电磁场数值求解中迭代方法与预条件技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程应用领域,随着电子计算机与相关科学技术的发展,高效的数值分析方法已越来越具有重要性。电磁领域问题的数值分析方法中,有限元法和矩量法是两种重要的且广泛应用的方法,两种方法分析的结果都将产生一个大型复矩阵线性方程组,对该方程组的求解用时在整个仿真用时中占据很大比重。因此,各种高效率、低存储的快速求解算法的研究成为迫切需要。本文研究主要基于:矢量有限元法分析高频电磁场Helmholtz方程边值问题所生成的大型复对称且高度非正定的稀疏线性方程组的快速求解算法,以及电场积分方程矩量法求解所生成的大型复对称非正定的稠密线性方程组的快速求解算法,研究主要致力于高效迭代算法和预条件算法。
     首先采用对称化的迭代方法如:COCG、SQMR、以及简化的LBCG(SLBCG),并详细研究了其对复对称稠密线性系统以及复对称稀疏线性系统求解的效率,同时与几种常用迭代法相比较。提出了组合迭代的方法,通过组合不同迭代法的残差收敛机制来充分消除残差,这样既能避免COCG在高精度迭代的等方性崩溃,又能在一些问题的求解中获得比单独迭代法更高的收敛效率。
     详细研究了几种常用的预条件算法在求解不同类型的矩阵方程组以及与不同迭代法结合时的功效。提出了一种针对高度非正定的矢量有限元系数矩阵的改进的AINV(MAINV)预条件算法,该算法通过在分解过程中引入动态主元加强技术来获得更加稳定且高效的预条件子;在此基础上,引入了复偏移Laplace算子方案来尽可能减少预条件子的构造代价,并进一步加强预条件子的健壮性。提出了一种主元补偿的松弛IC分解(RIC)预条件算法,该算法利用待丢弃的小元对相应的对角主元进行加强,以获得更加稳定高效的预条件子,同时也研究了其在与不同迭代法结合时的功效。常规预条件子的产生通常基于系数矩阵A,本文针对特定电磁问题的求解提出了一种基于A的实部矩阵分解的预条件算法,并比较了与不同迭代法结合进行求解时的效率。该预条件子不仅获得了比常规方法更好的求解性能,还能节约相当一部分的存储量。
     此外,研究了对不完全分解和稀疏近似逆分解预条件算法影响较大的前处理技术,主要包括缩放和重排序技术。采用了一种易于实施的缩放技术来降低矩阵条件数,并采用重排序技术来同时获得分解的高效率和低存储。对采用前处理与不采用前处理所得到的预条件子的性能进行详细比较,以说明前者的优越性。
With the development of the computer science and techniques, effective numerical methods become more and more important. in many engineering fields. The finite element method and the method of moment are two important and widely used numerical methods to analyze the electromagnetic problems. However, the application of these two methods usually yield large complex and symmetric linear systems, and the time for solving this kind of linear system is the main part of which for whole numerical simulation process. Therefore the researches on the algorithms of high efficiency and low memory needs are necessary. In this dissertation, the work is mainly based on the effective algorithm for solving the large complex symmetric and highly indefinite linear systems arising from the FEM analyzing electromagnetic field Helmholtz equations, and the MOM analyzing EFIE equations. And the work is devoted to iterative and preconditioning algorithms.
     We first apply the symmetrical iterative methods such as COCG, SQMR, and the simplified linear BCG(LBCG) for solving complex symmetric dense and sparse linear systems, and detailedly investigate the convergence behaviour by compared with several conventional iterative methods. We then proposed a co-iterative method which can avoid the isotropic breakdowns and outperform the conventional iterative methods for solving several electromagnetic problems.
