几类对称锥互补问题的算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对称锥互补问题(SCCP)是一类重要的均衡优化问题,具有内容新、理论丰富和应用背景广泛等特点.他为标准非线性互补问题(NCP)、二阶锥互补问题(SOCCP)、半定互补问题(SDCP)提供了统一框架,与组合优化、鲁棒优化、不确定优化、博弈与均衡理论等分支有密切的联系.
     本论文主要利用欧几里德若当代数技术,建立了求解几类SCCP的光滑牛顿法,包括求解单调SCCP、其特殊情形单调SOCCP和非单调SCCP.另外,讨论了SCCP价值函数的一些性质.光滑牛顿法求解SCCP,首先利用互补函数,如常见的最小值函数或者FB互补函数,将SCCP转化为一个非光滑非线性方程组.然后在互补函数中引入一个光滑因子构造出一个光滑函数,利用此光滑化互补函数来逼近以前的互补函数.通过求解光滑方程组来达到求解原非光滑方程组的目的,其中光滑因子作为光滑方程组中的一个变量.最后利用牛顿法求解所转化的光滑方程组.本论文取得的主要结果可概括为如下:
     对于单调SCCP,基于对称扰动Chen-Harker-Kanzow-Smale(CHKS)光滑函数提出一个预估校正光滑牛顿法.证明算法所生成的点列在解集仅为非空的条件下有界,因而得到算法的全局收敛性.在适当的假设下,证明了算法的局部超线性收敛性.另外将一类二阶锥规划的新光滑函数推广到SCCP中,研究了该类新光滑函数的性质,并基于此光滑函数建立求解单调SCCP的一步光滑牛顿法,分析了算法的适定性以及全局和局部超线性收敛性.
     对于单调SOCCP,基于一类含参数互补函数的光滑函数,提出了求解SOCCP的一步光滑牛顿法.分析了算法适定性和收敛性,并且通过一个数值矩阵例子,说明光滑牛顿法在求解非单调的P_0-SOCCP时,牛顿方程可能会无解.最后,通过数值试验分析了参数对数值效果的影响.
     对于非单调具有笛卡尔P性质的对称锥线性互补问题(SCLCP),基于CHKS光滑函数提出一个求解该类非单调SCLCP的光滑牛顿法,分析了在函数P满足Cartesain P_0性质时牛顿方程的可解性,证明了迭代点的邻域在函数P满足Cartesain性质时的有界性.从而得到算法的适定性和收敛性.
     对于非单调具有笛卡尔P_0性质的SCLCP,基于CHKS光滑函数提出一个求解该类非单调SCLCP的正则光滑牛顿法,分析了算法适定性和收敛性.另外,基于对称扰动Fischer-Burmeister(FB)光滑函数提出了一个光滑牛顿法,当函数P满足Cartesain P_0性质时,证明了牛顿方程的可解性和目标函数的强制性.从而,得到算法所生成点列的有界性.最后分析了算法的适定性和收敛性.
     基于欧几里德若当代数技术,提出了SCCP的一类新价值函数,在适当条件下讨论了该类价值函数水平集的有界性,并且基于该类价值函数建立了SCCP解的一个全局误差界.这两个性质可以提供算法停止的准则和分析算法收敛性.另外,对于一类已有价值函数,本文提出了比已有条件更弱的条件,在该条件下这些价值函数的水平集有界,且基于这些价值函数建立了SCCP解得全局误差界.
Symmetric Cone Complementarity Problem(SCCP) is a class of important equilib-rium optimization problems with new content, abundant theory, and extensive applica-tion. The SCCP provides a simple uni?ed framework for various existing complementarityproblems such as nonlinear complementarity problem (NCP), second-order cone comple-mentarity problem (SOCCP), and the semide?nite complementarity problem (SDCP). Italso has close relation with the combination optimization, robust optimization, uncertainoptimization, and game and equilibrium theory.
