducibility, linearity, and stability. All these characteristics above are very important in humidity detection and control. Moreover, our method provided a useful platform to design and construct highly effective humidity nanodetectors.
引文
[1]郭卫红,汪济奎.现代功能材料及其应用[M].化学工业出版社,2002,1-4.
    [2] D. Kennedy. [J]. Science,2001, 294:2429.
    [3] D. Appell. [J]. Nature,2002, 419:553.
    [4] X. Y. Li, S. B. Li. [J]. Progress in Chemistry,l996,8:231.
    [5]刘海峰,彭同江,孙红娟,马国华,段涛.一维纳米功能材料研究新进展[J].化工新型材料,2007,35:1.
    [6]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002,27-48.
    [7]张立德,张玉刚,一维纳米材料中的新效应和新功能[J].功能材料,2004, 35:50.
    [8] Yang P, et al. [J]. Adv. Funct. Mater, 2002, 12:323-331.
    [9] Pang Y T, Zhang L D, et al. [J]. Adv Funct Mater, 2002,12:719-722.
    [10] Pang Y T, Meng G W, et al. [J]. Nanotechnology 2003,14:20-24.
    [11] Pang Y T, Meng G W, et al. [J]. Appl Phys A, 2003,76:533-536.
    [12] Pang Y T, Meng G W, et al. [J]. Chin. Phys Lett 2003, 20: 144-147.
    [13] Nemanic V, [J]. Appl Phys Lett, 2003, 82:4573-4575.
    [14] Heremans J P, et al. [J]. Phys Rev Lett, 2002, 88:216801.
    [15] Zhao M H, Wang Z L. [J]. Nano Lett, 2004, 4:587-590.
    [16] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, Y. Q. Yan. [J]. Adv. Mater., 2003, 15:353.
    [17] Zhu Y Q, Hu W B, Hsu W K, et al. A simple route to silicon based nanostructures [J]. Adv. Mater., 1999,11 (10): 844-847.
    [18] Liang C, Meng G, Lei Y, et al. Catalytic growth of semiconducting In2O3 nanofibers [J]. Adv. Mater., 2001, 13 (17): 1330-1332.
    [19] Chang K W, Wu J J. Low-temperature catalytic synthesis of gallium nitride nanowires. [J]. J. Phys. Chem., B, 2002, 106 (32): 7796-7799.
    [20] Peng X S, Meng G W, Wang X F, et al. Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers [J]. Chem. Mater., 2002, 14 (1): 4490-4493.
    [21] Chen C C, Yeh C C. Large-scale catalytic synthesis of crystalline gallium nitride nanowires [J]. Adv. Mater., 2000, 12 (10): 738-741.
    [22] Morales A M, Lieber C M. A laser ablation method for the synthesis of crystalline semiconductor nanowires [J]. Science, 1998, 279 (5348): 208-211.
    [23] Yu D P, Lee C S, Bello I, et al. Synthesis of nano-scale silicon wires by excimer laser ablation at high temperature [J]. Solid State Commun., 1998, 105(6) : 403-407.
    [24] Duan X, Lieber C M. General synthesis of compound semiconductor nanowires [J]. Adv. Mater., 2000, 12 (4): 298-302.
    [25] Duan X, Lieber C M. Laser-assisted catalytic growth of single crystal GaN nanowires [J]. J. Am. Chem. Soc., 2000, 122 (1): 188-189.
    [26] Duan X F, Wang J F, Lieber C M. Synthesis and optical properties of gallium arsenide nanowires [J]. Appl Phys Lett, 2000, 76(9): 1116-1118.
    [27] S. S. Brenner, G. W. Sears. [J]. Acta Metallurgica, 1956, 4: 268.
    [28] Z. W. Pan, Z. R. Dai, Z. L. Wang. [J]. Science, 2001, 291: 1947.
    [29] Y. Wu, B. Messer, P. Yang. [J]. Adv. Mater., 2001, 13: 1487.