     We apply several conventional preconditioners to solve complex symmetric dense and sparse linear systems, and detailedly investigate their performance when combined with different iterative methods. For highly indefinite FEM linear systems, we propose a modified AINV(MAINV) preconditioner. It is designed by adding pivots compensation strategy to the basic AINV process, thus the preconditioner can be more stable and effective. Based on this algorithm, we employed a complex shifted Laplace operater scheme to reduce the computational cost and get a more robust preconditioner. We also propose a modified relaxed IC (RIC) algorithm and investigate its convergence beheavior when applied to different iterative methods. It uses the small elements to compensate the correspond diagonal pivots to get a more stable preconditioner. Conventional preconditioner is usually constructed based on the coefficient matrix A, in this dissertation we develop an novel preconditioner, which is based on the real part of matrix A, for solving specific electromagnetic problems. Compared with the conventional ones, this preconditioner is not only more efficient but also can reduce the memory needs.
     Besides, we investigate the preprocessing techniques, including scaling and reordering, which is very useful for the incomplete factorization and the factorized sparse approximate inverse algorithms. We use a scaling technique to decrease the condition number of the coefficient matrix. We also use the reordering techniques to achieve the efficient factorization and low memory needs. And the preconditioner is more effective when compared with which resulting from the factorization without preprocessing.
引文
[1]清华大学、北京大学计算方法编写组.计算方法.北京:科学出版社,1974
    [2]石钟慈,袁亚湘主编,奇效的计算:大规模科学与工程计算的理论和方法,长沙:湖南科学技术出版社,1998
    [3] J. M. Drtega著,张丽君等译.数值分析.北京:高等教育出版社,1973
    [4] A. Taflve, Computational electrodynamics: the finite-difference time-domain Method. Norwood, MA: Artech Hous, 1995
    [5]金建铭(美)著,王建国译,电磁场有限元方法,西安:西安电子科技大学出版社, 1998
    [6]盛新庆,计算电磁学要论,北京:科学出版社, 2004
    [7] R. F. Harrington, Field Computation by Moment Methods. New York: McMillan, 1968
    [8] A. F. Peterson, S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics: Wiley-IEEE Press, 1997
    [9] J. J. H. Wang, Generalized moment methods in electromagnetics: formulation and computer solution of integral equations: John Wiley & Sons, Inc., 1991
    [10]李世智,电磁散射与辐射问题的矩量法:电子工业出版社, 1985
    [11] W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics. Boston: Artech House, 2001
    [12]倪光正,杨仕友,钱秀英,邱捷,工程电磁场数值计算.第一版.北京:机械工业出版社,2004.
    [13]王秉中.计算电磁学.科学出版社,北京, 2002
    [14]许峰,洪伟,童创明.区域分解时域有限差分法(DD-FDTD)及其在电磁散射问题中的应用.电子学报,2001, 29(12):1646-1649
    [15] R. D. Graglia, D. R. Wilton, and A. F. Peterson. Higher order interpolatory vector bases for computational electromagnetics. Ieee Transactions on Antennas and Propagation, 1997, 45:329-342
    [16] E. Jorgensen, J. L. Volakis, P. Meincke, and O. Breinbjerg. Higher order hierarchical Legendre basis functions for electromagnetic modeling. Ieee Transactions on Antennas and Propagation, 2004,52:2985-2995
    [17] W. C. Chew, Z. P. Nie. Analysis of a probe-fed microstrip disk antenna. IEE PROCEEDINGS-H, 1991,138(2):185-191
    [18] Ansoft Corporation. HFSS Full Book. Ansoft Corporation, 2005
    [19] EMSS Corporation. FEKO Getting Started Manual. EMSS Corporation, 2006
    [20] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic Scattering by Surfaces of Arbitrary Shape. Ieee Transactions on Antennas and Propagation, 1982,30:409-418
    [21] J. Hu, Z. P. Nie, and X. D. Gong. Solving electromagnetic scattering and radiation by FMM with curvilinear RWG basis, Chinese Journal of Electronics. 2003,12: 457-460
    [22] Arndt F, Heckmann D, Semmerow H. Stopband optimised E-plane filters with multiple metal inserts of variable number per coupling element. 1986 IEE Proceedings, Microwaves, Antennas and Propagation, 133:169-174
    [23] R. S. Chen, Edward. K. N. Yung. Full-wave analysis of electromagnetic-field boundary-value problems. IEEE Trans. Microwave Theory & Tech., 2002, 50:1165–1172
    [24] A. S. Householder. The Theory of Matrices in Numerical Analysis,Blaisdell, New York, 1964
    [25] Nadobny J. Wust P., Seebass, M., Deuflhard P. and Felix, R. A volume-surface integral equation method for solving Maxwell's equations in electrically inhomogeneous media using tetrahedral grids. IEEE Trans. Microwave Theory Tech., 1996, 44(4):543-544
    [26] C. C. Lu and W. C. Chew. Electromagnetic scattering from material coated PEC objects: a hybrid volumn and surface integral equation approach. IEEE Trans. Antennas Propagat., 1998, 46:303-311
    [27] C. C. Lu, Chun Yu. Analysis of microstrip structures of finite ground plane using the hybrid volume-surface integral equation approach. IEEE Antennas and Propagation symposium, 2002, 4:162-165.