     This thesis is devoted to study the smoothing Newton method for solving severalclass of SCCP, including the monotone SCCP, the special case of monotone SCCP andtwo classes of nonmonotone SCCP, and to investigate some properties of the merit functionof SCCP by the tool of Euclidean Jordan algebras. When the smoothing Newton methodis used to solve SCCP, we ?rst reformulate it into a nonlinear system of non-smooth equa-tions by the complementarity function, such as the minimum complementarity functionand the Fischer-Burmeister(FB) complementarity function. And then a smooth factor isintroduced into the complementary function. So the non-smooth reformulation equationsare smoothed, seeming the smooth factor as a variable. Finally, the Newton method isused to solve the nonlinear system of smooth equation. The main contributions are listedas follows:
     For the monotone SCCP, we proposed a predictor-corrector smoothing Newtonmethod based on the symmetrically perturbed smoothing function. Under a mild as-sumption that the solution set of the problem concerned is just nonempty, we prove theglobal convergence of the proposed algorithm. And the local superlinear convergence isobtained under the suitable assumption. Also, we extended a class of new smoothingfunction of second order cone complementarity function to the SCCP, and researched theproperties of the new smoothing function. Based on this new smoothing function, we pro-posed a one step smoothing Newton method for monotone SCCP. The well-de?nednessof the method and the global convergence and the local superlinear convergence wereobtained.
     For the monotone SOCCP, we presented a one step smoothing Newton methodbased on a class of parametric smoothing function. The well-de?nedness and the con- vergence were researched. We also give a numerical example about 2×2 P_0-matrix,which implies that the smoothing Newton method based on Chen-Harker-Kanzow-Smale(CHKS) smoothing function (when P = 0) can not be used for solving the class of non-monotone P_0-SOCCP. At last, the preliminary numerical results are also reported to showthe in?uence of the parametric to the numerical e?ect.
     For the nonmonotone Symmetric Cone Linear Complementary Problem(SCLCP)with the Cartesian P-property, we proposed a smoothing Newton method based on theCHKS smoothing function. We proved the nonsingularity of Jacobian matrices under thecondition of the Cartesian P_0-property and the boundedness of neighborhood of iteratesgenerated by the smoothing Newton method. Hence, the well-de?nedness and the globaland local quadratic convergence were obtained.
     For the nonmonotone SCLCP with the Cartesian P_0-property, based the CHKSsmoothing function we presented a regularization smoothing Newton method, and thewell-de?nedness and the convergence are analyzed. Based on the famous symmetric per-turbed Fischer-Burmeister smoothing function, a smoothing Newton method is proposed.We proved the nonsingularity of Jacobian matrices (which implies the solvability of New-ton’s equation) and the coerciveness of the target function (which implies the boundednessof the neighborhood of iterates) under the condition of Cartesian P_0-property. Moreover,the global convergence is obtained under a nonsingularity assumption.
     Based on the Euclidean Jordan algebra, we proposed a new merit function forSCCP, studied the condition under which the level set of the merit function is boundedand the merit function provided a global error bound for the solution to the SCCP. Thetwo properties can be used to provide the stop criterion and to analyzed the convergenceof the algorithm. Also, for the existing merit function, a weaker condition under whichthe existing merit function have the above two properties was proposed.
引文
[1] F. Alizadeh and D. Goldfarb, Second-order cone programming. Mathematical Programming.2003, 95. 3-51.
    [2] S. C. Billups, S. P. Dirkse and M. C. Ferris, A comparison of algorithms for largescalemixed complementarity problems. Computational Optimization and Applications. 1997, 7.3-25.
    [3] J. Burke and S. Xu, The global linear convergence of a non-interior path-following algorithmfor linear complementarity problems. Mathematics of Operations Research. 1998, 23. 719-734.
    [4] J. Burke and S. Xu, A non-interior predictor-corrector path following algorithm for themonotone linear complementarity problem. Mathematical Programming. 2000, 87. 113-130.
    [5] F.H. Clarke, Optimization and Nonsmooth Analysis. New York: John Wiley and Sons,1983.
    [6] J. S. Chen and P. Tseng, An unconstrained smooth minimization reformulation of thesecond-order cone complementarity problem. Mathematical Programming. 2005, 104. 293-327.
    [7] J. S. Chen, Two classes of merit functions for the second order cone complementarityproblem. Mathematics Operations Research 2006, 64. 495-519.