    [30] X. S. Peng, L. D. Zhang, G. W. Meng, X. F. Wang, Y. W. Wang, C. Z. Wang, G. S. Wu. [J]. J. Phys. Chem. B, 2002, 106: 11163.
    [31] S. D. Dingman, N. P. Rath, P. D. Markowitz, P. C. Gibbons, W. E. Buhro, S. D. Dingman. [J]. Angew. Chem. Int. Ed., 2000, 39: 1470.
    [32] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro. [J]. Science, 1995, 270: 1791.
    [33] Z. L. Wang. [J]. J. Phys. Chem. B, 2000, 104: 1153.
    [34] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia. [J]. Chem. Mater., 2002, 14: 4736.
    [35] Wang, X. et al. Thermally stable silicate nanotubes [J]. Angew. Chem. Int. Ed., 2004, 43(15): 2017-2020.
    [36] Li Y D, Wang, J W, et al. Bismuth nanotubes: a rational low-temperature synthetic route [J]. J. Am. Chem. Soc., 2001, 123(40): 9904-9905.
    [37] Wang, X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires [J]. Angew. Chem. Int. Ed., 2002, 41(24): 4790-4793.
    [38] Wang, X, Li Y D. Selected-Control Hydrothermal Synthesis of - andβ-MnO2 Single Crystal Nanowires [J]. J. Am. Chem. Soc. 2002, 124(12): 2880-2881.
    [39] Yang Q, Tang K, Wang C, Qian Y. et al. PVA-assisted synthesis and characterization of CdSe and CdTe nanowires [J]. J. Phys. Chem, B, 2002, 106 (36): 9227- 9230.
    [40] Li Y, Ding Y, Wang Z. A novel chemical route to ZnTe semiconductor nanorods [J]. Adv. Mater, 1999, 11 (10): 847-850.
    [41] Wang W, Geng Y, Qian Y, et al. A novel pathway to PdSe nanowires at roomtemperature [J]. Adv. Mater., 1998, 10 (17): 1497-1481.
    [42] Li B, Xie Y, Huang J , Qian Y. Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles [J]. Adv. Mater., 1999, 11 (17): 1456-1459.
    [43] C.R. Martin. [J].Chem. Mater. 1996,8: 1739.
    [44] R .M, Penner, C.R Martin. [J]. J. Electrochem. Soc., 1986; 133: 2206.
    [45] Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. [J]. J. Mater. Chem., 1999, 9: 2971.
    [46] Satishkumar B C, Govindaraj A, Natha M, Rao C N. Synthesis of metal oxide nanorods using carbon nanotubes as templates. [J]. J. Mater. Chem., 2000, 10: 2115.
    [47] Han Y J, Kim J M, Stucky G D. Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15 [J]. Chem Mater, 2000, 12 (8): 2068-2069.
    [48] L. Feng, S. Li, H. Li, J. Zhai, Y. Song, L. Jiang, et al. [J]. Angew. Chem. Int. Ed. 2002, 41: 1221.
    [49] Fendler J H,Fendler E J. Catalysis in Micellar and Macromolecular Systems. [M]. New York. Academic Press: 1975.
    [50] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem., B , 2001, 105 (19): 4065-4047.
    [51] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controlladble aspect ratio [J]. Chem. Commun., 2001, (7): 617-618.
    [52] Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires [J]. Adv. Mater., 2002, 14 (1): 80-82.
    [53] Li M, Schnablegger H, Mann S. Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization [J]. Nature, 1999, 402 (6760): 393-395.
    [54] Cao M H, Hu C W, et al. Selected-Control Synthesis of PbO2 and Pb3O4 Single-Crystalline Nanorods [J]. J. Am. Chem. Soc. 2003, 125: 4982-4983.
    [55] Cao M H, Hu C W, et al. A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorods [J]. Chem. Commun., 2003, 1884-1885.
    [56]安树林,海岛纺丝-超细纤维-人造皮革[J].纺织学报,2000,1: 48.
