耦合量子阱能级特性与结构优化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对耦合量子阱能级特性及其结构优化进行研究。量子阱材料由于电光效应比体材料强很多,在较低的电压下就可以实现大的吸收系数变化和折射率变化,因此人们利用量子阱材料制作了各式各样的波导型器件,如行波调制器、光开关。利用传统的矩形量子阱材料制作的波导型器件存在吸收损耗大、消光比低等缺点,为了推进量子阱材料在集成光学器件中更广泛的应用,有必要寻求一种在低工作电压、低吸收损耗下能产生一个大折射率变化的新型量子阱结构。
     本论文主要作了以下几个工作:
     (1)利用微扰论研究了对称耦合量子阱中电子和空穴对称、反对称能级的形成,发现这些能级由单量子阱中电子、空穴基态能级分裂而来。把电子和空穴对称、反对称能级视作二能级体系,得出它们在外电场作用下分离成能级差更大的两个能级,即具有较低能量的下能级和较高能量的上能级,而且下能级和上能级对应的本征态中既有对称态成分,又有反对称态成分的结论。
     (2)利用耦合模理论分析了非对称耦合量子阱中电子和空穴最低、次低能级,发现这些能级由非对称阱中的左右阱分别视作单阱时基态能级通过耦合而形成。比较了对称阱与非对称阱应用于行波调制器、光开关中的优劣,设计出了一种新的耦合量子阱结构—准对称耦合量子阱。
     (3)根据准对称耦合量子阱的势能结构特点,提出了垒、阱材料的选取原则;推导了InP基InGaAs/InAlAs应变量子阱中阱和垒中的应力、阱和垒的带隙、阱和垒之间的带偏移的插值计算公式。考虑了导带与价带间的带混合效应对电子和轻空穴的影响,利用Bastard两带模型给出电子和轻空穴有效质量与本征能量的关系,并通过遂穿共振法求解本征能量和本征波函数。
     (4)总结出六条优化准对称耦合量子阱的原则,并根据这些原则求出了InP基InGaAs/InAlAs准对称耦合量子阱各项参数;给出了优化后量子阱的电光特性,结果表明:优化后的耦合阱不仅较好地处理了偏振相关性问题,而且在工作波长1.55μm,当外场仅为15kV/cm时,折射率变化就超过了0.01(TE:Δn:0.0108,TM:Δn=0.0107),而此时吸收损耗α可控制在80cm~(-1)以下。
     (5)完成了波导结构设计。
This thesis investigates the energy level properties of coupled quantum well and its configuration optimization. Quantum well materials have stronger electro-optic effect than bulk materials, so Quantum well materials can produce a large absorption coefficient change and refractive index change in the case of lower applied field, and used in all sorts of waveguide devices, for example, traveling-wave modulators and electro-optic switches. Unfortunately, these waveguide devices based on the widely used square-potential quantum well exist large absorption loss and low extinction-ratio. In order to make quantum well materials utilized widely in integrated optical devices, it is imperative to search for a novel quantum well with a large refractive index change in the case of low applied field and low absorption loss.The main research results include:Firstly, the formation of the symmetric and antisymmetric energy levels of electron, heavy-hole and light-hole by perturbation theory is analyzed and found that the six energy levels arise from the splitting ground states in single quantum well. The symmetric- and antisymmetric -energy levels can be treated as a two energy level system and split into the high- and low-energy levels with larger level splitting in the present of applied electric field. The eigenstates corresponding to the high- and low-energy levels include antisymmetric state as well as symmetric state.Secondly, the lowest and next lower energy levels of electron and hole in asymmetric coupled quantum well is analyzed and found that the six energy levels arise from the coupled ground states of the conduction and valence bands of the two different single quantum wells. The advantages and disadvantages of symmetric- and asymmetric-coupled quantum wells are discussed when they are applied to traveling-wave modulators and electro-optic switches, and then a novel coupled quantum well—
    quasi-symmetric coupled quantum well is projected.Thirdly, based on the properties of quasi-symmetric coupled quantum well potential, the selected principle of quantum well materials is put forward, and InP-based InGaAs/InAlAs material parameters are modified. By Bastard' s two-band model, the influence of band mixing effect between the conduction band and valence band on electron and light hole effective masses is considered and the tunneling resonance method is utilized for solving out the eigenenergies and eigenstates of quantum well.Fourthly, based on the six rules for optimizing quasi-symmetric coupled quantum well potential configuration, all parameters for InP-based InGaAs/InAlAs quasi-symmetric coupled quantum well are calculated, then the electro-optic properties of the optimized coupled quantum well are presented. The simulating results manifest that the polarization dependence of quantum well materials is solved perfectly, and in the case of low applied electric field (F<15Kv/cm) and lowabsorption loss (a ? = 0.0108;for TM mode, Ah = 0.0107) isobtained in the optimized coupled quantum well.Fifthly, the waveguide configuration for validating the performance of the optimized InP-based InGaAs/InAlAs quasi-symmetric coupled quantum well is designed.Finally, the domain of waveguide devices is completed, and the fabrication process of waveguide is researched.