    [8] J. S. Chen, A new merit function and its related properties for the second-order conecomplementarity problem. Paci?c Journal of Optimization 2006, 2. 167-179.
    [9] J. S. Chen, The Semismooth-related properties of a merit function and a descent method forthe nonlinear complementarity problem, Journal of Global Optimization 2006, 36. 565-580.
    [10] J. S. Chen, Conditions for error bounds and bounded level sets of some merit functions forSOCCP. Journal of Optimization Theory and Applications 2007, 135. 459-473.
    [11] J. S. Chen, X. Chen, and P. Tseng, Analysis of nonsmooth vector-valued functions associ-ated with second-order cones. Mathematical Programming. 2004, 101. 95-117.
    [12] J. S. Chen and S. H. Pan, A one-parametric class of merit functions for the second-ordercone complementarity problem. Computational Optimization and Applications. 2010, 45(3).581-606.
    [13] J. S. Chen and S. H. Pan, A descent method for a reformulation of the second-order conecomplementarity problem. Journal of Computational and Applied Mathematics 2008, 213.547-558.
    [14] J. S. Chen and S. H. Pan, A family of NCP functions and a descent method for thenonlinear complementarity problem. Computational Optimization and Applications 2008,40(3). 389-404.
    [15] J. S. Chen, H. T. Gao and S. H. Pan, An R-linearly convergent derivative-free algorithmfor nonlinear complementarity problems based on the generalized Fischer-Burmeister meritfunction. Journal of Computational and Applied Mathematics. 2009, 232(2). 455-471.
    [16] X. D. Chen, J. Sun and J. Sun, Complementarity functions and numerical experimentson some smoothing newton methods for second order cone complementarity problems.Computational Optimization and Applications. 2003, 25. 39-56.
    [17] X. N. Chi and S. Y. Liu. A one-step smoothing Newton method for second-order coneprogramming. Journal of Computational and Applied Mathematics. 2009, 223. 114-123.
    [18] X. Chen and H. D. Qi, Cartesian P-property and its applications to the semide?nite linearcomplementarity problem. Mathematical Programming. 2006, 106. 177-201.
    [19] X. Chen and P. Tseng. Non-Interior continuation methods for solving semide?nite comple-mentarity problems. Mathematical Programming. 2003, 95. 431-474.
    [20] X. Chen, L. Q. Qi and D. F. Sun, Global and superlinear convergence of the smoothingNewton method and its application to general box-constrained variational inequalities.Mathematics of computation. 1998, 67. 519-540.
    [21] X. Chen and Y. Ye, On homotopy-smoothing methods for box-constrained variational in-equalities. SIAM Journal on Control and Optimization. 1999, 37. 589-616.
    [22] B. Chen, X.Chen, and C. Kanzow,A penalized Fischer-Burmeister NCP-function. Mathe-matiealProgramming. 2000, 88. 211-216.
    [23] B. Chen and X. Chen, A global and local superlinear continuation-smoothing method for??0 + ??0 and monotone NCP. SIAM Journal on Optimization. 1999, 9. 624-645.
    [24] B. Chen and P. T. Harker, A non-interior-point continuation method for linear complemen-tarity problems. SIAM Journal on Matrix Analysis and Applications. 1993, 14. 1168-1190.
    [25] B. Chen and N. Xiu, A global linear and local quadratic non-interior continuation methodfor nonlinear complementarity problems based on Chen-Mangasarian smoothing functions.SIAM Journal on Optimization. 1999, 9. 605-623.
    [26] B. Chen and N. Xiu, Superlinear noninterior one-step continuation method for monotoneLCP in absence of strict complementarity. Journal of Optimization Theory and Applica-tions. 2001, 108. 317-332.
    [27] C. H. Chen and O. L. Mangasarian, A class of smoothing functions for nonlinear and mixedcomplementarity problems. Computational Optimization and Applications. 1996, 5. 97-138.
    [28] C. B. Chua and P. Yi, A continuation method for nonlinear complementarity problems oversymmetric cones. SIAM Journal on Optimization. 2010, 20. 2560-2583.