    [57] X.Y. Zhang, W. J. Goux, S. K. Manohar, Synthesis of Polyaniline Nanofibers by“Nanofiber Seeding”[J]. J. Am. Chem. Soc. 2004, 126: 4502
    [58] X.Y. Zhang, S. K. Manohar, Bulk Synthesis of Polypyrrole Nanofibers by a Seeding Approach [J]. J. Am. Chem. Soc. 2004, 126: 12714.
    [59] D.H.Reneker, I.Chun, Nanometer Diameter Fibres of Polymer, Produced by electrospinning, Nanotechnology [J]. 1996, 7: 216
    [60] T. Subbiah, G.S.Bhat, R.W.Toch, S.Parameswaran, S.S.Ramkumar, Electrospinning of Nanofibers [J]. J. Appl. Poly. Sci. 2005, 96: 557.
    [61] Z. M. Huang, Y. Z. Zhang, M. Kotaki, S. Ramakrishna, A Review on Polymer Nanofibers by Electrospinning and their Applications in Nanocomposites [J]. Composites Science and Technology, 2003, 63:2223.
    [62] D. Li, Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel? [J]. Adv. Mater. 2004, 16: 1151.
    [63] S.Madhugiri, B.Sun, P.G.Smirniotis, J.P.Ferraris, K.J.Balkus Jr., Electrospun Mesoporous Titanium Dioxide Fibers, Microporous and Mesoporous Materials [J]. 2004, 69: 77.
    [64] C.L.Shao, X.H.Yang, H.Y.Guan, Y.C.Liu, J.Gong. Electrospun Nanofibers of NiO/ZnO Composite [J]. Inorganic Chemistry Communications, 2004, 7: 625.
    [65] D. Li, Y.N. Xia, Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning[J]. Nano. Lett. 2004, 4: 933.
    [66] I.G.Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, G. Larsen, Electrically Forced Coaxial Nanojets for One-Step Hollow Nanofiber Design[J]. J. Am. Chem. Soc. 2004, 126: 5376.
    [67] B. Ding, E. Kimura, T. Sato, S. Fujita, S. Shiratori, Fabrication of Blend Biodegreadable Nanofibrous Nonwoven Mats via Multi-jet Electrospinning[J]. Polymer, 2004, 45: 1895.
    [68] Y. Zhang, Z. M. Huang, X. Xu, C. T. Lim, S. Ramakrishna, Preparation of Core-Shell Structrued PCL-r-Gelatin Bi-Component Nanofibers by Coaxial Electrospinning [J]. Chem. Mater. 2004, 16: 3406
    [69] D. Li, Y. Xia, Nano Lett. 2004, 4: 933.
    [70] P. Katta, M. Alessandro, R. D. Ramsier, G. G. Chase, Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector [J]. Nano. Lett. 2004, 4: 2215
    [71] J.A. Mathews, G.E. Wnek, D.G. Simpson, [J].Biomacromolecules 2002, 3: 232.
    [72] R. Dersch, J. H. Wendorff, [J]. J. Polym. Sci. Part A: Polym. Chem. 2003, 41: 545.
    [73] J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen, [J]. Polymer 2001, 42: 8163.
    [74] Reneker D.H. and Chun I., [J]. Nanotechnology 1996, 7: 216.
    [75] J. Zeleny. [J].Phys. Rev. 1917, 10: 1.
    [76] D. Michelson. [M].Electrostatic Atomization. Bristol: Adam Hilger, 1990.
    [77] X. Fang, D. H. Reneker, [J]. J Macromolecular Sci-Phys, 1997, B36: 169.
    [78] G. Toylor. Proc. Roy. Soc. [M]. London A, 1969, 313, 453.
    [79] C. D. Hendricks, R. S. Carson, J. J. Hogan, [M]. J. M. Schneider. AIAA J., 1964, 2: 733.
    [80] A. Ziabicki, [M]. Fundumentals of Fibre Formation. New York, Wiley, 1976.
    [81] A. M. Morales, C. M. Lieber, [J].A large Solution Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, 1998, 279: 208
    [82] Shang T.C., Yang F., Zheng W., Wang C., [J]. Small 2006, 2: 1007.
