二阶锥规划的理论与算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二阶锥规划是在有限个二阶锥的笛卡儿乘积与仿射子空间的交集上求一个线性目标函数的最小值问题二阶锥规划锥规划的一个分支,它既是线性规划的推广,又是半定规划的特例,是一种具有优美结构的对称锥规划这类规划应用广泛,比如在设施选址、图论控制优化、天线阵列设计、投资组合问题等方面以及金融、工程设计、数字信号处理、声学、力学、民航、电气等领域都有所应用因此,研究二阶锥规划问题的理论和算法具有重要的理论意义和应用价值
     二阶锥规划问题的研究起源于17世纪,但直至最近十几年才进入活跃阶段,2fJfJ3年有了对其理论和算法研究的阶段性综述文章对二阶锥规划的算法研究主要分为内点法和非内点法两大类原始一对偶内点法是一类重要的内点法,包含“可行内点法”和"不可行内点法”两种,前者的初始点和迭代点均要求可行,后者的初始点和迭代点只需满足二阶锥约束可行内点法主要有原始一对偶路径跟踪算法,基于核函数的原始一对偶内点算法等不可行内点法常见的有不可行内点预估一校正算法,非精确不可行内点算法等非内点法主要有光滑牛顿法,非内点f内部)连续化方法,序列二次规划法等
     在较全面了解二阶锥规划研究背景和研究进展的基础上,本文对二阶锥规划的理论和算法进行了深入的研究,并取得如下主要成果:
     l在12完善了综述性文章中若当代数性质一个重要定理的证明(见定理l 2 3),提出并证明了若当代数理论的三个新定理f见定理l 2 6一定理l 2 8)
     2详细分析了2维f每个二阶锥约束都是2维的情形)二阶锥规划转化为线性规划的过程,给出相关的重要性质,并提出了求解2维二阶锥规划的对偶单纯形法和原始一对偶单纯形法,举例说明了算法的有效性并进行了灵敏度分析
     3基于不可行内点法的优点和预估一校正算法的思想,建立了两个新的求解二阶锥规划的预估一校正算法其预估方向分别是Newton方向和Euler方向,校正方向属于Alizadeh—Haeberly一0verton㈦H0)方向的范畴算法的优点是对于初始内点和迭代内点可行或不可行的情形都适用主要创新点是构造了一个更简单的中心路径的邻域,这不仅与最优性条件切合,而且由此构造的两个新算法能处理较大规模的问题在一些假设条件下,算法具有全局收敛性、线性和二次收敛速度,并获得了0(rln(s。e))的迭代复杂性界,其中r表示二阶锥规划问题所包含的二阶锥约束的个数数值实验结果表明提出的这两个算法是有效的
     4分别提出了非光滑向量值Fische r_BurmeisterfFB)函数和向量值最小函数的两个新光滑函数,并基于此建立了两个求解二阶锥规划的非内点连续化算法它们的共同优点是:初始点可任取;每次迭代只需求解一个线性方程组得到搜索方向,进行一次线搜索得到步长;在无严格互补假设下,得到算法的全局收敛性和强收敛性而且,证明了基于非光滑FB函数的光滑化算法还具有二次收敛性,并能很好地求解较大规模问题,同时证明了基于向量值最小函数的非内部连续化算法还获得超线性收敛性
     全文结构如下:第一章对国内外的研究主流和发展现状进行追踪和系统分类描述,并且建立了三个有关若当代数的新定理;第二章提出2维二阶锥规划的对偶单纯形法和原始一对偶单纯形法并进行了灵敏度分析;第三章建立二阶锥规划两个新的预估一校正算法,它们对初始点和迭代点可行或不可行的情况都适用;第四章基于非光滑FB函数的一个新光滑函数建立了光滑化算法,并进行较大规模的数值实验;第五章提出向量值最小函数的一个新光滑函数并基于此建立了具有超线性收敛性的非内部连续化算法;第六章总结全文内容并展望进一步的研究工作
Second-order cone programming (SOCP) problem minimizes a linear function overthe intersection of an a?ne linear manifold with the Cartesian product of second-ordercones. It is a branch of conic programming. SOCP , which has pretty framework, isthe generalized linear programming (LP), and also a special case of semi-definite pro-gramming (SDP). SOCP problems have broad application in real world, such as facilitylocation, grasping force optimization, antenna array design, portfolio investment, andin the areas of finance, engineering design, digital signal disposal, acoustics, mechan-ics, civil aviation, electrical engineering, and so on. Therefore, research on theory andalgorithms for SOCP has an important academic significance and applying value.
     The study of SOCP began from 17 century and has been active in ten years recently.There was a survey in 2003. The interior-point algorithms and the non-interior-pointalgorithms are the main methods for solving SOCP. The primal-dual interior-point al-gorithms are familiar interior-point algorithms, which include“feasible interior-pointmethod”and“infeasible interior-point method”. The initial point and the iterativepoints are required feasible in feasible interior-point methods. However, The initialpoint and the iterative points are only required feasible in second-order cones in in-feasible interior-point methods. The feasible interior-point methods own primal-dualpath-following algorithms, primal-dual interior-point algorithms based on a class of ker-nel functions, etc. There are some main infeasible interior-point methods, such as in-feasible interior-point predictor-corrector algorithms, inexact infeasible interior-pointalgorithms, and so forth. The non-interior-point algorithms have smoothing Newtonmethods, non-interior-point continuous algorithms, sequential quadratic programming(SQP) algorithms, etc.
     In this thesis, we study theory and algorithms for SOCP. The main results of thethesis are stated as follows.