    [29] C. B. Chua, H. L. Lin and P. Yi, Uniform nonsingularity and complementarity problemsover symmetric cones. Optimization online 2009.
    [30] R. W. Cottle, J. S. Pang and R. E. Stone, The Linear Complementarity Problem. Boston:AeademiePress, 1992.
    [31] Z. X. Chan and D. Sun, Constraint nondegeneracy, strong regularity, and nonsingularityin semide?nite programming. SIAM Journal on Optimization. 2008, 19. 370-396.
    [32] X. H. Chen and C. F. Ma, A regularization smoothing Newtone method for solving nonlinearcomplementarity problem. Nonlinear Analysis: Real World Applications. 2009, 10. 1702-1711.
    [33] S. Engelke and C. Kanzow, Predictor-corrector smoothing mehtods for the solution of linearprogramms. Institute of Applied Mathematics, University of Hamburg, Hamburg. 2000.
    [34] S. Engelke and C. Kanzow, Improved smoothing-type mehtods for the solution of linearprogramms. Numerische Mathematik. 2002, 90(3). 487-507.
    [35] F. Facchinei and J. Soares . A new merit function for nonlinear complementarity problemsand a related algorithm. SIAM Journal on Optimization. 1997, 7. 225-247.
    [36] A. Fischer, A special Newton-type optimization methods. Optimization. 1992, 24. 269-284.
    [37] L. Fang, G.P. He and Y.H. Hu, A new smoothing Newton-type method for second-ordercone programming problems. Applied Mathematics and Computation. 2009, 215. 1020-1029.
    [38] F. Facchinei and J. S. Pang, Finite-Dimensional Variational Inequalities and Complemen-tarity Problems. New York: Springer-Verlag, 2003.
    [39] F. Facchinei and C. Kanzow, Beyond monotonicity in regularization methods for nonlinearcomplementarity problems. SIAM Journal on Control and Optimization. 1999, 37. 1150-1161.
    [40] M. Fukushima, Z.Q. Luo and P. Tseng, Smoothing functions for second-order cone com-plementarity problems. SIAM Journal on Optimization. 2002, 12. 436-460.
    [41] J. Faraut and A. Koranyi, Analysis on Symmetric Cones. Oxford: Oxford Universty Press,1994.
    [42] L. Faybusovich, Euclidean Jordan algebras ans Interior-point algortihms. Positivity. 1997,1. 331-357.
    [43] L. Faybusovich, Linear systems in Jordan algebras and primal-dual interior point algo-rithms. Journal of Computational and Applied Mathematics. 1997, 86. 149-175.
    [44] L. Faybusovich and R. Arana, A long-step primal-dual algorithm for the symmetric pro-gramming problem. Technical Report, Department of Mathematics, Notre Dame University,2000.
    [45] S. A. Gabrial and J. J. Mor′e, Smoothing of mixed complementarity problems, in Comple-mentarity and Variational Problems: State of the Art, Ferris. Philadelphia: SIAM, 1996.105-116.
    [46] M. S. Gowda, R. Sznajder and J. Tao, Some P-properties for linear transformations onEuclidean Jordan algebras. Linear Algebra and its Applications. 2004, 393. 203-232.
    [47] J. Gu, L. Zhang and X. Xiao. Log-Sigmoid nonlinear Lagrange method for nonlinear opti-mization problems over second-order cones. Journal of Computational and Applied Mathe-matics. 2009, 229. 129-144.
    [48] C. Geiger and C. Kanzow, On the resolution of monotone complementarity problems. Com-putational Optimization and Applications 1996, 5. 155-173.
    [49] D. R. Han, On the coerciveness of some merit functions for complementarity problems oversymmetric cones. Journal of Mathematical Analysis and Applications. 2007, 336. 727-737.
    [50] S. Hayashi, N. Yamashita and M. Fukushima, A combined smoothing and regularizationmethod for monotone second-order cone complementarity problems. SIAM Journal on Op-timization 2005, 15. 593-615.
    [51] S. Hayashi, N. Yamashita and M. Fukushima. Robust Nash equilibria and second-order conecomplementarity problems. Journal of Nonlinear and Convex Analysis. 2005, 6. 283-296.
