几类非对称矩阵锥分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以非对称矩阵为决策变量的优化问题在实际生产生活中有着广泛的应用.尤其近些年来,引起了诸多专家学者的浓厚兴趣,已成为当今的研究热点.本文针对几种典型的并且应用广泛的非对称矩阵锥的基本性质展开分析与研究.
     本文共分为六章.
     第1章,介绍本文的研究背景、意义,所用到的预备知识,以及概括本文的主要研究结果.
     第2章,我们分析和刻画了非对称半正定矩阵锥(简称NS-psd)的一些基本性质,包括三个方面的内容.第一,非对称半正定矩阵锥的几何性质,我们揭示了NS-psd不属于齐次锥范畴的事实.第二,我们证明了NS-psd是非凸集合P0-矩阵锥的一个极大凸子锥,同时NS-psd的内部(即非对称正定矩阵锥)却不是P。-矩阵锥内部(即P-矩阵锥)的极大凸子锥,并建立了一些判定非对称矩阵半正定性的充分条件和必要条件.最后,我们给出了NS-psd锥上投影算子的一些性质和结果.第3章,我们针对非对称半定最小二乘(简称NSDLS)问题建立了一个正则化的强对偶模型NSDLS司题是对称半定最小二乘(简称SDLS)问题的拓展,它在机器人与自动控制领域有着重要的应用.借助线性锥约束区域的“极小”表示,我们得到NSDLS问题的一个正则化强对偶模型,该模型涉及一个更低维空间上的投影.在此基础上,我们进一步对这个强对偶问题的最优性条件的广义微分性质以及广义Jacobian的非奇异性进行了分析.所有这些理论结果都阐释了通过Lagrangian对偶方法求解NSDLS问题和SDLS问题一样有效.
     第4章,二阶锥是一个典型的非多面对称锥,它可以视为半定锥的一个特殊截面,并且在著名的“二阶锥规划”中扮演着最基本的角色.本章,我们通过建立一个边界充分光滑的闭凸集上的投影函数的新性质,以及对称轴加权二阶锥投影函数的表达式及其微分性质,证明了任意二阶锥截面投影函数的强半光滑性,并刻画该投影函数的Clarke-广义Jacobian和方向导数的表达式.
     第5章,l1和l∞范数上图锥分别是非对称矩阵核范数与算子范数上图锥的两个特殊截面.在本章中,我们主要给出了l1和l∞范数上图锥投影函数的明晰表达式,并指明该投影函数的强半光滑性.
     第6章,我们总结了本文的主要贡献,同时对进一步可能的研究方向进行了展望.
Optimization problems with nonsymmetric matrix variable have wide applications in real world. Especially during these years, it attracts the interest of many famous researchers and is becoming a focus in the field of mathematical programming. In this thesis, we consider several typical nonsymmetric matrix cones which are frequently used in practice, and study their variational properties.
     There are six chapters in this thesis.
     In Chapter 1, we give a brief introduction to the background, motivation and sig-nificance of studying nonsymmetric matrix cone, summarize the main results of this thesis, and review some preliminaries.
     In Chapter 2, we analyze and characterize the cone of nonsymmetric positive semidefinite matrices (NS-psd). Firstly, we study basic properties of the geometry of the NS-psd cone and show that it is a hyperbolic but not homogeneous cone. Secondly, we prove that the NS-psd cone is a maximal convex subcone of Po-matrix cone which is not convex. But the interior of the NS-psd cone is not a maximal convex subcone of P-matrix cone. As byproducts, some new sufficient and necessary conditions for a nonsymmetric matrix to be positive semidefinite are given. Finally, we present some properties of metric projection onto the NS-psd cone.
     In Chapter 3, the nonsymmetric semidefinite least squares (NSDLS) problem is to find a nonsymmetric semidefinite matrix which is closest to a given matrix in Frobenius norm. It is an extension of the semidefinite least squares problem (SDLS) and has im-portant application in the area of robotics and automation. By developing the minimal representation of the underlying cone with the linear constraints, we obtain a regular-ized strong duality with low-dimensional projection for NSDLS. Further, we study the generalized differential properties and nonsingularity of the first order optimality sys-tem about the dual problem.