    [28] Ning Yuan, Tat Soon Yeo, Xiao-Chun Nie, Yeow-Beng Gan. Analysis of probe-fed conformal microstrip antennas on finite grounded substrate. IEEE Trans. Antennas and Propagat, 2006, 54(2):554-562
    [29] I. Bardi, O. Biro, K. Preis, etal. Nodal and edge element analysis of inhomogeneously loaded 3-D cavities. IEEE Trans Magn. 1992, 28:1142-1145
    [30] R. Dyczij-Edlinger, O. Biro. A joint vector and scalar potential formulation for driven high frequency problems using hybrid edge and nodal finite elements. IEEE Trans. MTT, 1996, 44:15-23
    [31] R. Luneberg, Mathematical Theory of Optics. Providence, RI: Brown Univeristy Press, 1944
    [32] J. Keller. Geometrical-Theory of Diffraction. in Calculus of Variations and Applications, L. M.Graves, Ed., ed New York: McGraw-Hill, 1958
    [33] R. Dyczij-Edlinger, G. Peng, J. F. Lee. A fast vector-potential method using tangentially continuous vector finite elements. IEEE Trans. MTT, 1998,46(6): 863-868
    [34] A. Michaeli. Equivalent Edge Currents for Arbitrary Aspects of Observation. Ieee Transactions on Antennas and Propagation. 1984, 32: 252-258
    [35] P. Y. Ufimtsev, Method of Edge Waves in the Physical Theory of Diffraction,. Moscow: Soviet Radio, 1962
    [36] H. Ling, R. C. Chou, and S. W. Lee. Shooting and Bouncing Rays - Calculating the Rcs of an Arbitrarily Shaped Cavity. Ieee Transactions on Antennas and Propagation, 1989, 37:194-205
    [37] J. M. Rius, M. Ferrando, and L. Jofre. High-Frequency Rcs of Complex Radar Targets in Real-Time. Ieee Transactions on Antennas and Propagation, 1993, 41:1308-1319
    [38] S. M. Rao, D. R. Wilton, and A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat., 1982,AP-30:409-418
    [39] P. Zwamborn, P. M. van der Berg. The three-dimensional weak form of the conjugate gradient FFT method for solving scattering problems. IEEE Trans. Microwave Theory Tech. , 1992, 40(9):1757-1766
    [40] B. Engquist and A. Majda. Absorbing Boundary-Conditions for Numerical-Simulation of Waves. Mathematics of Computation. 1977, 31: 629-651
    [41] A. Bayliss, C. I. Goldstein, and E. Turkel. On Accuracy Conditions for the Numerical Computation of Waves. Journal of Computational Physics. 1985, 59:396-404
    [42] R. Lee and A. C. Cangellaris. A Study of Discretization Error in the Finite-Element Approximation of Wave Solutions. Ieee Transactions on Antennas and Propagation, 1992, 40:542-549
    [43] K. S. Yee. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag., vol. 1966 AP-14:302-307
    [44] E. L. Lindman. Free-Space Boundary-Conditions for Time-Dependent Wave-Equation. Journal of Computational Physics. 1975, 18: 66-78
    [45] G. Mur. Absorbing Boundary-Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations. Ieee Transactions on Electromagnetic Compatibility. 1981, 23:377-382
    [46] Z. P. Liao, H. L. Wong, B. Yang, and Y. Yuan. A Transmitting Boundary for Transient WaveAnalyses. Scientia Sinica Series a-Mathematical Physical Astronomical & Technical Sciences. 1984,27:1063-1076
    [47] C. M. Rappaport and L. J. Bahrmasel. An Absorbing Boundary-Condition Based on Anechoic Absorber for Em Scattering Computation. Journal of Electromagnetic Waves and Applications. 1992, 6:1621-1633
    [48] J. P. Berenger. A Perfectly Matched Layer for the Absorption of Electromagnetic-Waves. Journal of Computational Physics. 1994,114:185-200