     We improve the proof of one important theorem proposed by Alizadeh F. andGoldfarb D. in detail (see Theorem 1.2.3). Further, we present three new results ofJordan algebra (see Theorems 1.2.6-1.2.8).
     We study two-dimensional SOCP. Every second-order cone in this kind of SOCP is two-dimensional. We present a dual simplex method and a primal-dual simplex methodfor two-dimensional SOCP. First, two-dimensional SOCP can be reformulated as LP.And then, we prove some important conclusions in detail. Finally, we show the e?ec-tiveness of the proposed methods by several examples, and sensitivity analysis are madetoo.
     Based on the ideas of infeasible interior-point methods and predictor-correctoralgorithms, two predictor-corrector algorithms for SOCP are presented. We use theNewton direction and the Euler direction as the predictor directions, respectively. Thecorrector directions belong to the category of the Alizadeh-Haeberly-Overton (AHO)directions. These algorithms are suitable to the cases of feasible and infeasible interioriterative points. A simpler neighborhood of the central path for the SOCP is proposed,which is the pivotal di?erence from other interior-point predictor-corrector algorithms.Under some assumptions, the algorithms possess the global, linear, and quadratic con-vergence. The complexity bound O(rln(ε0/ε)) is obtained, where r denotes the numberof the second-order cones in the SOCP problem. The numerical results show that theproposed algorithms are e?ective.
     We give two di?erent new smoothing functions of the well-known nonsmoothFischer-Burmeister (FB) function and the vector-valued min-function, respectively. Bas-ing on the new smoothing functions, we present two non-interior-point continuous al-gorithms for SOCP problems. The features of the two algorithms are as follows: first,the starting point can be chosen arbitrarily; second, at each iteration, only one sys-tem of linear equations and one line search are performed; finally, global and strongconvergence are obtained without assumption of strict complementarity. Furthermore,we show the smoothing Newton-type method has quadratic convergent rate and pos-sesses e?ective numerical results. And the non-interior-point continuous algorithm getssuperlinear convergence.
     The thesis is organized as follows. In Chapter 1, we introduce the background,the preliminaries for SOCP problems and present three new results of Jordan algebra.Then, we propose a dual simplex method and a primal-dual simplex method for two-dimensional SOCP and make sensitivity analysis in Chapter 2. In Chapter 3, two newpredictor-corrector algorithms for SOCP are presented, which are suitable to the casesof feasible and infeasible initial point and iterative points. In Chapter 4, we propose a new smoothing algorithm for SOCP basing on a new smoothing function of non-smoothFB function. Some large-scale test problems have been done too. In Chapter 5, basedon a new smoothing function of the vector-valued min-function, a new non-interior-pointcontinuous algorithm with superlinear convergence is presented for SOCP. Finally, thesummary and prospect are listed in Chapter 6.
引文
[1] Alizadeh F. and Goldfarb D., Second-order cone programming[J], Mathematical Program-ming, Ser.B, 2003, 95: 3–51.
    [2]越民义,《最小网络斯坦纳树问题》M],上海:科学技术出版社,2006
    [3] Xue G.-L. and Ye Y. Y., An e?cient algorithm for minimizing a sum of euclidean normswith applications[J], SIAM Journal on Optimization, 1997, 7: 1017–1036.
    [4] Buss M., Hashimoto H. and Moore J. B., Dextrous hand grasping force optimization[J],IEEE Transactions on Robotics and Autimation, 1996, 12(3): 406–418.
    [5] Buss M., Faybusovich L. and Moore J. B., Recursive algorithms for real-time graspingforce optimization[C], In Proceedings of International Conferences on Robotics and Au-tomation, Albuquerque, NM, USA, 1997.
    [6] Pesavento M., Gershman A. B., Member S. and Luo Zh.-Q., Robust array interpolationusing second-order cone programming[J], IEEE Signal Processing Letters, 2002, 9(1):8–11.
    [7] Ben-Tal A. and Nemirovski A., Robust solutions of uncertain linear programs[J], Opera-tions Research Letters, 1999, 25(1): 1–13.
    [8] Lauprete G. J., Samarov A. M. and Welsch R. E., Robust portfolio optimization[J],Metrika, 2002, 55: 139–149.
    [9] Lobo M. S., Vandenberghe L., Boyd S. and Lebret H., Applications of second-order coneprogramming[J], Linear Algebra and Its Application, 1998, 284: 193–228.
    [10]赵玉芹,线性二阶锥MPEC问题的最优性条件[D],大连:大连理工大学硕士学位论文,2009
    [11] Ben-Tal A. and Nemirovski A., Interior point polynomial time methods for truss topologydesign[C], Technical Report 3/92, Technion, Haifa, Israel, 1992.
    [12] Lebret H. and Boyd S., Antenna array pattern synthesis via convex optimization[J], IEEETransactions on signal processing, 1997, 45(3): 526–532.
    [13] Wu S.-P., Boyd S. and Vandenberghe L., FIR filter design via spectral factorizationand convex optimization[C], In Biswa Datta, editor, Applied and Computational Control,Signals and Circuits, chapter 5. Birkhauser, 1998.
    [14] Vorobyov S. A., Gershman A. B. and Luo Zh.-Q, Robust adaptive beamforming usingworst-case performance optimization: a solution to the signal mismatch problem[J], IEEETransactions on Signal Processing, 2003, 51(2): 313–324.