     In Chapter 4, second-order cone (SOC) is a typical subclass of non-polyhedral symmetric cones. It can be regarded as a special slice of positive semidefinite matrix cone, and plays a fundamental role in the second-order cone programming. And it's already proven that the metric projection mapping onto SOC is strongly semismooth everywhere. However, whether such property holds for each slice of SOC has not been known yet. In this chapter, by virtue of a new property of projection onto the closed convex set with sufficiently smooth boundary, and the results about projection onto axis-weighted SOC, we give an affirmative answer to this problem. Meanwhile, we also show Clarke's generalized Jacobian and the directional derivative for the projection mapping onto a slice of SOC.
     In Chapter 5, the cones of epigraph of weighted l1 and l∞norm are two special slices of the cone of epigraph of weighted nuclear norm and operator norm. In this chapter, we studied the metric projection onto We describe their projection mappings explicitly and show its strong semismoothness.
     In Chapter 6, the main contributions of this thesis are concluded and some future research issues are presented.
引文
[1]Ames, B., Vavasis, S.A.:Nuclear norm minimization for the planted clique and biclique problems. Technical Report, University of Waterloo,2009.
    [2]Bauschke, H.H., Guler, O., Lewis, A.S., Sendov, H.S.:Hyperbolic polynomials and convex analysis. Canad. J. Math.,53,470-488,2001.
    [3]Beck, A.:Quadratic matrix optimization. SIAM J. Optim.,17,1224-1238,2007.
    [4]Beck, A.:Convexity Properties Associated with Nonconvex Quadratic Matrix Functions and Applications to Quadratic Programming. J. Optim. Theory Appl.,142,1-29,2009.
    [5]Beck, A., Ben-Tal, A., Teboulle, M.:Finding a Global Optimal Solution for a Quadratically Constrained Fractional Quadratic Problem with Applications to the Regularized Total Least Squares. SIAM J. Matrix Anal. Appl.,28,425-445,2006.
    [6]Ben-Tal, A., Nemirovski, A.:Lectrues on Mordern Convex Optimization:Analysis, Algo-rithms, and Engineering Applications. SIAM, Philadelphia,2001.
    [7]Bertsekas, D.P., Nedic, A.N., Ozdaglar, E.:Convex Analysis and Optimization. Athena Scientific, Belmont 2003.
    [8]Bolte, J., Daniilidis, A., Lewis, A.:Tame functions are semismooth. Math. Program.117, 5-19,2009.
    [9]Bonnans, J.F., Cominetti, R., Shapiro, A.:Sensitivity analysis of optimization problems under second order regularity constraints. Math. Oper. Res.,23,803-832,1998.
    [10]Bonnans, J.F., Sharpiro, A.:Perturbation Analysis of Optimization Problems. Springer-Verlag, New York,2000.
    [11]Borsdorf, R., Higham, N.J.:A preconditioned Newton algorithm for the nearest correlation matrix. IMA J. Numer. Anal.30,94-107,2010.
    [12]Borwein, J.M., Lewis, A.S.:Convex Analysis and Nonlinear Optimization, Theory and Examples. CMS Books in Mathematics, Springer-Verlag, New York,2000.
    [13]Borwein, J., Wolkowicz, H.:Regularizing the abstract convex program. J. Math. Anal. Appl. 83,495-530,1981.
    [14]Boyd, S., Xiao, L.:Least-squares covariance matrix adjustments. SIAM J. Matrix Anal. Appl.27,532-546,2005.
    [15]Candes, E.J., Wakin, M.B., Boyd, S.:Enhancing sparsity by reweighted lt minimization. J. Fourier Anal. Appl.,14,877-905,2008.
    [16]Chen, J.-S., Chen, X., Tseng, P.:Analysis of nonsmooth vector-valued functions associated with second-order cones. Math. Program.,101,95-117,2004.
    [17]Chen, X.D., Sun, D.F., Sun, J.:Complementarity functions and numerical experiments for second-order-cone complementarity problems. Comput. Optim. Appl.,25,39-56,2003.
    [18]Chua, C.B.:Relating homogeneous cones and positive definite cones via T-algebras. SIAM J. Optim.,14,500-506,2003.
    [19]Chua, C.B.:T-algebras and linear optimization over symmetric cones. Technical, Reports, http://www3.ntu.edu.sg/home/CBChua/talg_symm.pdf,2008.