引文
[1] 陈才和主编.光纤通信.北京:电子工业出版社,2004.
    [2] K. Ishida, H. Nakamura, H. Matsumura, T. Kadoi, and H. Inoue, "InGaAs/InP optical switches using carrier induced refractive index change, " Appl. Phys. Lett., Vol. 50, pp. 141-142, 1987.
    [3] M. Erman, "Semiconductor based switches within the RACE photonic switching program, " in OSA Proc. Photonic Switching, Salt Lake City, UT, vol.8, pp. 14-17,1991.
    [4] P. Granestrand, B. Lagerstrom, P. Svensson, L. Thylen, B. Stoltz, K. Bergvall, J.-E. Falk, and H. Olofsson, "Integrated optics 4X4 switch matrix with digital optical switches, " Electron. Lett., vol. 26, pp. 4-5,1990.
    [5] J. F. Vinchant, M. Renaud, A. Goutelle, M. Erman, P. Svensson, and L. Thylen, "Low driving voltage or current digital optical switch on InP for multiwavelength applications," Electron. Lett., vol. 28, pp.1135-1137, 1992.
    [6] Georgios I. et al., "Optical switching: switch fabrics, techniques, and architectures" , J. Lightwave Technol., Vol.21, pp. 384-405, 2003.
    [7] H. Nakajima, "Development on guide-wave switch arrays" , IEICE Trans.Commun., Vol.E82-B, pp. 349-356, 1999.
    [8] Myung-Hyun Lee, et al., "Polymeric Electrooptic 2X2 Switch Consisting of Bifurcation Optical Active Waveguides and a Mach - Zehnder Interferometer" , IEEE J. Selected Topics in Quantum Electronics, VOL. 7, pp. 812-816,2001.
    [9] Akira Himeno, et al., "Silica-based planar lightwave circuits" ,IEEE J. Selected Topics in Quantum Electronics, VOL. 4, pp. 913-924, 1998.
    [10] M. Razeghi, "Optoelectronic Devices Based on Ⅲ-Ⅴ Compound Semiconductors Which Have Made a Major Scientific and Technological Impact in the Past 20 years, " IEEE J. Selected Topics in Quantum Electronics, VOL. 6, NO. 6, pp. 1344—1354, 2000.
    [11] M.Renaud, M. Bachmann, and M. Erman, "Semiconductor optical space switches", IEEE of Selected Topics in Quantum Electronics, Vol. 2(2), pp. 277-288, 1996.
    [12] E. Garmire, "Resonant optical nonlinearities in semiconductors", IEEE of Selected Topics in Quantum Electronics, Vol. 6(6), pp. 1094-1110, 2000.
    [13] T. Akiyama, N. Georgiev, and T. Mozume, et al, "1.55 u m picosecond all-optical switching by using intersubband absorption in InGaAs-A1As-A1AsSb coupled quantum wells", IEEE Photon. Technol. Lett., vol.14(4), pp. 495-497, 2002.
    [14] G. A. Fish, et al., "Compact, 4×4 InP-InGaAsP optical cross-connet with a scaleable architecture", IEEE Photon. Technol. Lett.,Vol. 10(9),pp. 1256-1258,1998.