    [15] Chan S. C., Tsui K. M. and Tse K. W., Design of constrained causal stable IIR filtersusing a new second-order-cone-programming-based model-reduction technique[J], IEEETransactions on Circuits and Systems-II: Express Briefs, 2007, 54(2): 107–111.
    [16] Tsui K. M., Chan S. C. and Yeung K. S., Design of FIR digital filters with prescribed?atness and peak error constraints using second-order cone programming[J], IEEE Trans-actions on Circuits and Systems-II: Express Briefs, 2005, 52(9): 601–605.
    [17] Sturma J. F., Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetriccones[J], Optimization Methods and Software, 1999, 11(1): 625–653.
    [18]鄢社锋,马远良,匹配场噪声抑制:广义空域滤波方法[J]科学通报,2004,49(18):1909 1912
    [19]鄢社锋,马远良,基于二阶锥规划的稳健高增益波束形成J声学技术,2004,23(增刊):133 135
    [20] Yan S.-F.(鄢社锋), Ma Y.-L.(马远良), Sun C.(孙超), Optimal beamforming for arbitraryarrays using second-order cone programming[J],声学学报(英文版), 2005, 24(1): 3–11.
    [21]鄢社锋,马远良,基于二阶锥规划的任意传感器阵列时域恒定束宽波束形成J声学学报,2005,30(4):309 316
    [22]鄢社锋,马远良,孙超,任意几何形状和阵元指向性的传感器阵列优化波束形成方法J,声学学报,2005,30(3):264 270
    [23] Debnath R. and Muramatsu M., An e?cient support vector machine learning methodwith second-order cone programming for large-scale problems[J], Applied Intelligence,2005, 23: 219–239.
    [24]鄢社锋,马远良,二阶锥规划方法对于时空域滤波器的优化设计与验证[J],中国学E辑,信息科学,2006,36(2):153 171
    [25]冯杰,孙超,苏帅,自适应插值空域矩阵滤波器设计[J],声学与电子工程,2006年增刊:31 34
    [26]王凯帅,陈航,一种精确控制旁瓣的自适应波束形成算法J微处理机,2006,3:5253
    [27]吴仁彪,卢丹,冯青,黄建宇,李荐,两种自适应方向图峰值副瓣控制方法比较|1ll中国民航学院学报,2006,24(3):1 10
    [28] Kanno Y., Ohsaki M. and Ito J., Large-deformation and friction analysis of non-linearelastic cable networks by second-order cone programming[J], International Journal forNumerical Methods in Engineering, 2002, 55: 1079–1114.
    [29] Makrodimopoulos A. and Martin C. M., Lower bound limit analysis of cohesive-frictionalmaterials using second-order cone programming[J], International Journal for NumericalMethods in Engineering, 2006, 66: 604–634.
    [30]全然,韦化,简金宝,求解大规模机组组合问题的二阶锥规划方法J中国电机工程学报,2010,30(25):101 107
    [31] Tsang I. W. and Kwok J. T., E?cient hyperkernel learning using second-order coneprogramming[J], IEEE Transactions on Neural Networks, 2006, 17(1): 48–58.
    [32] Sasakawa T. and Tsuchiya T., Optimal magnetic shield design with second-order coneprogramming[J], SIAM Journal on Scientific Computing, 2003, 24(6): 1930–1950.
    [33] Goldfarb D. and Yin W., Second-order cone programming methods for total variation-based image restoration[J], SIAM Journal on Scientific Computing, 2005, 27(2): 622–645.
    [34] Andersen K. D., Christiansen E. and Overton M. L., Computing limit loads by minimizinga sum of norms[J], SIAM Journal on Scientific Computing, 1998, 19(3): 1046–1062.
    [35] Ghaoui L. El. and Lebret H., Robust solutions to least squares problems with uncertaindata[J], SIAM Journal on Matrix Analysis and Applications, 1997, 18(4): 1035–1064.
    [36] Ben-Tal A. and Nemirovski A. S., Robust convex optimization[J], Mathematics of Oper-ations Research, 1998, 23(4): 769–805.
    [37] Faraut J. and Koranyi A., Analysis on Symmetric Cones [M], London and New York:Oxford University Press, 1994.
    [38] Nesterov Y. E. and Nemirovski A. S., Interior-Point Polynomial Algorithms in ConvexProgramming [M], SIAM Studies in Applied Mathematics, Philadelphia: SIAM Publi-cations, Second Printing, 1994.
    [39]Roos C,白延琴,Chaerani D,锥优化模型在Robust桁架拓扑设计实例中的应用(英)J运筹学学报,2004,8(1):1 40
    [40]林惠玲,张圣贵,锥规划的最优解唯一的几何特性J闽江学院学报,2005,26(5):5 9
    [41]孙菊贺,锥约束变分不等式问题的数值方法的研究[D],大连:大连理工大学博士学位论文,2008
    [42]修乃华,韩继业,对称锥互补问题[J]l数学进展,2007,36(1):1—12
    [43]孔令臣,对称锥互补问题的互补函数和价值函数研究[D],北京:北京交通大学博士学位论文,2007
    [44] Kong L.-C., Tunc?el L. and Xiu N.-H., Clarke generalized Jacobian of the projection ontosymmetric cones[J], Set-Valued Analysis, 2009, 17: 135–151.
    [45] Luo Z.-Y. and Xiu N.-H., Path-following interior point algorithms for the cartesian P?(κ)-LCP over symmetric cones[J], Science in China, Ser.A: Mathematics, 2009, 52(8): 1769–1784.
    [46] Kong L.-C. and Xiu N.-H., New smooth C-functions for symmetric cone complementarityproblems[J], Optimization Letters, 2007, 1: 391–400.