    [52] Z. H. Huang, J. Y. Han, D. C. Xu etal, The non-interior continuation methods for solvingthe function nonlinear complementarity problem. Science in China (Series A). 2001, 44.1107-1114.
    [53] Z. H. Huang and J. Y. Han. Non-interior continuation method for solving the monotonesemide?nite complementarity problem. Applied Mathematics and Optimization. 2003, 47.195-211.
    [54] Z. H. Huang, J. Y. Han and Z. Chen, Predictor-corrector smoothing Newton method, basedon a new smoothing function for solving the nonlinear complementarity problem with a ??0function. Journal of Optimization Theory and Applications. 2003, 117. 39-68.
    [55] Z.H. Huang, L.Q. Qi and D. F. Sun, Sub-quadratic convergence of a smoothing Newtonalgorithm for the ??0 and monotone LCP. Mathematical Programming. 2004, 99. 423-441.
    [56] Z. H. Huang. Global Lipschitzian error bounds for semide?nite complementarity problemswith emphasis on NCPs. Applied Mathematics and Computation. 2005, 162. 1237-1258.
    [57] Z. H. Huang and X. H. Liu, Extension of smoothing Newton algorithms to solve linearprogramming over symmetric cones. Technique Report, Department of Mathematics, Schoolof Science, Tianjin University, China, 2007.
    [58] Z. H. Huang, T. Ni, Smoothing algorithms for complementarity problems over symmetriccones. Computational Optimization and Applications. 2010, 45. 557-579.
    [59] Z. H. Huang, S. L. Hu and J. Y. Han, Convergence of a smoothing algorithm for symmetriccone complementarity problems with a nonmonotone line search. Science in China (SeriesA). 2009, 52. 833-848.
    [60]韩继业,修乃华,戚厚铎.非线性互补理论与算法.上海:上海科技出版社, 2006.
    [61] G. Isac, Topological Methods in Complementarity Theory, Kluwer Academic Publish-ers,Boston, 2000.
    [62] H. Jiang, Unvonstrained minimization approaches to nonlinear complementarity problems.Journal of Global Optimization. 1996, 9. 169-181.
    [63] Y. Kanno and M. ohsaki, Contact analysis of cable networks by using second-oreder coneprogramming. SIAM Journal on Scienti?c Computing. 2006, 27. 2032-2052.
    [64] Y. Kanno, J. A. C. Martins and A. Pinto da Costa, Three-dimensional quasi-static frictionalcontact by using second-order cone linear complementarity problem. International Journalfor Numerical Methods in Engineering. 2006, 65. 62-83.
    [65] L. C. Kong, J. Sun and N. H. Xiu, A regularized smoothing Newton method for symmetriccone complementarity problems. SIAM Journal on Optimization. 2008, 19. 1028-1047.
    [66] L. C. Kong, N. H. Xiu and J. Y. Han, Solution set structure of monotone linear com-plementarity problems over second-order cone. Operations Research Letters. 2008, 36(1).71-76.
    [67] L. C. Kong and N. H. Xiu, New smooth C-functions for symmetric cone complementarityproblems. Optimization Letters. 2007, 1. 391-400.
    [68] L. C. Kong, L. Tuncel and N. H. Xiu, Vector-valued implicit Lagrangian for symmetriccone complementarity problems, Asia-Paci?c Journal of Operational Research 2009, 26.199-233.
    [69] L. C. Kong and N. H. Xiu, On uniqueness of the Jordan frame in Euclidean Jordan algebras,Prepring, Department of Mathematics, Beijing Jiaotong University, Beijing, 2005, 12.
    [70] L. C. Kong, L. Tuncel and N. H. Xiu. Clarke generalized Jacobian of the projection ontosymmetric cones. Set-Valued and Variational Analysis. 2009, 17. 135-151.
    [71] E. Klerk, Aspects of semide?nite programming:interior point algorithms and selectedapplications. Dordrecht: Kluwer Academic Publishers, 2002.
    [72] M. Kojima, N. Megiddo and T. Noma etal, A uni?ed approach to interior point algorithmsfor linear complementarity problems.Berlin: Springer-Verlag, 1991.