    [20]Chua, C.B.:A T-algebraic approach to primal-dual interior-point algorithms. SIAM J. Op-tim.,14,503-523,2009.
    [21]Cottle, R.W., Pang, J.S., Stone, R.E.:The Linear Complementarity Problem. Academic Press, Boston,1992.
    [22]Dattorro, J.:Convex Optimization and Euclidean Distance Geometry. Meboo Publishing, USA,2005.
    [23]Degerine, S., Zadi, A.:Separation of an instantaneous mixture of Gaussian autoregressive sources by the exact maximum likelihood approach. IEEE Trans. Signal Process.,52,1499-1512,2004.
    [24]Degerine, S., Zadi, A.:Determinant maximization of a nonsymmetric matrix with quadratic constraints. SIAM J. Optim.,17,997-1014,2006.
    [25]Deutsch, F., Li, W., Ward, J.D.:A dual approach to constrained interpolation from a convex subset of Hilbert space. J. Approx. Theory,90,385-414,1997.
    [26]Deutsch, F.:Best Approximation in Inner Product Spaces. CMS Books Math./Ouvrages Math. SMC 7, Springer-Verlag, New York,2001.
    [27]Ding, C., Sun, D.F., Toh, K.C.:An introduction to a class of matrix cone programming, Technical Report, National University of Singapore,2010.
    [28]Donoho, D.L.:Compressed sensing. IEEE Trans. Inform. Theory,52,1289-1306,2006.
    [29]Faraut, J., Koranyi, A.:Analysis on Symmetric Cones. Oxford University Press, New York, 1994.
    [30]Fazel, M.:Matrix Rank Minimization with Applications. PhD thesis, Stanford University, 2002.
    [31]Fornasier, M., Rauhut, H, Ward, R.:Low-rank matrix recovery via iteratively reweighted least squares minimization. Technical Report,2010.
    [32]Gillis, N., Glineur, F.:Nonnegative factorization and the maximum edge biclique problem. Technical Report, http://arxiv.org/abs/0810.4225,2008.
    [33]Giiler, O.:Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res.,22,350-377,1997.
    [34]Giiler, O., Tuncel, L.:Characterization of the barrier parameter of homogeneous convex cones. Math. Program.,81,55-76,1998.
    [35]Guo, Y., Levy, B.C.:Worst-case MSE precoder design for imperfectly known MIMO com-munications channels. IEEE Trans. Signal Process.,53,2918-2930,2005.
    [36]Guo, Y., Levy, B.C.:Robust MSE equalizer design for MIMO communication systems in the presence of model uncertainties. IEEE Trans. Signal Process.,54,1840-1852,2006.
    [37]韩继业,修乃华,戚厚铎:非线性互补理论与算法.上海科技出版社,上海,2006.
    [38]Hayashi, S., Yamashita, N., Fukushima, M.:A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim.,15, 593-615,2005.
    [39]Higham, N.J.:Computing a nearest symmetric positive semidefinite matrix, Linear Algebra Appl.,103,103-118,1988.
    [40]Higham, N.J.:Computing the nearest correlation matrix-A problem from finance. IMA J. Numer. Anal.,22,329-343,2002.
    [41]Hiriart-Urruty, J.B., Lemarechal, C:Convex analysis and minimization algorithms. Springer,1993.
    [42]Holmes, R.B.:Smoothness of certain metric projection on Hilbert space. Trans. Amer. Math. Soc,184,87-100,1973.
    [43]Horn, R.A., Johnson, C.A.:Matrix Analysis. Cambridge University Press, Cambridge,1986.
    [44]Horn, R.A., Johnson, C.A.:Topics in matrix analysis. Cambridge University Press, Cam-bridge,1991.
    [45]Iasemidis, L.D., Pardalos, P., Sackellares, J.C., Shiau, D.-S.:Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. Journal of Combinatorial Optimization,5,9-26,2001.
    [46]Krislock, N.:Numerical solution of semidefinite constrained least squares problems. Mas-ter's thesis, University of British Columbia,2003.
    [47]Krislock, N., Lang, J., Varah, J., Dinesh, K., Hans-Peter, S.:Local compliance estimation via positive semidefinite constrained least squares. IEEE Transactions on Robotics and Au-tomation,20,1007-1011,2004.