    [47] Kong L.-C., Tunc?el L. and Xiu N.-H., Vector-valued implicit Lagrangian for symmetriccone complementarity problems[J], Asia-Pacific Journal of Operational Research, 2009,26(2): 199–233.
    [48] , [D], : , 2008.
    [49] Karmarkar N., A new polynomial-time algorithm for linear programming[J], Combina-torica, 1984, 4(4): 373–395.
    [50] Bazaraa M. S., Jarvis J. J. and Sherali H. D., Linear Programming and NetworkFlows [M], Second Edition. New York: John Wiley and Sons, 1990.
    [51] Fang S. C. and Puthenpura S., Linear Optimization and Extensions: Theory andAlgorithms [M], American: Prentice Hall, 1993.
    [52] Potra F. A., A quadratically convergent predictor-corrector method for solving linearprograms from infeasible starting points[J], Mathematical Programming, 1994, 67: 383–406.
    [53] Miao J. M., Two infeasible interior-point predictor-corrector algorithms for linear pro-gramming[J], SIAM Journal on Optimization, 1996, 6(3): 587–599.
    [54] Kojima M., Basic lemmas in polynomial-time infeasible-interior-point methods for linearprograms[J], Annals of Operations Research, 1996, 62: 1–28.
    [55] Bai Y.-Q., Ghami M. El. and Roos C., A new e?cient large-update primaldual interior-point method based on a finite barrier[J], SIAM Journal on Optimization, 2003, 13(3):766–782.
    [56] Bai Y.-Q., Lesaja G., Roos C., Wang G.-Q. and Ghami M. El., A class of large-updateand small-update primal-dual interior-point algorithms for linear optimization[J], Journalof Optimization Theory and Applications, 2008, 138: 341–359.
    [57] Pan P.-Q., A largest-distance pivot rule for the simplex algorithm[J], European Journalof Operational Research, 2008, 187: 393–402.
    [58] Vandenberghe L. and Boyd S., Semidefinite programming[J], SIAM Review, 1996, 38:49–95.
    [59] Alizadeh F. and Schmieta S., Symmetric Cones, Potential Reduction Methods, In:H.Wolkowicz, R.Saigal and L.Vandenberghe editors, Handbook of Semidefinite Pro-gramming: Theory, Algorithms, and Applications [M], 195–233. Kluwer Academic Pub-lishers, 2000.
    [60] Sim C.-K. and Zhao G.-Y., A note on treating a second order cone program as a specialcase of a semidefinite program[J], Mathematical Programming, Ser.A, 2005, 102: 609–613.
    [61] Wang G.-Q., Bai Y.-Q. and Roos C., Primal-dual interior-point algorithms for semidefi-nite optimization based on a simple kernel function[J], Journal of Mathematical Modellingand Algorithms, 2005, 4(4): 409–433.
    [62]李洁,非凸半定规划最优性条件与增广Lagrange方法[D],大连:大连理工大学硕士学位论文,2006
    [63]张杰,求解非凸半定规划问题的一种非线性Lagrange方法[D],大连:大连理工大学硕士学位论文,2007
    [64]刘红卫,半定规划及其应用[D],西安:西安电子科技大学博士学位论文,2002
    [65]徐风敏,半定规划的算法及其在组合优化中的应用[D],西安:西安电子科技大学硕士学位论文,2001
    [66]葛泽慧,半定规划及其在组合优化中的应用[D],西安:西安电子科技大学硕士学位论文,2002
    [67]王新辉,半定规划的算法及其应用[D],西安:西安电子科技大学硕士学位论文,2002
    [68]穆学文,半定规划及其应用[D],西安:西安电子科技大学硕士学位论文,2004
    [69]王淑华,半定规划的算法研究[D],西安:西安电子科技大学硕士学位论文,2005
    [70]杨国平,半定规划的投影算法研究[D],西安:西安电子科技大学硕士学位论文,2005[]蒋耀伟,半定规划及其应用研究[D],西安:西安电子科技大学硕士学位论文,2009
    [72]李阳,求解非凸半定规划的一类非线性Lagrange方法[D],大连:大连理工大学博士学位论文,2009
    [73]刘勇进,张立卫,刘梅娇,求解非凸半定规划的一个非线性Lagrange算法及其收敛性分析(英文)J运筹学学报,2007,11(4):5 14
    [74]李玉强,贺国平,半定规划鲁棒不可行性研究J生物数学学报,2009,24(4):747 750
    [75]房亮,半定规划问题的若干算法研究[D],山东:山东科技大学硕士学位论文,2004
    [76]冯增哲,关于半定规划的牛顿型算法和原始对偶内点算法研究[D],山东:山东科技大学硕士学位论文,200477郑开杰,半定规划算法研究[D],福建:福建师范大学硕士学位论文,2005
    [78]李智勇,半定规划的微分代数算法和系列惩罚算法[D],福建:福建师范大学硕士学位论文,2006
    [79]康志林,线性二次半定规划问题若干研究[D],福建:福建师范大学硕士学位论文,9nnR
    [80]肖现涛,求解半定约束二次规划逆问题的数值方法[D],大连:大连理工大学博士学位论文,2009
    [81] Tsuchiya T., A polynomial primal-dual path-following algorithm for second-ordercone programming[J], Technical Report, the Institute of Statistical Mathematics,Tokyo Japan, 1997, 649.
    [82] Peng J.-M., Roos C. and Terlaky T., Self-Regularity: A New Paradigm for Primal-DualInterior-Point Algorithms [M], Princeton University Press, New Jersey, USA, 2002.