    [15] G. undolf Wenger, M. Schienle, J. Bellermann, B.o Acklin, J. Muller, S. Eichinger, and G. Muller, "Self-Aligned Packaging of an 8×8 InGaAsP-InP Space Switch", IEEE J. Selected Topics in Quantum Electronics, vol. 3, pp. 1445-1456. 1997.
    [16] K. Wakao, et al., "InGaAsP/InP optical switches embedded with semi-insulating InP current blocking layers", IEEE J. on Selected Areas in Comm., Vol. 6(7), pp. 1199-1204,1988.
    [17] 庄婉如,林雯华,杨培生等,“载流子注入全内反射型GaAs/GaAlAs光波导开关”,半导体学报,Vol.14,pp.1-5,1993.
    [18] 杨培生,孙富荣,庄婉如,段继宁,石志文,高俊华,“载流子注入全内反射型InP/InGaAsP光波导开关”,1994光电子器件与集成技术年会,pp.261-262,1994.
    [19] Yin Rui, Wang Ming Hua, et. al, "Design of 4×4 GaAs-GaA1As Carrier-Injected Total Internal Reflect Optical Switch Array" , SPIE Vol. 3551, pp. 112-115,1998.
    [20] J. E. Zucker and T. L. Hendrickson, "Electro-optic phase modulation in GaAs/A1GaAs quantum well waveguides," Appl. Phys. Lett., vol. 52, pp. 945-947, 1988.
    [21] D.A.B.Miller, D. S. Chemla, T.C.Damen, etc "Electric field dependence of optical absorption near the band gap of quantum-well structures" , Phys. Rev. B, vol. 32, pp. 1043-1060,1985.
    [22] A. Sneh, J. E. Zucker, and B. I. Miller, "Compact, Low-Crosstalk, and Low-Propagation-Loss Quantum-Well Y-Branch Switches" , IEEE Photon. Technol. Lett., Vol.8, pp. 1644-1646, 1996.
    [23] M. N. Khan, J. E. Zucker, L. L. Buhi, B. I. Miller, and C. A. Burrus, "Fabrication-tolerant, low-loss, and high-speed digital optical switches in InGaAsP/InP quantum wells" , in Proc. 21st Eur. Conf. On Optical Commun. (ECOC), pp.103-106, 1992.
    [24] J. E. Zucker, et.al., "InGaAs-InAlAs quantum well intersecting waveguide switch operating at 1. 55um" , IEEE Photon. Technol. Lett., Vol.2,pp. 804-806,1990.
    [25] K. Shimomura, N. Tanaka, T. Aizawa and S. Arai, "2v drive-voltage switching operation in 1. 55)μm GaInAs/InP MQW intersectional waveguide optical switch" , Electrn. Lett., vol. 28, pp. 955-957,1992.
    [26] J. Nayyer, et.al., "Analysis of reflection type optical switches with intersecting waveguides" , J. Lightwave Technol., Vol.6,pp.1146-1152, 1988.
    [27] T. Kikugawa, K. G. Ravikumar, K. Shimomura, A. Izumi, K. Matsubara, Y. Miyamoto, "Switching operation in OMVPE grown GalnAs/InP MQW intersectional optical switch structures" , IEEE Photon. Technol. Lett., Vol. 1,pp. 126-128, 1989.
    [28]K. Shimomura, S. Arai, Y. Suematsu, " Operational wavelength range of InGaAsP-InP intersectional optical switches using low-dimensional quantum-well structures" , IEEE J. Quantum Electron., vol. 28, pp.471-478, 1992.
    [29] K. Shimomura, T. Aizama, N. Tanaka, and S. Arai, "Low-drive voltage intersectional waveguide optical switch using GaInAs/InP MQW structure", IEEE Photon. Technol. Lett., Vol. 4, pp. 359-362, 1992.
    [30] K. G. Ravikumar, k. Shimomura, et. al, "Switching operation in intersectional type field effect MQW optical switch", Electrn. Lett., vol. 24, pp. 415-416,1988.
    [31] N. Agrawal, C. M. Weinert, et. al, "Fast 2×2 Mach-Zehnder Optical Space Switches Using InGaAsP-InP Multiquantum-Well Structures", IEEE Photon. Technol. Lett., Vol. 7, pp. 644-645,1995.
