中国主要出口虾类的分子鉴定标记研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虾的种类繁多,仅联合国粮农组织(FAO)列出的具有商业或具有潜在商业价值的虾就有300多种,为重要的经济水产品之一。据FAO统计,全球每年捕捞和养殖虾的产量约为600万吨,其中约60%进行国际贸易。目前虾产品年出口值超过140亿美元,占渔业总出口值的16%,在国际贸易中具有重要地位。当前,中国沿海养殖和捕捞(含海水和淡水)的虾主要有斑节对虾(Penaeus. momodon)、凡纳对虾(Penaeus vannamei)、中国对虾(Penaeus. chinensis)、日本对虾(Penaeus japonica)、罗氏沼虾(Maeobrachium rosenbergii)、墨吉对虾(Penaeus merguiensis)、中华管鞭虾(Solenocera crassicornis)、鹰爪虾(Trachypenaeus curvirostris)克氏原螯虾(Procambarus clarkii)等,年出口量近30万吨,产值近17亿美元。
     近年来,国际上对贸易品种的要求日益严格,物种鉴定己成为出口农产品、食品的技术性贸易壁垒之一。通常,虾类的品种鉴定主要依据形态学标准(如外形、颜色等)来进行。然而当用于形态辨别的部分被去除、形态非常相近或未形成可辨别形态时,虾类的品种鉴定则显得非常困难,因此采用分子鉴定标记进行品种鉴定的研究日益引起重视,如核糖体转录间隔区、线粒体细胞色素氧化酶C基因、线粒体细胞色素b基因等。
     本研究首先利用虾类核糖体基因高度保守的18s、28s和中间的5.8s区域,设计出了通用引物,对中国几种主要出口虾类ITS1区域进行PCR扩增并测序。根据测序结果,筛选出了合适的选择性内切酶,针对所研究各虾品种的ITS1序列产生出特异性的酶切图谱,将它们作为分子标签,应用于中国主要出口虾类品种及其产地的快速鉴定,具有特异性强、重复性高、检测时间短、成本低的特点。在该部分研究中,利用所设计的引物,所得到虾类ITS1长度变化在448 bp(戴氏赤虾)到1491 bp(日本沼虾)之间,GC含量为40.95-66.83%,其中戴氏赤虾和日本沼虾的ITS1序列为目前所报道的最短和最长的虾类ITS1序列。各虾品种的ITS1序列比较发现,微卫星序列大多出现在5′端和中间区域。同一种虾品种的微卫星序列差异与群体间ITS1的变异和长度多态性紧密相关,而且对虾科对虾属各虾品种比较发现,亲缘关系越近,其微卫星序列相似度越高。对虾科5个虾品种之间可用ITS1数据进行很好的区分。此外,结合PCR-RFLP技术,不同虾品种的ITS1序列可产生特定的酶切片段,可以此对它们进行有效区分。这些结果表明,ITS1序列作为一个重要的分子标签,在不同分类水平上具有很高的变异性,在虾类品种鉴定和系统发育研究中具有重要的作用。
     本研究还采用荧光标记引物的AFLP分析方法,对中国主要出口虾类资源进行了遗传变异和品种鉴别研究,依据AFLP标记的数据结果,我们对对虾科下不同属的虾类系统亲缘关系进行了分析。结果显示:在遗传距离上,日本对虾(P.japonicus)和宽沟对虾(P. monodon)之间最小,为0.214;中华管鞭虾(S. crassicornis)和鹰爪虾(T. curvirostris)之间最大,为0.659;遗传一致度上,日本对虾(P.japonicus)和宽沟对虾(P. monodon)最近,为0.787;管鞭虾科的中华管鞭虾(S. crassicornis)和对虾科鹰爪虾属的鹰爪虾(T. curvirostris)之间最远,为0.341。二种分析方法结果基本一致,说明基于AFLP标记揭示的不同虾类之间的遗传距离比较稳定。依据Jaccard遗传相似性系数构建对虾科下所有供试虾样品的UPGMA系统聚类关系图,其中中华管鞭虾(S. crassicornis)作为Outgroup单元对照,独立在外,成一个单独的分支,所有对虾科虾类均聚为一类,在Jaccard遗传相似性系数为0.38处,对虾科内不同属虾类可进一步细分为三大分支。第Ⅰ分支主要由哈氏仿对虾(P.hardwickii)、刀额新对虾(M. ensis)和戴氏赤虾(M.dalei)三类组成;第Ⅱ分支主要由宽沟对虾(P.latisulcatus)、日本对虾(P. japonicus)和凡纳滨对虾(L. vannamei)组成;第Ⅲ分支仅由鹰爪虾(T. curvirostris)组成。这表明利用AFLP标记可以揭示不同虾类之间的遗传差异程度,分析物种之间的系统亲缘关系。
     本研究中12对引物共扩增出了841条DNA谱带,所有条带的分子量范围在50-550bp之间,其中601条为多态性条带,多态性位点百分率为71.5%,平均每对引物扩增出70.1条总带和50.1条多态性条带。相比于其它研究者采用AFLP标记对对虾科虾类的分析结果来说,多态性位点百分率相对偏高。在引物鉴别效率方面,12对AFLP引物中可将所有供试虾样品100%区分开的引物组合有4对:E-ACG/M-CAA、E-AGG/M-CTA、E-AGG/M-CTC和E-AGG/M-CTT,12对引物的平均鉴别效率达92.8%,可见AFLP标记用于虾种水平上的鉴别效率非常高,这也间接反映出不同虾之间的遗传背景差异较大。
     本研究采用ITS技术和AFLP技术分析了不同地理区域的凡纳对虾群体的遗传变异和群体遗传分化。研究结果显示,目前我国东南沿海凡纳对虾主要养殖区养殖的凡纳对虾的种质资源与来自美国夏威夷的亲本已有较大的差异,需引起高度重视。建立的技术方法对我国主要养殖虾类的品质退化情况评估、虾苗健康程度的评估,促进虾类养殖业的健康发展,维护中国虾产品出口贸易具有重要的现实和前瞻性研究意义。
Shrimp is an important marine animal with various kinds and more than 300 species of shrimp are of economic interest worldwide listed by FAO. According to FAO investigation, world production of shrimp, both captured and farmed, is about 6 million tones, and about 60% enters the international markets. Shrimp is now the most important internationally traded fishery commodity in terms of value. In china, shrimp also has an important postion in export trade, with the export weight nearly 300,000 tones per year and export value nearly $1.7 billion per year (both captured and farmed), including Penaeus momodon, Penaeus vanname, Penaeus chinensis, Penaeus japonica, Maeobrachium rosenbergii, Penaeus merguiensis, Solenocera crassicornis, Trachypenaeus Curvirostris, Procambarus clarkii mainly.