    [83] Peng J.-M., Roos C. and Terlaky T., Primal-dual interior-point methods for second-orderconic optimization based on self-regular proximities[J], SIAM Journal on Optimization,2002, 13(1): 179–203.
    [84] Fukushima M., Luo Z.-Q. and Tseng P., Smoothing functions for second-order-cone com-plementarity problems[J]. SIAM Journal on Optimization, 2001, 12(2): 436–460.
    [85] Hayashi S., Yamaguchi T., Yamashita N. and Fukushima M., A matrix-splitting methodfor symmetric a?ne second-order cone complementarity problems[J], Journal of Compu-tational and Applied Mathematics, 2005, 175: 335–353.
    [86]赵花丽,二阶锥互补问题的光滑算法研究[D],西安:西安电子科技大学硕士学位文,2010
    [87] Kuo Y.-J. and Mittelmann H. D., Interior point methods for second-order cone program-ming and OR applications[J], Computational Optimization and Applications, 2004, 28:255–285.
    [88] Goldfarb D. and Scheinberg K., Product-form Cholesky factorization in interior pointmethods for second-order cone programming[J]. Mathematical Programming, Ser.A, 2005,103: 153–179.
    [89] Fre′de′ric B. J. and He′ctor R. C., Perturbation analysis of second-order cone programmingproblems[J], Mathematical Programming, Ser.B, 2005, 104: 205–227.
    [90] Kanzow C., Ferenczi I. and Fukushima M., Semismooth methods for linear and non-linearsecond-order cone programs[J], http://www-optima.amp.i.kyoto-u.ac.jp/~fuku/papers/NonSOCOptRev.pdf, January, 2007.
    [91] Kato H. and Fukushima M., An SQP-type algorithm for nonlinear second-order coneprograms[J], Optimization Letters, 2007, 1: 129–144.
    [92] Yamashita H. and Yabe H., A primal-dual interior point method for nonlinear opti-mization over second-order cones[J], Optimization Methods and Software, 2009, 24(3):407–426.
    [93] Benson H. Y. and Vanderbei R. J., Solving second-order cone programming problems viainterior point methods, http://www.pages.drexel.edu/~hvb22/varpert.pdf. Departmentof Operations Research and Financial Engineering, Princeton University.
    [94] Hayashi S., Yamashita N. and Fukushima M., A combined smoothing and regularizationmethod for monotone second-order cone complementarity problems[J], SIAM Journal onOptimization, 2005, 15(2): 593–615.
    [95] Erdogan E. and Iyengar G., An active set method for single-cone second-order coneprograms[J], SIAM Journal on Optimization, 2006, 17(2): 459–484.
    [96] Xia Y., A note on the simplex method for 2-dimensional second-order cone program-ming[J], Lecture Notes in Computer Science, 2006, 3991: 124–131.
    [97] Xia Y. and Alizadeh F., The Q method for second order cone programming[J], Computersand Operations Research, 2008, 35(5): 1510–1538.
    [98] Bai Y.-Q. and Wang G.-Q., Primal-dual interior-point algorithms for second-order coneoptimization based on a new parametric kernel function[J], Acta Mathematica Sinica(English Series), 2007, 23(11): 2027–2042.
    [99] Wang G.-Q., Primal-dual interior-point method for second-order cone optimization basedon a finite Barrier[J], , 2007, 11(2): 18–31.
    [100] Wang G.-Q. and Bai Y.-Q., A primal-dual interior-point algorithm for second-order coneoptimization with full Nesterov-Todd step[J], Applied Mathematics and Computation,2009, 215: 1047–1061.
    [101] Bai Y.-Q., Wang G.-Q. and Roos C., Primal-dual interior-point algorithms for second-order cone optimization based on kernel functions[J], Nonlinear Analysis: Theory, Meth-ods and Applications, 2009, 70(10): 3584–3602.
    [102]迟晓妮,二次锥规划的内点算法及光滑牛顿法[D],西安:西安电子科技大学硕士学位论文,2005
    [103]迟晓妮,二次锥规划的算法研究[D],西安:西安电子科技大学博士学位论文,2008
    [104] Chi X.-N. and Liu S.-Y., An infeasible-interior-point predictor-corrector algorithm forthe second-order cone program[J], Acta Mathematica Scientia, 2008, 28B(3): 551–559.
    [105] Chi X.-N. and Peng J., A combined Newton method for second-order cone program[A],The Sixth International Symposium on Neural Networks (ISNN 2009), Advances in SoftComputing, 2009, 56: 605–612.
    [106] Chi X.-N. and Liu S.-Y., A one-step smoothing Newton method for second-order coneprogramming[J], Journal of Computational and Applied Mathematics, 2009, 223: 114–123.
    [107] Chi X.-N. and Liu S.-Y., Sub-quadratic convergence of a smoothing Newton methodfor second-order cone programming[J], Journal of Applied Mathematics and Computing,2008, 26: 489–502.
    [108] Mu X.-W., Liu S.-Y. and Zhang Y.-L., A neural network algorithm for second-order conicprogramming[A], Advances in Neural Networks (ISNN 2005), Lecture Notes in ComputerScience, 2005, 3496: 718–724.
    [109] Zhang X.-S , Liu S.-Y. and Liu Zh.-H., A predictor-corrector smoothing method forsecond-order cone programming[J], Journal of Applied Mathematics and Computing,2009.