    [32] N. Yoshimoto, Y. Shibata, S. Oku, S. Kondo, and Y. Noguchi, " Design and demonstration of polarization-insensitive Mach-Zehnder switch using a lattice-matched InGaA1As/InA1As MQW and deep-etched high-mesa waveguide structure", J. Lightwave Technol., Vol. 17, pp. 1662-1669, 1999.
    [33] 周剑英,“InP基量子阱电吸收行波光调制器的研制”,浙江大学博士学位论文,2005.
    [34] C. F. Janz, B. P. Keyworth, et. al, "Mach-Zehnder switch using an ultra-compact directional coupler in a strongly-confining rib structure", IEEE Photon. Technol. Lett., Vol. 6, pp. 981-983, 1994.
    [35] W. Aizawa, K.G. Ravikumar, et. al,"InGaAsP/InP MQW directional coupler switch with small and low-loss bends for fiber-array coupling", IEEE Photon. Technol. Lett., Vol. 6, pp. 709-711, 1994.
    [36] J.E. Zucker, K.L. Jones, et. al, "Compact directional coupler switches using quantum well electrorefraction", Appl. Phys. Lett., vol. 55, pp. 2280-2282, 1989.
    [37] M.N. Islam, R.L. Hiliman, D.A.B. Miller, and D.S. Chemia, "Electroabsorption in GaAs/A1GaAs coupled quantum well waveguides", Appl. Phys. Lett., Vol. 50(16), pp. 1098-1100, 1987.
    [38] P. fei and K.L. Wang, "Intersubband optical absorption in coupled quantum wells under an applied electric field",Phys. Rew. B, Vol. 38, pp. 8377-8382,1988.
    [39] D. Ahn, "Enhancement of the Stark effect in coupled quantum wells for optical switching devices", IEEE J. Quantum Electron., vol. 25, pp. 2260-2265, 1989.
    [40] N. Susa, " Improvement in electroabsorption and the effects of parameter variations in the three-step asymmetric coupled quantum well", J. Appl. Phys., vol. 73, pp. 932-942, 1993.
    [41] Digant P. Dave, "Enhanced refracitve index change in asymmetrical quantum wells with an applied electric field", J. Appl. Phys., Vol. 74(11), pp. 6872-6875, 1993.
    [42] Y. Takahashi, "The effect of electric field on the excitonic states in coupled quantum well structures", J. Appl. Phys., Vol. 76(4), pp. 2299-2305,1994.
    [43] N. Susa, "Electric-field-induced refractive index changes in InGaAs-InA1As asymmetric coupled quantum wells" , IEEE J. Quantum Electron., vol. 31, pp. 92-100, 1995.
    [44] Y. M. Huang, "Electric-field dependence of optical absorption properties in coupled quantum wells and their application to 1.3u moptical modulator", J. Appl. Phys., vol. 77(1), pp. 11-16, 1995.
    [45] H. feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, " Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential", IEEE J. Quantum Electron., vol. 34, pp. 1197-1208, 1998.
    [46] Y. Zhang, P.P. Ruden, "1.3u m polarization-insensitive optical amplifier structure based on coupled quantum wells", IEEE J. Quantum Electron., vol. 35, pp. 1509-1514, 1999.
    [47] 赵旭,“高速量子阱行波光调制器的研究”,浙江大学博士学位论文,2001.
    [48] W.L. Bloss, "Electric field dependence of eigenstates of coupled quantum wells", J. Appl. Phys., Vol. 67, pp. 1421-1424, 1990.
    [49] H. Kawai, J. Kaneko, and Watanabe, "Doublet state of resonantly coupled AlGaAs/GaAs quantum wells grown by metalorganic chemical vapor deposition", J. Appl. Phys., Vol. 58(3), pp. 1263-1265, 1985.
    [50] Y.J.Chen, E. S. Koteles, B. S. Elman, and C. A. Armiento, "Effect of electric field on excitons in a coupled double-quantum-well structure" , Phys. Rew. B, Vol.36, pp. 4562-4565, 1987.