     With the requirement becoming more strictly, species identification has become one of technical trade barriers for export food and farm commodities. Traditionally, morphological characters are used to identify shrimp of different species. But the gross morphology of some closely related species are so similar that separation of them requires very detailed morphological knowledge known usually only to experts. Moreover, this method is difficult to be implemented for the investigation of processed shrimp products, in which the discriminable morphological characters are unavailable. Therefore, many efforts have been made recently to identify shrimp species using the more accurate molecular markers, such as the internal transcribed spacers (ITS) of nuclear ribosomal DNA (rDNA), mitochondrial cytochrome c oxidase sununit I (COI) gene and the cytochrome b (Cyt b) gene.
     In this study, the highly conserved 18s,28s and 5.8s ribosomal genes of shrimp were used to design universal primer and amplify the ITS1 region of major exported shrimp species in China. According to the sequencing results, proper restriction enzyme was selected, to produce specific restriction endonuclease map as a molecular label to identify the species and origin of tested shrimp species, with strong specificity, good repeatability and low cost. Using the selected primers, length of the amplified ITS 1 sequences in this study ranged from 448 bp to 1491 bp, with a GC content of 40.95-66.83%. To our knowledge, the ITS1 of M. dalei and M. nipponense were the shortest and the longest sequences obtained in shrimp species up to date. Many microsatellite loci were found at 5' end and the middle region of ITS 1 sequences. For samples of the same species, these microsatellite loci seemed to be closely associated with intragenomic sequence variation and length polymorphisms, and they showed a higher degree of similarity in composition between species with closer relationship even in the family Penaeidae. This variation might obscure phylogenetic relationship between some shrimp populations, but the separation of five Penaeus species was well supported. In the combination with polymerase chain reaction-restriction fragment length polymerism methods (PCR-RFLP) analysis, ITS1 sequences from shrimp species belonging to different families and genera were also easily discernable. The results suggested that ITS1 was highly variable among different shrimp groups and could be an appropriate marker for species identification and molecular systematic studies.