    [110]张艳梅,二阶锥规划若干求解方法研究[D],福建:福建师范大学硕士学位论文,2008
    [111]刘勇进,张立卫,二阶锥互补问题的一类效益函数与全局误差界[J],大连理工大学学报,2006,46(3):449 453
    [112]刘勇进,张立卫,王银河,线性二阶锥规划的一个光滑化方法及其收敛性(英文)[J]数学进展,2007,36(4):491 502
    [113] Liu Y.-J. and Zhang L.-W., Convergence analysis of the augmented Lagrangian methodfor nonlinear second-order cone optimization problems[J], Nonlinear Analysis, 2007, 67:1359–1373.
    [114]张立卫,《锥约束优化最优化理论和增广Lagrange方法》M],北京:科学出版社,2010
    [115]张艺,二阶锥约束二次规划逆问题的增广Lagrange方法[D],大连:大连理工大学硕士学位论文,2008
    [116]赵玉芹,线性二阶锥MPEC问题的最优性条件[D],大连:大连理工大学硕士学位论文,2009
    [117]田悦,一类二阶锥规划反问题的光滑函数法[D],大连:大连理工大学硕士学位论文,2008[i18]李延玲,二阶锥约束二次规划逆问题的光滑牛顿法[D],大连:大连理工大学硕士学位论文,2008
    [119]顾剑,非凸二阶锥规划问题的非线性重新尺度化方法[D],大连:大连理工大学博士学位论文,2009
    [120]张艳梅,张圣贵,基于一个新函数的二阶锥规划的原始对偶内点算法分析[J],福建师范大学学报,2007,23(4):17 22
    [121] Kong L.-C., Xiu N.-H. and Han J.-Y., The solution set structure of monotone linearcomplementarity problems over second-order cone[J], Operations Research Letters, 2008,36: 71–76.
    [122] Wang Zh.-M., Zhou K.-P. and Huang Zh.-H., A primal-dual interior point methodfor parametric semidefinite programming problems[J], ACTA Mathematicae ApplicataeSinica, English Series, 2000, 16(2): 171–179.
    [123] Huang Zh.-H. and Han J.-Y., Non-interior continuation method for solving the monotonesemidefinite complementarity problem[J], Applied Mathematics and Optimization, 2003,47: 195–211.
    [124] Huang Zh.-H. and Ni T., Smoothing algorithms for complementarity problems over sym-metric cones[J], Computational Optimization and Applications, 2008: 1–23.
    [125] Huang Zh.-H., Hu Sh.-L. and Han J.-Y., Convergence of a smoothing algorithm forsymmetric cone complementarity problems with a nonmonotone line search[J], Science inChina, Ser.A: Mathematics, 2009, 52(4): 833–848.
    [161] Pan S.-H., Chen J.-S., Kum S. and Lim Y., The penalized Fischer-Burmeister SOCcomplementarity function[J], Computational Optimization and Applications, 2009: 1–35.
    [162] Pan S.-H. and Chen J.-S., A regularization method for the second-order cone complemen-tarity problem with the Cartesian P0-property[J], Nonlinear Analysis: Theory, Methodsand Applications, 2009, 70: 1475–1491.
    [163] Pan S.-H. and Chen J.-S., Proximal-like algorithm using the quasi D-function for convexsecond-order cone programming[J], Journal of Optimization Theory and Applications,2008, 138: 95–113.
    [164] Censor Y. and Zenios S. A., The proximal minimization algorithm with D-functions[J],Journal of Optimization Theory and Applications, 1992, 73: 451–464.
    [165] Pan S.-H. and Chen J.-S., A class of interior proximal-like algorithms for convex second-order cone programming[J], SIAM Journal on Optimization, 2008, 19(2): 883–910.
    [166] Pan S.-H. and Chen J.-S., A proximal gradient descent method for the extended second-order cone linear complementarity problem[J], Journal of Mathematical Analysis andApplications, 2010, 366: 164–180.
    [167] Sun J.-H. and Chen J.-S., Two classes of merit function for infinite-dimensional SOC-CPs[J], Numerical Functional Analysis and Optimization, 2010.
    [168] Chen J.-S. and Pan S.-H., A one-parametric class of merit functions for the second-ordercone complementarity problem[J], Computational Optimization and Applications, 2010,45: 581–606.
    [169] Pan S.-H. and Chen J.-S., A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions[J], Computational Optimization andApplications, 2010, 45: 59–88.
    [170] Lobo M. S., Vandenberghe L. and Boyd S., SOCP-software for second-order coneprogramming: User’s guide[R], Technical Report, Department of Electrical Engineering,Stanford University, April 1997,http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.8947&rep=rep1&type=pdf.
    [171] Cai Z. and Freund R. M., On two measures of problem instance complexity and theircorrelation with the performance of SeDuMi on second-order cone problems[J], Compu-tational Optimization and Applications, 2005, 34: 299–319.
    [137] Zhang Y., On extending some primal-dual interior-point algorithms from linear pro-gramming to semidefinite programming[J], SIAM Journal on Optimization, 1998, 8(2):365–386.
    [138] Faybusovich L., Euclidean Jordan algebras and interior-point algorithms[J], Positivity,1997, 1(4): 331–357.
    [139] Faybusovich L., Linear systems in Jordan algebras and primal-dual interior point algo-rithms[J], Journal of Computational and Applied Mathematics, 1997, 86: 149–175.
    [140] Faybusovich L., A Jordan-algebraic approach to potential-reduction algorithms[J], Math-ematische Zeitschrift, 2002, 239: 117–129.
    [141] Schmieta S. H. and Alizadeh F., Extension of primal-dual interior point algorithms tosymmetric cones[J], Mathematical Programming, Ser.A, 2003, 96: 409–438.