    [73] M. Kojima, N. Megiddo and T. Noma, Homotopy continuation methods for nonlinearcornplementarity problems. Mathematics of Operations Research. 1991, 16. 754-774.
    [74] M. Koecher, Positivita¨tsbereiche in ???. American Journal of Mathematics. 1958, 79. 575-596.
    [75] M. Koecher, On real Jordan algebras. Bulletin of The American Mathematical Society.1962, 68. 374-377.
    [76] M. Koecher, Jordan algebras and their applications. Lecture notes, University of Minnesota,Minneapolis, 1962.
    [77] C. Kanzow and C. Nagel, Quadratic convergence of a nonsmooth Newton-type methodfor semide?nite programs without strict complementarity. SIAM Journal on Optimization.2005,15. 654-672.
    [78] C. Kanzow, Some noninterior continuation methods for linear complementarity problems,SIAM Journal on Matrix Analysis and Applications. 1996,17. 851-868.
    [79] S. H. Kum and Y. D. Lim. Coercivity and strong semismoothness of the penalized Fischer-Burmeister function for the symmetric cone complementarity problem. Journal of Opti-mization Theory and Applications. 2009, 142. 377-383.
    [80] S. H. Kum and Y. D. Lim. Penalized complementarity functions on symmetric cones. Jour-nal of Global Optimization. 2010, 46. 475-485.
    [81] X.H. Liu and Z.H. Huang, A smoothing Newton algorithms based on one-parametric class ofsmoothing functions for linear programming over symmetric cones. Mathematical Methodsof Operations Research. 2009, 70. 385-404.
    [82] X. H. Liu and W. Z. Gu, Smoothing newton algorithm based on a regularized one-parametric class of smoothing functions for generalized complementarity problems oversymmetric cones. Journal of Industrial and Management Optimization. 2010, 6. 363-380.
    [83] Y. J. Liu, L. W. Zhang and Y. H. Wang, Some properties of a class of merit functions forsymmetric cone complementarity problems. Asia Paci?c Journal of Operational Research.2006, 23. 473-495.
    [84] Y. J. Liu, L. W. Zhang and M. J. Liu, Extension of smoothing functions to symmetric conecomplementarity problems. Appllied Mathematics. A Journal of Chinese Universities,B.2007, 22. 245-252.
    [85] Y. J. Liu, L. W. Zhang and Y. H. Wang, Analysis of a smoothing method for symmetricconic linear programming, Journal of Applied Mathematics and Computing. 2006, 22(1-2).133-148.
    [86] Z. Q. Luo and J. S. Pang, Error bounds for analytic systems and their applications. Math-ematical Programming. 1994, 67(1). 1-28.
    [87] Z. Q. Luo and P. Tseng, A new class of merit functions for the nonlinear complementarityproblem. In: Ferris MC, Pang J-S (eds) Complementarity and variational problems: stateof the art. SIAM, Philadelphia, 1997. 204-225.
    [88] Z. Yu. The bounded smooth reformulation and a trust region algorithm for semide?nitecomplementarity problems. Applied Mathematics and Computation. 2004, 159. 157-170.
    [89] Z. Lu and R. D. C. Monteiro. A note on the local convergence of a predictor-correctorinterior-point algorithm for the semide?nite linear complementarity problem based on theAlizadeh-Haeberly-Overton search direction. SIAM Journal on Optimization. 2005, 15.1147-1154.
    [90] X. H. Liu and, T. Nie, Extension of smoothing Newton algorithms to solve linear program-ming over symmetric cones, Transactions of Tianjin University 2009, 15. 216-221.
    [91] M. S. Lobo, L. Vandenberghe and S. Boyd etal, Applications of second-order cone program-ming. Linear Algebra and its Application. 1998, 284. 193-228.
    [92] Y. Lu and Y. X. Yuan, An interior-point trust region algorithm for general symmetric coneprogramming. SIAM Journal on Optimization. 2007, 18. 65-86.
    [93] Z. Y. Luo and N. H. Xiu, Path-following interior point algorithms for the Cartesian ???-LCPover symmetric cones, Science in China (Series A). 2009, 52. 1769-1784.