    [49] A. Taflove and M. E. Brodwin. Numerical-Solution of Steady-State Electromagnetic Scattering Problems Using Time-Dependent Maxwells Equations. Ieee Transactions on Microwave Theory and Techniques. 1975,23: 623-630
    [50] B Engquist and A Majda. Absorbing boundary conditions for the numerical simulation of waves. Math comput. 1977,31:629-651
    [51] M. W. Ali,T.H.Hubing and J.L.Drewniak. A Hybrid FEM/MoM Technique for electromagnetic seattering and radiation from dielectric objects with attached wires. IEEE trans. On electromagnetic compatibility,1997
    [52] J. P. Berenger. A Perfectly matched layer for the absorption of electromagnetic waves. J.comp. phy. 1994,114: 185-200
    [53] Z. S. Sacks, D. M. Kingsland, R. Lee, etal. Performance of an anisotropic artificial absorber for truncation finite element meshes. IEEE Trans. Antennas and Propagation. 1995, 43:1460-1463
    [54]邵振海,洪伟.几种新的吸收边界条件及其在三维电磁散射问题中的应用.电波科学学报,1999,14(3):287-294
    [55] R. Mansour, R S K Tong, and R H MacPhie. Simplified description of the field distribution in finlines and ridge waveguide and its application to the analysis of E-plane discontinuities. IEEE Trans. Microwave Theory Tech.,1988, 36(12): 1825-1832
    [56] K. Ise, K. Inoue, and M. Koshiba. Three-dimensional finite element method with edge elements for electromagnetic waveguide discontinuities. IEEE Trans. Microwave Theory & Tech. 1991,39:1289-1295
    [57]刘金妮.近似逆预条件子的研究. [硕士学位论文],电子科技大学,成都, 2009
    [58] A. R. Mitchell and D. F. Griffiths, The finite difference method in partial differential equations, iley-Interscience, 1980
    [59] J. F. Lee, R. Lee, and A. Cangellaris. Time-domain finite-element methods. Ieee Transactions onAntennas and Propagation. 1997,45:430-442
    [60] J.-M. Jin, J. Liu, Z. Lou, and C. S. T. Liang. A Fully High-Order Finite-Element Simulation of Scattering by Deep Cavities. Ieee Transactions on Antennas and Propagation. 2003,51:2420-2429
    [61] J. P. Webb. Hierarchal vector basis functions of arbitrary order for triangular and tetrahedral finite elements. Ieee Transactions on Antennas and Propagation, vol. 1999,47:1244-1253
    [62]班永灵.高阶矢量有限元方法及其在三维电磁散射和辐射问题中的应用. [博士学位论文],电子科技大学,成都, 2006
    [63] J. P. Webb.A-adaptive scheme for scalar fields, using high-order, singular finite elements. 445 Hoes Lane / P.O. Box 1331, Piscataway, NJ 08855-1331, United States, 2010
    [64] W. C. Chew, Waves and Fields in Inhomogenous Media vol. 3. Wiley-IEEE Press, 1999
    [65] W C Chew, M S Tong, and B Hu. Integral Equation Methods for Electromagnetic and Elastic Waves. Morgan and Claypool Publishers, 2007
    [66] R. F. Harrington, Time-Harmonic Electromagnetic Fields, 2nd ed. New York: McGraw-Hill Book Company, 1961
    [67] C. Muller, Foundations of the Mathematical Theory of Electromagnetic Waves. New York: Spinger, 1968
    [68] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill, 1941
    [69] L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications. Wiley-Interscience, 2000
    [70]楼仁海,符果行, and袁敬闳,电磁理论.成都:电子科技大学出版社, 1996
    [71] E. Jorgensen, O. S. Kim, P. Meincke, and O. Breinbjerg. Higher order hierarchical discretization scheme for surface integral equations for layered media. Ieee Transactions on Geoscience and Remote Sensing, 2004,42:764-772
    [72] D. H. Schaubert, D. R. Wilton, and A. W. Glisson. A Tetrahedral Modeling Method for Electromagnetic Scattering by Arbitrarily Shaped Inhomogeneous Dielectric Bodies. Ieee Transactions on Antennas and Propagation, 1984,32:77-85