    [48]Lewis, A.S.:The mathematics of eigenvalue optimization. Math. Program.,97,155-176, 2003.
    [49]Leiws, A.S., Malick, J.:Alternating projections on manifold. Math. Oper. Res.,33,216-234, 2008.
    [50]Malick, J.:A dual approach to solve semidefinite least-squares problems. SIAM J. Matrix Anal. Appl.26,272-284,2004.
    [51]Michelot, C:A finite algorithm for finding the projection of a point onto the canonical simplex of R". J. Optim. Theory Appl.50,195-200,1986.
    [52]Mifflin, R.:Semismooth and semiconvex functions in constrained optimization. SIAM J. Control. Optim.15,957-972,1977.
    [53]Mohan, K., Fazel, M.:Reweighted nuclear norm minimization with application to system identification. Proceedings of the American Control Conference,2953-2959,2010.
    [54]Mohan, K., Fazel, M.:Iterative reweighted least squares for matrix rank minimization. Pro-ceedings of the Allerton Conference,2010.
    [55]Nesterov, Y., Nemirovsky, A.:Interior point polynomial methods in convex programming. Stud. Appl. Math.,13 SIAM, Philadelphia, PA,1994.
    [56]Pang, J.S., Sun, D.F., Sun, J.:Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Cone Complementarity Problems. Math. Oper. Res.,28,39-63, 2003.
    [57]Pardalos, P.M., Wolkowicz, H.:Topics in Semidennite and Interior-Point Methods, Fields Institute Communications Series Vol.18, American Mathematical Society, New Providence, Rhode Island,1998.
    [58]Pataki, G.:On the facial structure of cone-LP'and semi-definite programs. Management Sci-ence Research Report MSRR-# 595, Graduate School of Industrial Administration, Carnegie Mellon University,1994.
    [59]Pataki, G.:A simple derivation of a facial reduction algorithm and extended dual systems. Technical Report, Columbia University,1996.
    [60]Pataki, G.:On the rank of extreme matrices in semidefinite programs and the multiplicity of optimal eigenvalues. Math. Oper. Res.,23,339-358,1998.
    [61]Pataki, G.:On the closedness of the linear image of a closed convex cone. Math. Oper. Res., 32,395-412,2007.
    [62]Pataki, G., Tuncel, L.:On the generic properties of convex optimization problems in conic form. Math. Program.,89,449-457,2001.
    [63]Polik, I., Terlaky, T.:Exact duality for optimization over symmetric cones, Technical Report, McMaster University,2007.
    [64]Qi, H.D.:Local duality of nonlinear semidefinite programming. Math. Oper. Res.,34,124-141,2009.
    [65]Qi, H.D., Sun, D.F.:An augmented Lagrangian dual approach for the H-weighted nearest correlation matrix problem. To appear in IMA J. Numer. Anal.,2010.
    [66]Qi, H.D., Sun, D.F.:A quadratically convergent Newton method for computing the nearest correlation matrix. SIAM J. Matrix Anal. Appl.,28,360-385,2006.
    [67]Qi, L., Sun, J.:A nonsmooth version of Newton's method. Math. Program.,58,353-367, 1993.
    [68]Ramana, M.V.:An exact duality theory for semidefinite programming and its complexity implications. Math. Program.,77,129-162,1997.
    [69]Ramana, M.V., Pardalos, P.M.:Semidefinite Programming. In Terlaky, T., Interior Point methods of Mathematical Programming,369-398. Kluwer Academic Publishers, Dordrecht, The Netherland,1996.
    [70]Ramana, M.V., Tuncel, L.,Wolkowicz, H.:Strong duality for semidefinite programming. SIAM J. Optim.,7,641-662,1997.
    [71]Recht, B., Faze, M., Parrilo, A.:Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization. SIAM Review, to appear,2010.
    [72]Renaut, R.A., Guo, H.:Efficient algorithms for solution of regularized total least squares. SIAM J. Matrix. Anal. Appl.,26,457-476,2005.
    [73]Renegar, J.:A Mathematical View of Interior-Point Methods in Convex Optimization. Soci-ety for Industrial and Applied Mathematics, Philadelphia,2001.