    [94] O. L. Mangasarian and M. V. Solodov, Nonlinear complementarity as unconstrained andconstrained minimization. Mathematical Programming. 1993, 62. 277–297.
    [95] O. L. Mangasarian and M. V. Solodov, A linearly convergent derivative-free descent methodfor strongly monotone complementarity problems. Computational Optimization and Appli-cations. 1999, 14. 5-16.
    [96] M. Muramatsu, On a commutative class of search directions for linear programming oversymmetric cones. Journal of Optimization Theory and Applications. 2002, 112. 595-625.
    [97] R. Mi?in, Semismooth and semiconvex functions in constrained optimization. SIAM Jour-nal on Control Optimization. 1977, 15. 959-972.
    [98] J. Nocedal and S. J. Wright, Numerical Optimization. New York: Springer Verlag. 1999.
    [99] Y. Nesterov and A. Nemirovski, Interior point polynomial methods in Convex Program-ming: Theory and applications, Philadelphia: Society for Industrial unapplied Mathematics(SIAM), 1994.
    [100] T. Ni and W.Z. Gu. Smoothing Newton algorithm for symmetric cone complementar-ity problems based on a one-parametric class of smoothing functions. Journal of AppliedMathematics and Computing. DOI 10.1007/s12190-009-0341-7, 2009.
    [101] J. V. Outrata and D. Sun. On the coderivative of the projection operator onto the second-order cone. Set-Valued Analysis. 2008, 16. 999-1014.
    [102] S. H. Pan and J. S. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions, Computational Optimization and Ap-plications. 1573-2894. doi: 10.1007/s10589-008-9166-9.
    [103] S. H. Pan and J. S. Chen, A one-parametric class of merit functions for the symmetriccone complementarity problem. Journal of Mathematical Analysis and Applications. 2009,355. 195-215.
    [104] S. H. Pan and J. S. Chen, A damped Gauss-Newton method for the second-order conecomplementarity problem. Applied Mathematics and Optimization. 2009, 59. 293-318.
    [105] S. H. Pan and J. S. Chen, Growth behavior of two classes of merit functions for symmetriccone complementarity problems. Journal of Optimization Theory and Applications. 2009,141. 167-191.
    [106] S. H. Pan and J. S. Chen, A one-parametric class of merit functions for the second-ordercone complementarity problem. Computational Optimization and Applications. 2010, 45.581-606.
    [107] S. H. Pan and J. S. Chen, Approximal gradient descent method for the extended second-order cone linear complementarity problem. Journal of Mathematical Analysis and Appli-cations. 2010, 366. 164-180.
    [108] S. H. Pan and J. S. Chen, A linearly convergent derivative-free descent method for thesecond-order cone complementarity problem. Optimization. 2010, 59. 1173-1197.
    [109] P. Tseng, Merit functions for semi-de?nite complementarity problems. Mathematical Pro-gramming. 1998, 83. 159-185.
    [110] P. Tseng, Error bounds and superlinear convergence analysis of some Newton type methodsin optimization. Nonlinear Optimization and Related Topics, Kluwer Academic Publishers,Boston, MA, 2000. 445-462.
    [111] Y. H. Peng and Z. H. Liu, A derivative-free ?lter algorithm for nonlinear complementarityproblem, Applied Mathematics and Computation. 2006, 182(1). 846-853.
    [112] S. P. Rui and C. X. Xu. Inexact non interior continuation method for solving large-scalemonotone SDCP. Applied Mathematics and Computation. 2009, 215. 2521-2527.
    [113] B. K. Rangarajan, Polynomial convergence of infeasible-interior-point methods over sym-metric cones. SIAM Journal on Optimization. 2006, 16. 1221–1229.
    [114] O. S. Rothaus, Domians of positivity. Abhandlungen Aus Dem Mathematischen SeminarDer Universitat Hamburg, 1960. 189-235.
    [115] R. S. Palais and C. L. Terng, Critical Point Theory and Submanifold Geometry. LectureNotes in Mathematics, vol. 1353. Springer, Berlin, German, 1988.
    [116] L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinearcomplementarity problems and box constrained variational inequalities. Mathematical Pro-gramming. 2000, 87. 1-35.