    [83] Li Z.Y., Huang H.M., Wang C., [J]. Macromol. Rapid Commun. 2006, 27: 152.
    [84] J. A. A. E. Elemans, A. E. Rowan, R. J. M. Nolte, [J]. J. Mater. Chem. 2003, 13: 2661.
    [85] Li Z.Y., Wang C. Highly sensitive and stable humidity nanosensors based on LiCl doped TiO2 electrospun nanofibers[J]. Journal of the American Chemical Society 2008, 130: 5036-5037.
    [86] Wang W., Huang H.M., Wang C., Zinc oxide nanofiber gas sensors via electrospinning. [J].The American Ceramic Society 2008, 91: 3817-3819.
    [87] Song X. F. , Wang Z. J., Ce Wang. A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers. [J]. Nanotechnology, 2009, 20: 075501.
    [88] Yang Q.B., Li D.M., Hong Y.L., Li Z.Y., Wang C., Qiu S.L., Wei Y., [J]. Synth. Met. 2003, 137: 973.
    [89] Wang Y.Z., Yang Q.B., Shan G.Y., Wang C., et al., [J]. Mater. Lett. 2005, 59: 3046.
    [90] Li Z.Y., Huang H.M., Shang T.C., Yang F., Zheng W., Wang C., Manohar S.K., [J]. Nanotechology 2006, 17: 917.
    [91] Ma R, Wu D, [J]. J. Am Chem Soc, 2002, 124: 7672-7673.
    [92] Chen J, et al. [J]. J. Am Chem Soc, 2001, 123: 11813-11814.
    [93] W. B. Cho, S. W. Choi, J. S. Mu, H. S. Kim, U. S. Kim, W.I. Cho, A Lithium secondary battery comprising a super fine fibrous polymer separator film and its fabrication method. Patent WO0189022 and WO0189023. Korea institute of Science Technology; 2001.
    [94] D. Ziegler, K.J. Senecal, C. Dew, L. Samuelson, J. Textile Apparel, Technol. Manage. 2001, vol. 1. Special issue: The Fiber Society Spring 2001 Conference, Raleigh NC.
    [95] Lu X.F., Zhao Q.D., Liu X.C., Wang D.J., Zhang W.J., Wang C., Wei Y., Macromol. Rapid Commun. 2006, 27: 430.
    [96] Wang Z. L. [J]. Nature, 2008, 451:809.
    [97] Liu J.Y., Min Y., Chen J.Y., Zhou H.W., Wang C., [J]. Macromol. Rapid Commun. 2007, 28: 215.
    [98] F. K. Ko, S. Khan, A. Ali, Structure dynamics and materials conference 2002, 3:1779.
    [99] J. M. Deitzel, J. Kleinmeyer, D. Harris, [J]. Polymer 2001, 42: 261.
    [100] M. M. Bergshoef, G. J. Vancso, [J].Adv. Mater. 1999, 11: 1362.
    [101] Gao L, Yang S.W, [J].Chem. Commun. 2007, 4372: 4374.
    [102] Hong K.H., [J]. Polym. Eng. Sci. 2007.
    [103] Hong K.H., Park J.L., Sul I.H., Youk J.H., Kang T.J., [J]. J. Polym. Sci. Part B: Polym. Phys. 2006, 44: 2468.
    [104] Son W.K., Youk J.H., Park W.H., [J]. Carbohyd. Polym. 2006, 65: 430.
    [1] Wan Y, Zhao D, [J]. Chem. Rev. 2007, 107:2821.
    [2] Wight AP, Davis ME, [J].Chem. Rev. 2002, 102:3589.
    [3] Anastas PT, Williamson TC (eds) (1998) In: Green chemistry. Frontiers in benign chemical synthesis and processes. Oxford University Press, Oxford.
    [4] Anastas PT, Williamson TC (eds) (1998) In: Green chemistry. Frontiers in benign chemical synthesis and processes. Oxford University Press, Oxford
    [5] Esumi, K., Isono, R., Yoshimura, [J].T. Langmuir 2004, 20: 237.