    [73]杨法.三维金属-介质复合结构电磁散射的有限元-边界积分方法. [硕士学位论文],电子科技大学,成都, 2007
    [74] S. Wang, Y. Su, and X. Guan, Applying fast multipole method to higher-order hierarchicalLegendre basis functions in electromagnetic scattering. Iet Microwaves Antennas & Propagation, 2008,2: 6-9
    [75] H. Patzelt., and F. Arndt. Double-Plane Steps in Rectangular Waveguides and their Application for Transformers, Irises, and Filters. IEEE Trans. MTT., 1982, 30(5):771-776
    [76] E. H. Newman, P. Alexandropoulos, and E. K. Walton. Polygonal Plate Modeling of Realistic Structures. Ieee Transactions on Antennas and Propagation, 1984, 32:742-747
    [77] J. M. Song and W. C. Chew. Moment Method Solution Using Parametric Geometry. Ieee Antennas and Propagation Society International Symposium 1994, 1994,3:2242-2245
    [78] W. H. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed.: Cambridge University Press, 2007
    [79] Y. Saad, Iterative methods for sparse linear systems. Boston: PWS Publishing Company, 1996.
    [80] van der Vorst, H. A. and J. B. M. Melissen. A Petrov-Galerkin type method for solving Ax = b, where A is symmetric complex. IEEE Trans. Mag., 1990, 26(2): 706-708
    [81] R. W. Freund and N. M. Nachtigal. A new Krylov-subspace method for symmetric indefinite linear systems. Proceedings of the 14th IMACS World Congress on Computational and AppliedMathematics. 1996, 1253-1256
    [82] Press, W. H., et al., Numerical Recipes in Fortran: The Art of Scientific Computing, ambridge University press, Cambridge,1986–1992
    [83] M. R. Hestenes and E. L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Natl.Bur. Stand. 1952,49:409
    [84] C. Lanczos, Solutions of systems of linear equations by minimized iterations, J. Res. Natl. Bur. Stand. 49,33 (1952)
    [85] Saad, Y. and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput, 1986,7: 856-869
    [86] H. A. van der Vorst. Bi-CGSTAB: A fast and smoothy converging variant of Bi-CG for the soution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput., 1992, 13: 631-644
    [87] Freund, R. and N. Nachtigal. QMR: A quasi-minimal residual method for non-Hermitian linear systems. Numer. Math., 1991, 60: 315-339
    [88] R. W. Freund. Conjugate gradient-type methods for linear systems with complex symmetric coefficient matrices. SIAM J. Sci. Statist. Comput., 1992, 13: 425-448
    [89] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equations.SIAM J. Numer. Anal., 1975, 12: 617-629
    [90] O. Axelsson, Iterative Solution Methods ,Cambridge Univ. Press, Cambridge, 1994
    [91] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods,SIAM, Philadelphia, PA, 1994
    [92] C. Brezinski. Projection Methods for Systems of Equations. Studies in Computational Mathematics. Amsterdam: North-Holland, 1997
    [93] A. M. Bruaset, A Survey of Preconditioned Iterative Methods. Longman Scientific & Technical, Harlow, UK, 1995
    [94] B. Fischer, Polynomial Based Iteration Methods for Symmetric Linear Systems Wiley-Teubner, Chichester, 1996
    [95] A. Greenbaum, Iterative Methods for Solving Linear Systems. SIAM, Philadelphia, PA, 1997
    [96] Y. Notay, Flexible conjugate gradient, SIAM J. Sci. Comput, 2000,22:1444-1460
    [97] W F Tinney and J W Walker. Direct solution of sparse network equations by optimally ordered triangular factorization. Proc. of IEEE, 1967, 55: 1801-1809
    [98] J. W-H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM Trans. Math. Soft., 1985, 11: 141-153