    [51] N. Susa and T. Nakahara, "Large blue shifts induced by stark effect in asymmetric coupled quantum well" , Electron. Lett., Vol.28, pp. 941-943,1992.
    [52] N. Susa, "Improvement in electroabsorption and the effects of parameter variations in the three step asymmetric coupled quantum well" , J. Appl. Phys., Vol.73, pp. 932-942, 1993.
    [53] C. Thirstrup, "Refractive index modulation based on excitonic effects in GaInAs-InP coupled asymmetric quantum wells" , IEEE J. Quantum Electron., vol. 31, pp. 988-996, 1995.
    [54] D.M.Ryan, R. A. Abram and D. J. Robbins, "Optical properties of asymmetric InGaAs-InP coupled quantum wells" , IEE Proc. -Optoelectron,Vol. 147, pp. 83-88, 2000.
    [55] H. Q. Le, J. J. Zayhowski, and W. D. Goodhue, "Stark effect in AlGaAs/GaAs coupled quantum wells" , Appl. Phys. Lett., Vol.50,pp. 1518-1520, 1987.
    [56] Y.C.Chan and K. Tada, "Enhancement of field induced optical absorption by potential modification of coupled quantum well structures", Appl. Phys. Lett., vol.58, pp. 2892-2894, 1991.
    [57] K. J. Kuhn, C. Juang, and R. B. Darling, "An enhanced and linear stark shift in n-I-n AlGaAs/GaAs symmetric and asymmetric coupled quantum wells", J. Appl. Phys., Vol. 69, pp. 3135-3141, 1991.
    [58] M. J. Hayduk, R. K. Boncek, et.al, "Characterization of strained-layer and asymmetrically coupled multiple quantum well electro-optic modulators", SPIE, Vol. 2216, pp. 19-29,1994.
    [59] H. Feng, K. Tada, and Y. Nakano, "Polarization-independent large field-induced refractive index change in a strained five-step GaAs-InA1GaAs asymmetric coupled quantum well", Appl. Phys. Lett., Vol. 71, pp. 2674-2676, 1997.
    [60] M.P. Earnshaw, D.W.E. Allsopp, E.T.R. Chidley, and R. Grey, "Enhanced electrorefraction in symmetric narrow coupled quantum wells", IEEE Photon. Technol. Lett., Vol. 12, pp. 627-629,2000.
    [61] J.A. Treza, M.C. Larson, et. al, " Low-voltage, low-chirp, absorptively bistable transmission modulators using type-ⅡA and type- ⅡB In0.3Ga0.7As/Al0.33Ga0.67As/In0.15Ga0.85As asymmetric coupled quantum wells", J. Appl. Phys., Vol.74, pp. 6495-6502, 1993.
    [62] H.Q. Hou and T. Y. Chang, "Nearly chirp-free electroabsorption modulation using InGaAs-InGaA1As-InA1As coupled quantum wells",IEEE Photon. Technol. Lett., Vol. 7,1995.
    [63] C. S. ma, Z. Jin, F. S. Tian, N. G. Yang, S. R. Yang, and S. Y. Liu, "Bandgaps and band offsets in strain-compensated InGaAs/InGaAsP multiple quantum wells",SPIE Vol. 3547, pp. 308-314,1998.
    [64] D.J. Han, C. Liu, and K.T. Chan, "Band lineup calculations for strained InGaAs(P)/InP quantum well structures", SPIE Vol. 4580, pp. 35-39,2001.
    [65] 余谦,王建华,李德杰,王玉田等,“InGaAs/InAlAs多量子阱结构的量子限制Stark效应研究”,物理学报,Vol.45(2),1996.
    [66] Sun Yang, Wang Wei, Chert Wei-xi, et. al, "High extinction ratio polarization independent EA modulator", Chinese J. Semiconductors, Vol. 22(11), pp. 1374-1376, 2001.
    [67] 杨建义,周强,王明华等,“Ⅲ-V族化合物半导体行波调制器共平面电极微波特性的分析”,电子学报,Vol.25(8),pp.18-22,1997.
    [68] 周剑英,李锡华等,“GaA1As/GaAs量子阱行波Mach-Zehnder光调制器电极传输线的微波响应”,半导体学报,Vol.24(11),pp.1206-1210,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700