    [6] Liu Z., Wang X., Wu H., Li C. [J] J. Colloid Interface Sci. 2005, 287 (2): 604.
    [7] Kimura Y., Abe D., Ohnori T., Mizutani M., Harada M., [J]. Colloids Surf., A 2003, 231 :131.
    [8] Vincent T., Guibal E. [J]. Langmuir 2003, 19 :8475.
    [9] Adlim M., Abu Bakar M., Liew K. Y., Ismail J. , [J]. J. Mol. Catal. A: Chem. 2004, 212 : 141.
    [10] Zhang J., Xu S., Kumacheva, [J]. E. J. Am. Chem. Soc. 2004, 126: 7908.
    [11] Zhang J., Xu S., Kumacheva E., [J]. AdV. Mater. 2005, 17 : 2336.
    [12] Yan Lu, Yu Mei, Matthias Ballauff , [J]. J. Phys. Chem. B 2006, 110 : 3930-3937
    [13] J.G. de Vries, Can., [J]. J. Chem. 2001, 79 : 1086.
    [14] L. Djakovitch, P. Rollet, [J]. Adv. Synth. Catal. 2004, 346 : 1782.
    [15] P. Li, L. Wang, H. Li, [J]. Tetrahedron 2005, 61: 8633.
    [16] P. Rollet, W. Kleist, V. Dufaud, L. Djakovitch, [J]. J. Mol. Catal. A 2005, 241: 39.
    [17] R.G. Heidenreich, K. Kohler, J.G.E. Krauter, [J]. J. Pietsch, Synlett 2002, 07: 1118.
    [18] K. Heuze, D. Mery, D. Gauss, J.-C. Blais, [J]. D. Astruc, Chem. Eur. J. 2004, 10: 3936.
    [19] B.M. Choudary, S. Madhi, N.S. Chowdari, M.L. Kantam, B. Sreedhar, [J]. J. Am. Chem. Soc. 2002, 124: 14127.
    [20] Q.B.Yang, D. M. Li, C. Wang, [J]. Synthetic Metals 2003,137 : 973–974
    [20] M. Stasiak, C. Roeben, N. Rosenberger, F. Schleth, A. Studer, A. Greiner, J.H. Wendorff, [J]. Polymer 2007, 48 : 5208.
    [21] M. Stasiak, A. Studer, A. Greiner, J.H. Wendorff, [J]. Chem. Eur. J. 2007 , 13: 6150.
    [22] K. Nakane, T. Hotta, T. Ogihara, N. Ogata, S. Yamaguchi, [J]. J. Appl. Polym. Sci. 2007,106 : 863.
    [23] M.M. Demir, M.A. Gulgun, Y.Z. Menceloglu, B. Erman, S.S. Abramchuk, E.E. Makhaeva, A.R. Khokhlov, V.G. Matveeva, M.I.G. Sulman, [J]. Macromolecules 2004, 37: 1787.
    [24] Pradhan N., Pal A., Pal T. , [J]. Colloids Surf., A 2002, 196: 247.
    [25] Mei Y., Sharma G., Lu Y., Drechsler M., Ballauff M., Irrgang T., Kempe R., [J]. Langmuir 2005, 21: 12229.
    [26] Demir M. M., Yilgor I., Yilgor E., Erman B., [J]. Polymer, 2002, 43(11): 3303-3309.
    [1] MacDiarmid A. G., [J]. Angew. Chem., Int. Ed. 2001, 40: 2581.
    [2] Skoheim, T. A.; Elsenbaumer, R. L.; Reynolds, J. R. Handbook of Conducting Polymers, 2nd ed.; Marcel Dekker: New York, 1998.
    [3] O’Mullane, A. P.; Dale, S. E.; Macpherson, J. V.; Unwin, P. R. [J]. Chem. Commun. 2004, 1606: 1607.
    [4] Munstedt H, Kohler G, Mohwald H, Naegele D, Bitthin R, Ely G, et al. Rechargeable polypyrrole/lithium cells. [J]. Synth Met 1987, 18:259–264.