    [99] J. W-H. Liu. The multifrontal method for sparse matrix solution: theory and practice. SIAM Review, 1992, 34: 82-109
    [100] M. Benzi. Preconditioning Techniques for Large Linear Systems: A Survey. J. Comput. Phys., 2002, 182: 418-477
    [101] M. Benzi, J. K. Cullum, AND M. Tuma. Robust approximate inverse preconditioning for the conjugate gradient method. SIAM J. Sci. Comput., 2000, 22: 1318-1332
    [102] M. Benzi, C. D. Meyer, AND M. T¨uma. A sparse approximate inverse preconditioner for the conjugate gradient method. SIAM J. Sci. Comput., 1996, 17: 1135-1149
    [103] M. Benzi and M. T¨uma. A sparse approximate inverse preconditioner for nonsymmetric linear systems. SIAM J. Sci. Comput., 1998, 19:968-994
    [104] M. Bollh¨ofer and Y. Saad. On the relations between ILUs and factored approximate inverses.SIAM J. Matrix Anal. Appl., 2002, 24: 219-237
    [105] L. Yu. Kolotilina and A. Yu. Yeremin, Factorized sparse approximate inverse preconditioning. I. Theory, SIAM J. Matrix Anal. Appl, 1993,14:45-58
    [106] M. Benzi, D. B. Szyld, and A. van Duin. Orderings for incomplete factorizationpreconditioning of nonsymmetric problems. SIAM J. Sci. Comput., 1999, 20: 1652-1670
    [107] M. Benzi, R. Kouhia, AND M. T¨uma. Stabilized and Block Approximate Inverse Preconditioners for Problems in Solid and Structural Mechanics. Computer Methods in Applied Mechanics and Engineering, 2001,190: 6533-6554
    [108] M. Bollh¨ofer and Y. Saad. A factored approximate inverse preconditioner with pivoting. SIAM J. Matrix Anal. Appl., 2002, 23: 692-705
    [109] M. Benzi and M. Tuma, A comparative study of sparse approximate inverse preconditioners, Appl. Numer.Math. 1999,30:305-340
    [110] M. Benzi and M. Tuma. Orderings for factorized approximate inverse preconditioners. SIAM J. Sci. Comput,2000,21:1851-1868
    [111] Y. Y. Botros and J. L. Volakis. Preconditioned generalized minimal residual iterative scheme for perfectly matched layer terminated applications. IEEE Microwave Guided Wave Lett,1999,9:45-47
    [112] M. Benzi and M. Tuma, A parallel solver for large-scale Markov chains, Appl. Numer. Math. 2002,41:135-153
    [113] M. Benzi, J. Mar′?n, and M. Tuma. A two-level parallel preconditioner based on sparse approximate inverses in Iterative Methods in Scientific Computation IV. IMACS, New Brunswick, NJ, 1999
    [114] E. ChowandY. Saad, Approximate inverse preconditioners via sparse-sparse iterations, SIAM J. Sci. Comput. 1998,19(3): 995–1023
    [115] Y. H. Li, Z. P. Nie, M. Meng, etal. An Efficient MAINV Preconditioned COCG Method for FEM Analysis of Millimeter Wave Filters. J Infrared Milli Terahz Waves, 2011, 32(2):216–224
    [116] R. Bridson and W. P. Tang, Ordering, anisotropy and factored sparse approximate inverses, SIAM J. Sci. Comput, 1999,21(3):867-882
    [117] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A Novel Multigrid Based Preconditioner For Heterogeneous Helmholtz Problems. SIAM J. Sci. Comput., 2006,27(4):1471-1492
    [118] Y. A. Erlangga, C. Vuik, C. W. Oosterlee. On a class of preconditioners for solving the Helmholtz equation. Applied Numerical Mathematics, 2004,50:409-425
    [119] J. Zhu, X. W. Ping, R. S. Chen, Z. H. Fan, and D. Z. Ding. An incomplete factorizationpreconditioner based on shifted Laplace operators for FEM analysis of microwave structures. Microwave and Optical Technology Letters. 2010,52(5):1036-1042