    [74]Renegar, J.:Hyperbolic programs, and their derivative relaxations. Found. Comp. Math.,6, 59-79,2006.
    [75]Rockafellar, R.T.:Convex analysis. Princeton University Press, Princeton,1970.
    [76]Rockafellar, R.T.:Conjugate Duality and Optimization. SIAM, Philadelphia,1974.
    [77]Rockafellar, R.T., Wets, R.J-B.:Variaional Analysis. Springer, New York,1998.
    [78]Schafer, U.:A linear complementarity problem with a P-matrix. SIAM Review,46,189-201,2004.
    [79]Sima, D., Van-Hul, S., Golub, G.H.:Regularized Total Least Squares Based on Quadratic Eigenvalue Problem Solvers, BIT Numer. Math.,44,793-812,2004.
    [80]Stoer, J., Witzgall, C:Convexity and Optimization in Finite Dimensions, Vol. I. Springer-Verlag, Heidelberg,1970.
    [81]Sun, D.F.:A further result on an implicit function theorem for locally Lipschitz functions. Oper. Res. Lett,28,193-198,2001.
    [82]Sun, D.F.:The strong second order sufficient condition and constraint nondegeneracy in nonlinear semidefinite programming and their implications. Math. Oper. Res.,31,761-776, 2006.
    [83]Sun, D.F., Sun, J.:Semismooth matrix valued functions. Math. Oper. Res.,27,150-169, 2002.
    [84]Sun, D.F., Sun, J.:Strong semismoothness of Fischer-Burmeister SDC and SOC functions. Math. Program.,103,575-581,2005.
    [85]Sun, D.F., Sun, J.:Lowner's operator and spectral functions in Euclidean Jordan algebras. Math. Oper. Res.,33,421-445,2008.
    [86]Toh, K.C.:An inexact primal-dual path-following algorithm for convex quadratic SDR Math. Program.,112,221-254,2002.
    [87]Truong, V.A., Tuncel, L.:Geometry of homogeneous cones:Duality mapping and optimal selfconcordant barriers. Math. Program.,100,295-316,2004.
    [88]Tuncel, L.:Polyhedral and Semidefinite Programming Methods in Combinatorial Optimiza-tion. Fields Inst. Monogr., AMS,2008.
    [89]Tuncel, L., Wolkowicz, H.:Strong duality and minimal representations for cone optimiza-tion. Technical Report, Waterloo University,2008.
    [90]Tuncel, L., Xu, S.:On homogeneous convex cones, the Caratheodory number and the duality mapping. Math. Oper. Res.,26,234-247,2001.
    [91]Vandenberghe, L., Boyd, S.:Semidefinite programming. SIAM Review,38,49-95,1996.
    [92]Vinberg, E.B.:The theory of convex homogeneous cones. Trans. Moscow Math. Soc.,12, 340-403,1963.
    [93]Vinberg, E.B.:The structure of the group of automorphisms of a homogeneous convex cone, Trans. Moscow Math. Soc.,13,63-93,1965.
    [94]Wang, Y.N., Xiu, N.H., Han, J.Y.:On Cone of Nonsymmetric Positive Semidefinite Matri-ces. Linear Algebra Appl.433,718-736,2010.
    [95]Wolkowicz, H., Saigal, R., Vandenberghe L.:Handbook of Semidefinite Programming:The-ory, Algorithms, and Applications. Kluwer Academic Publishers, Boston,2000.
    [96]修乃华,韩继业:对称锥互补问题.数学进展,36,3-14,2007.
    [97]Xiu, N., Zhang, J.:A smoothing Gauss-Newton method for the generalized HLCP. J. Com-put. Applied Math.,129,195-208,2001.
    [98]Xiu, N., Zhang, J.:A characteristic quantity of P-matrices, App. Math. Lett.15,41-46,2002.
    [99]Xhafa, F.:A short note on non-symmetric semidefinite programming. Technical Re-port, Department de Llenguatges i Sistemes Informatics, Barcelona, http://citeseer.ist.psu. edu/old/125976.html.
    [100]Zarantonello, E.:Projections on convex sets in Hilbert space and spectral theory. In:Zaran-tonello, E.H. (ed.):Contributions to Nonlinear Functional Analysis,237-424. Academic Press, New York,1971.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700