    [5] Sharma, S.; Nirkhe, C.; Pethkar, S.; Athawale, A. A. [J].Sens. Actuators, B 2002, 85: 131-136.
    [6] Majumdar, G.; Goswami, M.; Sarma, T. K.; Paul, A.; Chattopadhyay, A. [J]. Langmuir 2005, 21: 1663-1667.
    [7] Lewis TW, Smyth MR, Wallace GG. Electrofunctional polymers: their role in the development of new analytical systems. [J]. Analyst 1999, 124(3):213–9.
    [8] Mirmohseni A, Oladegaragoze A. Anti-corrosive properties of polyaniline coating on iron. [J]. Synth Met 2000, 114:105–8.
    [9] J. Yano, [J]. J. Electrochem. Soc. 1991,138:455.
    [10] H. Laborde, J.-M. Le′ger, C. Lamy, [J]. J. Appl. Electrochem. 1994, 24: 1019.
    [11] Liang L, Liu J, Windisch C F, Exarhos G J and Lin Y [J]. Angew. Chem. Int. Edn 2004,41 : 3665
    [12] J. Huang, M. Wan, J. Polym. Sci., [J]. A, Polym. Chem. 1999, 37: 151.
    [13] C. Wang, Z. Wang, M. Li, H. Li, [J]. Chem. Phys. Lett. 2001: 341: 431.
    [14] J.J. Langer, I. Czajkowski, [J]. Adv. Mater. Opt. Electron. 1997, 7 : 149.
    [15] J.J. Langer, [J]. Adv. Mater. Opt. Electron. 1999, 9: 1.
    [16] C. G. Wu, T. Bein, [J]. Science, 1994,264: 1757
    [17] C.R. Martin, [J]. Science 1994, 266 : 1961.
    [18] C.R. Martin, [J]. Chem. Mater. 1996, 8 : 1739.
    [19] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Ruoff, [J]. Chem. Mater. 1998,10: 260.
    [20] Z. X. Wei, Z. M. Zhang, M. X. Wan, [J]. Langmuir 2002,18: 917
    [21] Y. Yang, M. Wan, [J]. J. Mater. Chem. 2001, 11: 404.
    [22] H. Qiu, M. Wan, B. Mattews, L. Dai, [J]. Macromolecules 2001,34 : 675.
    [23] Z. Zhang, Z. Wei, M. Wan, [J]. Macromolecules 2002, 35 :5937.
    [24] K. Huang, M. Wan, [J]. Chem. Mater. 2002, 14: 3486.
    [25] J.X. Huang, B. K. Richard, [J]. J. Am. Chem. Soc. 2004, 126: 851-855
    [26] Zhang, X. Y.; Goux, W. J.; Manohar, S. K. [J]. J. Am. Chem. Soc. 2004, 126: 4502.
    [27] D.H. Reneker, I. Chun, [J]. Nanotechnology 1996, 7: 216–223.
    [28] I.D. Norris, M.M. Shakar, F.K. Ko, A.G. MacDiarmid, [J]. Synth. Met. 2000, 114: 2.
    [29] A.G. MacDiarmid, W.E. Jones, I.D. Norris, J. Gao, A.T. Johnson, N.J. Pinto, J. Hone, B. Han, F.K. Ho, H. Okuzaki, M. Llaguno, [J]. Synth. Met. 2001, 119: 27–30.
    [30] M. Peesan, R. Rujiravanit and P. Supaphol, [J]. Polymer Testing 2003, 22: 381.
    [31] Y. Wei and K. F. Hsueh: J. Polym. Sci., Part A: Polym. Chem. Vol. 27, (1989), p. 4351.
    [32] Dong, H.; Prasad, S.; Nyame, V.; MacDiarmid, A. G.; Jones, W. E. Jr.; Polyaniline /Poly(methyl methacrylate) Coaxial Fibers: The Fabrication and Effects of the Solution Properties on the Morphology of Electrospun Core Fibers. [J]. J. Polym. Sci. Part B: Polym. Phys. 2004, 42: 3934.