    [120] Tuomas Airaksinen, Erkki Heikkola, Anssi Pennanen,Jari Toivanen. An algebraic multigrid based shifted- Laplacian preconditioner for the Helmholtz equation. Journal of Computational Physics, 2007:1196-1210
    [121] J. A. Meijerink and H. A. Van der Vorst. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrices. Math. Comp., 1977, 31: 148-162
    [122] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numer. Linear Algebra Appl., 1994, 1: 387-402
    [123]李良.大型线性方程组求解技术及在计算电磁学中的应用研究. [博士学位论文],电子科技大学,成都, 2009
    [124]平学伟.电磁场中的快速有限元分析. [博士学位论文].南京理工大学,南京,2007
    [125] I. Hladic, M. B. Reed, and G. Swoboda. Robust preconditioners for linear elasticity FEM analyses. Int. J. Number. Meth. Eng., 1997,40:2109–2127
    [126] M. M. M. Made. Incomplete factorization-based preconditionings for solving the Helmholtz equation. Int. J. Numer. Meth.Eng, 2001,50:1077–1101
    [127]. O. Axelsson, and L. Kolotilina. Diagonally compensated reduction and related preconditioning methods. Numer. Linear Algebra Appl., 1994,1:155–177
    [128] Y. H. Li, Z. P. Nie, and X. Y. Sun. Relaxed incomplete cholesky factorization preconditioned symmetric LBCG algorithm for solving electromagnetic problems. J. of Electromagn. Waves and Appl., 2009,23:2237–2249
    [129] G. A. Meurant, Computer Solution of Large Linear Systems, Studies in Mathematics and Its Applications. Amsterdam:North-Holland,1999
    [130] V. P. Il’in, Iterative Incomplete Factorization Methods. World Scientific, Singapore, 1992
    [131] I. Gustafsson, A class of first order factorization methods. BIT, 1978,18:142
    [132] G. A. Meurant. Computer Solution of Large Linear Systems, Studies in Mathematics and Its Applications. North-Holland, Amsterdam, 1999
    [133] C. E Howard. Relaxed and stabilized incomplete factorizations for non-self-adjoint linear systems. BIT,1989, 890-915
    [134] V. Eijkhout, Beware of unperturbed modified incomplete factorizations, in Iterative Methods in Linear Algebra. Elsevier Science, North-Holland, 1992.
    [135] R. S. Chen, X. W. Ping, E. K. N. Yung, C. H. Chan, Z. P. Nie and J. Hu. Application ofDiagonally Perturbed Incomplete Factorization Preconditioned Conjugate Gradient Algorithms for Edge Finite-Element Analysis of Helmholtz Equations. IEEE Trans. Antennas Propag., 2006, 54:1604-1607
    [136] O. Axelsson, A. Kucherov. Real valued iterative methods for solving complex symmetric linear systems. Numerical linear algebra with applications, 2000(7):197-218
    [137] M. Benzi. Block preconditioning for real valued iterative algorithms for complex linear systems. IMA J of Num. Analysis, 2008, 28:598-618
    [138] D. D. Day, M. A. Heroux. Solving complex valued linear systems via equivalent real formulations. SIAM J. Sci. Comput, 2001,23:480-498
    [139]骆志刚,仲妍,吴枫.稀疏线性方程组求解中的预处理技术综述.计算机工程与科学,2010 ,32(12):89-101
    [140] M. Olschowka and A. Neumaier, A new pivoting strategy for Gaussian elimination. Linear Algebra Its Appl, 1996,240:131
    [141] M. Benzi, J. C. Haws, and M. Tuma, Preconditioning highly indefinite and nonsymmetric matrices, SIAM J. Sci. Comput. 2000,22:1333
    [142]吴建平,王正华,李晓梅.稀疏线性方程组的高效求解与并行计算.长沙:湖南科学技术出版社, 2004
    [143] E. Cuthill, Several strategies for reducing the bandwidth of matrices, in Sparse Matrices and Their Applications. New York,Plenum, 1972
    [144] A. George, J. W. H. Liu . A Minimal Storage Implementation of the Minimum Degree Algorithm. SIAM J ou rnal on Numerical An aly sis, 1980, 17(2) : 282-299