    [117] L. Qi and J. Sun, A nonsmooth version of Newton’s method. Mathematical Programming.1993, 58. 353-367.
    [118] H. Qi, A regularized smoothing Newton method for box constrained variational inequalityproblems with ??0-functions. SIAM Journal on Optimization. 2000,10. 315-330.
    [119] H. Qi and L. Z. Liao, A smoothing Newton method for extended vertical linear comple-mentarity problems. SIAM Journal on Matrix Analysis and Applications. 1999, 21. 45-66.
    [120] D. Sun and J. Sun, Strong semismoothness of Fischer-Burmeister SDC and SOC comple-mentarity functions. Mathematical Programming. 2005, 103. 575-581.
    [121] D. Sun and J. Sun, L?¨?wner operator and spectral functions in Euclidean Jordan algebras.Mathematics of Operations Research. 2008, 33. 421-445.
    [122] D. Sun and L. Qi, On NCP-functions, Computational Optimization and Applications. 1999,13. 201-220.
    [123] J. Sun and L. Zhang. A globally convergent method based on Fischer-Burmeister operatorsfor solving second-order cone constrained variational inequality problems. Computers andMathematics with Applications. 2009, 58. 1936-1946.
    [124] D. Sun, A regularization Newton method for solving nonlinear complementarity problems.Applied Mathematics and Optimization. 1999, 35. 315-339.
    [125] S. Schmieta and F. Alizadeh, Associative and Jordan algebras, and polynomial timeinterior-point algorithems for symmetric cones. Mathematics of Operations Research. 2001,26. 543-564.
    [126] S. Schmieta and F. Alizadeh, Extension of primal-dual interior-point algorithms to sym-metric cones. Mathematical Programming. 2003, 96. 409-438.
    [127] S. Smale, Algorithms for solving equations. Proceeding of International Congress of Math-ematicians, American Mathematics Society, Providence, RI, 1987. 172-195.
    [128] J. Tao and M. S. Gowda, Some P-properties for nonlinear transformations on EuclideanJordan algebras. Mathematics of Operations Research. 2005, 30. 985-1004.
    [129] E. B. Vinberg, The theory of convex homogeneous cones. Transactions of the MoscowMathematical Society. 1963,12. 303-358.
    [130] H. Wolkowicz, R. Saigal and L. Vandenberghe, Handbook of semide?nite programming:theory, algorithms and applications. Boston: Kluwer Academic, 2000.
    [131] Y. Ye, Linear Conic Programming, Stanford University, December, 2004.
    [132] N. Yamashita and M. Fukushima, On stationary points of the implicit Lagrangian fornonlinear complementarity problems. Journal of Optimization Theory and Applications.1995, 84. 653-663.
    [133] N. Yamashita and M. Fukushima, A new merit function and a descent method for semidef-inite complementarity problems. Reformulation―Nonsmooth, Piecewise Smooth, Semis-mooth and Smoothing Methods, Kluwer Academic Publishers, Boston, 1999, pp. 405–420.
    [134] A. Yoshise, Interior point trajectories and a homogeneous model for nonlinear complemen-tarity problems over symmetric cones, SIAM Journal on Optimization. 2006, 17. 1129-1153.
    [135] K. Yamada, N. Yamashita and M.Fukushima, A new derivative-free descent method for thenonlinear complementarity problem. Nonlinear Optimization and Related Topics, KluwerAcademic Publishers, 2000. 463-487.
    [136] L. Zhang and Z. Gao, Superlinear/quadratic one-step smoothing Newton method for P0-NCP without strict complementarity. Mathematical Methods of Operations Research. 2002,56. 231-241.
    [137] G. Zhou, D. Sun and L. Qi, Numerical experiences for a class of squared smoothingNewton methods for box constrained variational inequality problems, in Fukushima,M. andQi, L. (eds.), Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and SmoothingMethods, Kluwer Academic Publishers, Boston, MA. 1998. 421–441.
    [138] N. Zhao and W. Wu, Convergence of a smoothing-type algorithm for the monotone a?nevariational inequality problem. Applied Mathematics and Computation. 2008, 202. 820-827.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700