    [33] Dong, H.; Prasad, S.; Nyame, V.; Jones, W. E. Jr.; [J]. Chem. Mater. 2004, 16: 371.
    [34] Hasik, M.; Drelinkiewicz, A.; Wenda, E.; Paluszkiewicz, C.; Quillard, S.; [J]. J. Mol. Struct. 2001, 596: 89.
    [35] Ge, J. J.; Hou, H. Q.; Li, Q.; Graham, M. J.; Greiner, A.; Reneker, D. H.; Harris, F. W.; Cheng, Stephen, Z. D.; [J]. J. Am. Chem. Soc. 2004,126: 15754.
    [36] Tian S J, Liu J Y, Zhu T and Knoll W, [J]. Chem. Mater. 2004,16 :4103.
    [37] Diaz A F and Logan J A [J]. J. Electroanal. Chem. 1980,111: 111
    [38] Xiaomiao Feng, Yuge Liu, Chunliang Lu, Wenhua Hou, Jun-Jie Zhu. One-step synthesis of AgCl-polyaniline core–shell composites with enhanced electroactivity. [J]. Nanotechnology 2006, 17: 3578–3583.
    [39] Liu J Y, Tian S J and Knoll W, [J]. Langmuir, 2005, 21:5596
    [1] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemannt, Environmental Applications of Semiconductor Photocatalysis[J], Chem. Rev., 1995, 95: 69-96.
    [2] N. Serpone, E. Pelizzetti, Photocatalysis–Fundamentals and Applications, Wiley, New York, 1989.
    [3] A.L. Linsebigler, G. Lu, J.T. Yates, [J].Chem. Rev. 1995, 95: 735.
    [4] M.R. Hofmann, S.T. Martin, W. Choi, D.W. Bahnemann, [J].Chem. Rev. 1995, 95: 69.
    [5] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, [J].Science 2001, 293 : 269.
    [6] A. Ghicov, J.M. Macak, H. Tsuchiya, J. Kunze, V. Haeublein, L. Frey, P. Schmuki, [J].Nano Lett. 2006,6 :1080.
    [7] S. Sakthivel, H. Kisch, Angew. [J].Chem. Int. Ed. 2003, 42: 4908.
    [8] W. Choi, A. Termin, M.R. Hoffmann, [J]. J. Phys. Chem. 1994, 98 : 13669.
    [9] A. Fujishima, K. Hashimoto, T. Watnabe, TiO2 Photocatalysis, Fundamentals and Applications, Bkc Inc., Tokyo, 1999.
    [10] M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, M. Matsuoka, Annu. [J]. Rev. Mater. Res. 2005, 35: 1.
    [11] A. Mills, S. Le Hunte, [J]. J. Photochem. Photobiol. A 1997, 108: 1.
    [12] F. Kiriakidou, D.I. Kondarides, X.E. Verykios, [J]. Catal. Today 1999, 54: 119.
    [13] J. Krysa, M. Keppert, G. Waldner, J. Jirkovsky, [J]. Electrochim. Acta 2005,50: 3679.
    [14] Keshmiri, M., Mohseni, M., and Troczynski, T.,“Development of Novel TiO2 Sol-Gel-Derived Composite and Its Photocatalytic Activities for Trichloroethylene Oxidation,”2004, 53: 209–219.
    [15] Kemmitt, T., Al-Salim, N. I., Waterland, M., Kennedy, V. J., and Markwitz, A,“Photocatalytic Titania Coatings,”[J]. Curr. Appl. Phys., 2004, 4: 189–192.
    [16] Martyanov, I. N., and Klabunde, K. J.,“Comparative Study of TiO2 Particles in Powder Form and as a Thin Nanostructured Film on Quartz,”[J]. J. Catal., 2004,225: 408–416.
    [17] Limmer S J and Cao G , [J]. Adv. Mater. 2003, 15: 427
    [18] Miao Z, Xu D, Quyang J, Guo G, Zhao X and Tang Y [J]. Nano Lett. 2002, 2: 717
    [19] Wu J-J and Yu C-J., [J]. J. Phys. Chem. B, 2004, 108: 3377.