    [142] Schmieta S. H. and Alizadeh F., Associative and Jordan algebras, and polynomial timeinterior-point algorithms for symmetric cones[J], Mathematics of Operations Research,2001, 26(3): 543–564.
    [143] Alizadeh F. and Sehmieta S. H., Optimization with semidefinite, quadratic and linearconstraints[R], Rutcor Research Report RRR 23–97, Rutgers University, November 1997.
    [144] Monteiro R. D. C. and Tsuchiya T., Polynomial convergence of primal-dual algorithmsfor the second-order cone program based on the MZ-family of directions[J], MathematicalProgramming, Ser.A, 2000, 88: 61–83.
    [145] Nemirovski A., Advances in convex optimization: conic programming[Z],http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.1539&rep=rep1&type=pdf,or, http://www2.isye.gatech.edu/~nemirovs/Nemirovski Plenary Final.pdf, 2006.
    [146] Chen J.-S., Chen X. and Tseng P., Analysis of nonsmooth vector-valued functions asso-ciated with second-order cones[J], Mathematical Programming, Ser.B, 2004, 101: 95–117.
    [147] Chen J.-S., Alternative proofs for some results of vector-valued functions associated withsecond-order cone[J], Journal of Nonlinear and Convex Analysis, 2005, 6: 297–325.
    [148] Chen J.-S. and Tseng P., An unconstrained smooth minimization reformulation ofsecond-order cone complementarity problem[J], Mathematical Programming, Ser.B, 2005,104: 293–327.
    [149] Chen J.-S., Two classes of merit functions for the second-order cone complementarityproblem[J], Mathematical Methods of Operations Research, 2006, 64: 495–519.
    [150] Chen J.-S., A new merit function and its related properties for the second-order conecomplementarity problem[J], Pacific Journal of Optimization, 2006, 2: 167–179.
    [151] Chen J.-S., The convex and monotone functions associated with second-order cone[J],Optimization, 2006, 55: 363–385.
    [152] Chen J.-S., Conditions for error bounds and bounded level sets of some merit functionsfor SOCCP[J], Journal of Optimization Theory and Applications, 2007, 135: 459–473.
    [153] Chen J.-S., Sun D.-F. and Sun J., The SC1 property of the squared norm of the SOCFischer-Burmeister function[J], Operations Research Letters, 2008, 36: 385–392.
    [154] Chen J.-S. and Pan S.-H., A descent method for a reformulation of the second-order conecomplementarity problem[J], Journal of Computational and Applied Mathematics, 2008,213: 547–558.
    [155] Chen J.-S. and Pan S.-H., Lipschitz continuity of the gradient of a one-parametric classof SOC merit functions[J], Optimization, 2008: 1–16.
    [156] Pan S.-H. and Chen J.-S., A one-parametric class of merit functions for the symmetriccone complementarity problem[J], Journal of Mathematical Analysis and Applications,2009, 355: 195–215.
    [157] Pan S.-H. and Chen J.-S., Growth behavior of two classes of merit functions for thesymmetric cone complementarity problems[J], Journal of Optimization Theory and Ap-plications, 2009, 141: 167–191.
    [158] Chang Y.-L., Pan S.-H. and Chen J.-S., Strong semismoothness of Fischer-Burmeistercomplementarity function associated with symmetric cone[Z],http://math.ntnu.edu.tw/~jschen/Papers/Strong Semismooth.pdf, 2009.
    [159] Pan S.-H. and Chen J.-S., A least-square semismooth Newton method for the second-order cone complementarity problem[J], Optimization Methods and Software, 2009: 1–22.
    [160] Pan S.-H. and Chen J.-S., A linearly convergent derivative-free descent method for thesecond-order cone complementarity problem[J], Optimization, 2009: 1–25.
    [161] Pan S.-H., Chen J.-S., Kum S. and Lim Y., The penalized Fischer-Burmeister SOCcomplementarity function[J], Computational Optimization and Applications, 2009: 1–35.
    [162] Pan S.-H. and Chen J.-S., A regularization method for the second-order cone complemen-tarity problem with the Cartesian P0-property[J], Nonlinear Analysis: Theory, Methodsand Applications, 2009, 70: 1475–1491.
    [163] Pan S.-H. and Chen J.-S., Proximal-like algorithm using the quasi D-function for convexsecond-order cone programming[J], Journal of Optimization Theory and Applications,2008, 138: 95–113.
    [164] Censor Y. and Zenios S. A., The proximal minimization algorithm with D-functions[J],Journal of Optimization Theory and Applications, 1992, 73: 451–464.
    [165] Pan S.-H. and Chen J.-S., A class of interior proximal-like algorithms for convex second-order cone programming[J], SIAM Journal on Optimization, 2008, 19(2): 883–910.
    [166] Pan S.-H. and Chen J.-S., A proximal gradient descent method for the extended second-order cone linear complementarity problem[J], Journal of Mathematical Analysis andApplications, 2010, 366: 164–180.
    [167] Sun J.-H. and Chen J.-S., Two classes of merit function for infinite-dimensional SOC-CPs[J], Numerical Functional Analysis and Optimization, 2010.
    [168] Chen J.-S. and Pan S.-H., A one-parametric class of merit functions for the second-ordercone complementarity problem[J], Computational Optimization and Applications, 2010,45: 581–606.
    [169] Pan S.-H. and Chen J.-S., A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions[J], Computational Optimization andApplications, 2010, 45: 59–88.