    [145] J. W. H. Liu. The Minimum Degree Ordering with Constraints. SIAM Journal on Scientific and Statistical Computing, 1989, 10( 6) : 1136-1145
    [146] J. A. George, J. W. H. Liu . The Evolut ion of the Minimum Degree Ordering Algorithm. SIAM Review, 1989, 31( 1):1-19
    [147] A . George, J. W. H. Liu . An Aut omat ic Nest ed Diss ect ion Algorithm f or Irregu lar Fin it e Element Prob lem. SIAM J ournal on Num erical Analysis, 1978, 15(5):1053-1069
    [148] A. Pothen, H. D. Simon, K. P. Liou. Partition ing Sparse Matrices with Eigenvectors of Graph s[ J] . SIAM Jou rnal on Matrix Analysis and Applicat ions, 1990, 11( 3) : 430-452
    [149] C. Ashcraft. Compressed Graphs and the Minim um Degree Algorithm . SIAM Journal on Scientific Computing, 1995,16( 6):1404-1411
    [150] M. Benzi and M. Tuma. Orderings for factorized approximate inverse preconditioners. SIAM J.Sci. Comput., 2000,21:1851
    [151] R. Bridson and W. P. Tang. Ordering, anisotropy and factored sparse approximate inverses. SIAM J. Sci. Comput. 1999, 21:867
    [152] E. Cuthill, Several strategies for reducing the bandwidth of matrices, in Sparse Matrices and Their Applications. New York :Plenum, 1972
    [153] P. R. Amestoy, T. A. Davis and I. S. Duff. An Approximate Minimum Degree Ordering Algorithm. SIAM J. Matrix Analysis & Appl., 1996,17:886-905
    [154] M. Grote and T.Huckle.Parallel preconditioning with sparse approximate inverses.SIAM J. Sci.Comput.,1997,18:838-853
    [155] E. Chow and Y.Saad.Approximate inverse preconditioners via sparse-sparse iterations.SIAM J.Sci.Comput.,1998,19:995-1023
    [156] Y. Saad.Preconditioned Krylov subspace methods for CFD applications.New York:Wiley, 1995,139-158
    [157] N. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners using norm-minimization techniques.SIAM J.Sci.Comput.,1998,19:605-625
    [158] O. Axelsson. A generalized SSOR method. BIT, 1972,13:443
    [159] Thomas Huckle. Approximate sparsity patterns for the inverse of a matrix and preconditioning. Applied Numerical Mathematics, 1999, 30:291-303
    [160] G. Alléon, M. Benzi, L. Giraud. Sparse approximate inverse preconditioning for dense linearsystems arising in computational electromagnetics. Numer. Algorithms, 1997, 16:1-15
    [161] L.Yu. Kolotilina. Explicit preconditioning of systems of linear algebraic equations with dense matrices.J.Soviet Math.,1988,43:2566-2573.
    [162] J. D. F. Cosgrove, J. C. Díaz, A. Griewank.Approximate inverse preconditioning for sparse linear systems.Internat.J.Comput.Math.,1992,44:91-110
    [163] N. I. M. Gould and J. A. Scott. Sparse approximate-inverse preconditioners using norm-minimization techniques. SIAM J.Sci. Comput., 1998,19:605-625
    [164] M. Ronny, G. Herbert, B. Ronnie, etal. An algebraic multigrid method for solving very large electromagnetic systems. IEEE Transactions on Magnetics, 1998,34(5):3327-3330
    [165] S. Reitzinger, J. Schoberl. An algebraic multigrid method for finite element discretizations with edge elements. Numer. Linear Algebra Appl, 2002,9:223-238
    [166] N. Hu, I Katz. Multi-p methods: Iterative algorithms for the p-version of the finite elementanalysis. SIAM J Sci.comput, 1995,16(6):1308-1329
    [167] S. V. Polstyanko, J. F. Lee. Two-level hierarchical FEM method for modeling passive microwave devices. J. Comput Phys, 1998,40:400-420

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700