    [20] Kasuga T, Hiramatsu M, Hoson A, Sekino T and Niihara K [J]. Adv. Mater. 1999, 11: 1307
    [21] Chen Q, Zhou W, Du G and Peng L-M [J]. Adv. Mater. 2002, 14: 1208.
    [22]DanLi,Younan Xia, Fabrication of Titania Nanofibers by Electrospinning, [J]. NANO LETTERS.2003,3: 555.
    [1] Zampolli, S.; Elmi, I.; Ahmed, F.; Passini, M.; Cardinali, G. C.; Nicoletti, S.; Dori, L. [J]. Sens. Actuators, B 2005, 105: 400–406.
    [2] Ehrmann, S.; Jungst, J.; Goschnick, J.; Everhard, D. [J]. Sens. Actuators, B 2000, 65: 247–249.
    [3] Lee, D. D.; Lee, D. K. [J]. IEEE Sens. J. 2001, 1: 214–224.
    [4] Tomchenko, A. A.; Harmer, G. P.; Marquis, B. T. [J]. Sens. Actuators, B 2005, 108: 41–55.
    [5] Franke, M. E.; Koplin, T. J.; Simon, U. [J]. Small 2006, 2: 36–50.
    [6] Shimizu, Y.; Hyodo, T.; Egashira, M. [J]. Catal. SurV. Asia 2004, 8: 127–135.
    [7] Liu, S. Q.; Chen, A. C. [J]. Langmuir 2005, 21: 8409–8413.
    [8] Kwon,T. H.; Ryu, J. Y.; Choi, W. C.; Kim, S. W.; Park, S. H.; Choi, H. H.; Lee, M. K. [J]. Sens. Mater. 1999, 11: 257–267.
    [9] Comini, E. Anal. Chim. Acta 2006, 568, 28–40.
    [10] Eranna, G.; Joshi, B. C.; Runthala, D. P.; Gupta, R. P. Crit. ReV. [J]. Solid State Mater. Sci. 2004, 29: 111–188.
    [11] Kim, I.; Rothschild, A.; Lee, B. H.; Kim, D. Y.; Jo, S. M.; Tuller, H. L. [J]. Nano Lett. 2006, 6: 2009–2013.
    [12] Kolmakov, A.; Moskovits, M. Annu. [J]. ReV. Mater. Res. 2004, 34: 151–180.
    [13] Law, M.; Kind, H.; Messer, B.; Kim, F.; Yang, P. [J]. Angew. Chem., Int. Ed. 2002, 41: 2405–2408.
    [14] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. [J]. Science 2001, 291: 1947–1949.
    [15] Varghese, O. K.; Gong, D.; Paulose, M.; Ong, K. G.; Dickey, E. C.; Grimes, C. A. [J]. AdV. Mater. 2003, 15: 624–627.
    [16] Kolmakov, A.; Zhang, Y.; Cheng, G.; Moskovits, M. AdV. Mater. 2003, 15:997–1000.
    [17] Zhang, D.; Liu, Z.; Li, C.; Tang, T.; Liu, X.; Han, S.; Lei, B.; Zhou, C. [J]. Nano Lett. 2004, 4: 1919–1924.
    [18] Kuang, Q.; Lao, C.; Wang, Z. L.; Xie, Z.; Zheng, L. [J]. J. Am. Chem. Soc. 2007, 129: 6070–6071.
    [19] Ying, J.; Wan, C.; He, P. [J]. Sens. Actuators, B 2000, 62: 165–170.
    [20] Jain, M. K.; Bhatnagar, M. C.; Sharma, G. L. [J]. Sens. Actuators, B 1999, 55: 180–185.
    [21] Saha, D.; Giri, R.; Mistry, K. K.; Sengupta, K. [J].Sens. Actuators, B 2005, 107: 323–331.
    [22] Jain, M. K.; Bhatnagar, M. C.; Sharma, G. L. [J]. Sens. Actuators, B 1999, 55: 180–185. 119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700