    [170] Lobo M. S., Vandenberghe L. and Boyd S., SOCP-software for second-order coneprogramming: User’s guide[R], Technical Report, Department of Electrical Engineering,Stanford University, April 1997,http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.8947&rep=rep1&type=pdf.
    [171] Cai Z. and Freund R. M., On two measures of problem instance complexity and theircorrelation with the performance of SeDuMi on second-order cone problems[J], Compu-tational Optimization and Applications, 2005, 34: 299–319.
    [172] Vanderbei R. J. and Yurttan H., Using LOQO to solve second-order cone programmingproblems[Z], http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.39.8309&rep=rep1&type=pdf, 1998.
    [173] Toh K.-Ch., Todd M. J. and Tu¨tu¨ncu¨R. H., SDPT3 version 4.0–a MATLAB softwarefor semidefinite-quadratic-linear programming[Z],http://www.math.nus.edu.sg/m ?attohkc/sdpt3.html.
    [174] Tu¨tu¨ncu¨R. H., Toh K. C. and Todd M. J., Solving semidefinite-quadratic-linear pro-grams using SDPT3[J], Mathematical Programming, Ser.B, 2003, 95: 189–217.
    [175] Pruessner A., Bussieck M., Dirkse S. and Meeraus A., Conic programming in GAMS[Z],http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.8225&rep=rep1&type=pdf, 2003, Atlanta.
    [176] The MOSEK optimization software[Z], http://www.mosek.com/index.php?id=22, 2003.
    [177]钱忠根,王国强,二阶锥中的一些关系式m江苏技术师范学院学报,2006,12(4):42 45
    [178]简金宝,《光滑约束优化快速算法理论分析与数值试验》M],北京:科学出版社,2010
    [179]袁亚湘,《非线性规划数值方法》M],上海:上海科学技术出版社,1993
    [180] Ye Y. Y., Interior Point Algorithms: Theory and Analysis [M], New York: John Wiley& Sons, Inc, 1997.
    [181]张瑞丰等,《精i~MATLAB 6 5》M],北京:中国水利水电出版社,2004
    [182] Nemirovski A. and Scheinberg K., Extension of Karmarkar’s algorithm onto convexquadratically constrained quadratic problems[J], Mathematical Programming, 1996, 72:273–289.
    [183] Adler I. and Alizadeh F., Primal-dual interior-point algorithms for convex quadraticallyconstrained and semidefinite optimization problems[J], Technical Report RRR 46–95,RUTCOR, Rutgers University, 1995.
    [184] Mizuno S., Todd M. J. and Ye Y., On adaptive-step primal-dual interior-point algorithmsfor linear programming[J], Mathematics of Operations Research, 1993, 18(4): 964–981.
    [185] Zhang Y., On the convergence of a class of infeasible interior-point methods for the hor-izontal linear complementarity problem[J], SIAM Journal on Optimization, 1994, 4(1):208–227.
    [186] Ho?man A. J., On approximate solutions of systems of linear inequalities[J], Journal ofResearch of the National Bureau of Standards, 1952, 49(4): 263–265.
    [187] Zhang Y. and Zhang D.-T., Superlinear convergence of infeasible interior-point methodsfor linear programming[J], Mathematical Programming, 1994, 66: 361–377.
    [188] Fischer A., A special Newton-type optimization method[J], Optimization, 1992, 24: 269–284.
    [189] Sun D. F. and Sun J., Strong semismoothness of the Fischer-Burmeister SDC and SOCcomplementarity functions[J], Mathematical Programming, Ser.A, 2005, 103: 575–581.
    [190] Qi L.-Q. and Sun J., A nonsmooth version of Newton’s method[J], Mathematical Pro-gramming, 1993, 58: 353–367.
    [191] Clarke F. H., Optimization and Nonsmooth Analysis [M], Wiley, New York, 1983.
    [192] Mi?in R., Semismooth and semiconvex functions in constrained optimization[J], SIAMJournal on Control and Optimization, 1977, 15: 957–972.
    [193] Qi L.-Q., Sun D. and Zhou G., A new look at smoothing Newton methods for nonlinearcomplementarity problems and box constrained variational inequalities[J], MathematicalProgramming, Ser.A, 2000, 87: 1–35.
    [194] Pataki G. and Schmieta S., The DIMACS library of semidefinte-quadratic-linear pro-grams[C], Technical report, Computational Optimization Research Center, Columbia Uni-versity, 2002. Available at http://dimacs.rutgers.edu/Challenges/Seventh/ Instances/.
    [195] Pan Sh.-H. and Chen J.-Sh., A semismooth Newton method for SOCCPs based on aone-parametric class of SOC complementarity functions[J], Computational Optimizationand Applications, 2010, 45: 59–88.
    [196] Zarantonello E. H., Projections on convex sets in Hilbert space and spectral theory, InContributions to Nonlinear Functional Analysis [M], Zarantonello E. H., ed., AcademicPress, New York, 1971: 237–424.
    [197] Chen X.-D., Sun D. and Sun J., Complementarity Functions and Numerical Experi-ments on Some Smoothing Newton Methods for Second-Order-Cone ComplementarityProblems[J], Computational Optimization and Applications, 2003, 25: 39–56.
    [198] Schmallowsky K., On the regularity of second order cone programs and an applicationto solving large scale problems[J], Mathematical Methods of Operations Research, 2008,68: 551–564.
    [199] Chi X.-N. and Liu S.-Y., Analysis of a non-interior continuation method for second-ordercone programming[J], Journal of Applied Mathematics and Computing, 2008, 27: 47–61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700