     In this study, the fluorescence labeling techniques of AFLP was used to research the species identification and genetic variation level for China's major export shrimp species and analysis the systemic genetic relationships between different genuses of Penaeidae. The results of AFLP analysis indicated that the minimum genetic distance (0.214) and the maximum genetic identity (0.787) were between P. japonicus and P. monodon, and the maximum genetic distance (0.659) and the minimum genetic identity (0.341) were between S. crassicornis and T. Curvirostris. The results of genetic distance was similar to that by genetic identity, which show that the genetic distance obtained by AFLP labeling is stabilization relatively between different genuses of Penaeidae. Matrix of Jaccard's coefficients of genetic similarity was used to construct the dendrogram by UPGMA for all sample of Penaeidae. Using S. crassicornis as outgroup, all the tested shrimp species in the family of Penaeidae were clustered together. In the distance of 0.38 Jaccard, the Penaeus species were further subdivision as three obvious clades. M. ensis, M. dalei and P. hardwickii formed the first clade. The P. latisulcatus gathers with P. japonicus first before gathering with L. vannamei, forming the second clade. The group of T. curvirostris clustered to the third clade. These results demonstrate that the AFLP marker could reflect the genetic distances between shrimp species, and analysis their genetic relationships.
     In this study, a total of 841 DNA bands were detected and 601 bands were the polymorphic bands revealed by the 12 primer pairs, ranging from 50 to 550 base pairs (bp). The polymorphism rate was about 71.5%, the average bands and polymorphic bands amplified by each primer combination were 70.1 and 50.1, respectively. Comparison with the other reports about Penaeus, the polymorphism rate is higher in our AFLP analysis. Among the 12 primer pairs,4 primer combinations (E-ACG/M-CAA, E-AGG/M-CTA, E-AGG/M-CTC and E-AGG/M-CTT) can distinguish all the tested shrimp species. The average identification efficiency rate of 12 primer combinations is 92.8, which indicates that AFLP fingerprinting is effective in species identification, and means the genetic background was obvious different among the studied shrimps species.
     In this study, ITS sequence and AFLP were used to analysis genetic variation levels and diversity among different geographical populations of P. vannamei and P. japonica. The results indicate an obvious genetic divergence between the farmed P. vannamei populations in southeast China and the broodstock population from Hawaii, USA. Based on.the. obtained results,.we. regarded the established methods.could be used to evaluate the species degeneration and health degree of shrimp larvae, and would have important practical and prospective significance for promoting the development of aquaculture industry in China.
引文
1. Ana K.F., Pedro M.G.J. (2005) Genetic distance between brodstocks of the marine shrimp Litopenaeus vannamei (Decapoda, Penaeidae)by mtDNA analyses[J]. Genetics and Molecular Biology 28(2):258-261.
    2. Bagshaw J.C., Buckholt M.A. (1997) A novel satellite/microsatellite combination in the genome of the marine shrimp, Penaeus vannamei [J]. Gene 184:211~214.
    3. Baldwin J.D., Bass A.L., Bowen B.W., et al. (1998) Molecular phylogeny and biogeography of the marine shrimp Penaeus. Molecular Phylogenetics and Evolution 10:399~407.
    4. Ball A.O., Chapman R.W. (2003) Population genetic analysis of white shrimp, Litopenaeus setiferus, using microsatellite genetic markers [J]. Molecular Ecology 12:2319~2330.
    5. Burkenroad M.D. (1983) Natural classification of dendrobranchiata, with a key to recent genera.Crusutacean Issues 3:279~290.
    6. Caetano-Anolles G., Gresshoff P.M. (1997) DNA Marker:Protocols, Applications, and Overview [M]. New York:Wiley-Vch Press.
    7. Caporale D.A., Beal B.F., Roxby R., et al. (1997) Population structure of Mya arenaria along the New England coastline. Molecular Marine Biology and Biotechnology 6:33-39.
    8. Chen C.A., Miller D.J. (1996) Analysis of ribosomal ITS1 sequences indicates a deep divergence between Rhodactis (Cnidaria:Anthozoa:Corallimorpharia) species from the Caribbean and the Indo-Pacific/Red Sea. Marine Biology 126:423-432.
    9. Chu K.H., Li C.P., Ho H.Y. (2001) The first internal transcribed spacer (ITS1) of ribosomal DNA as a molecular marker for phylogenetic and population analyses in crustacea. Marine Biotechnology 3:355~361.
    10. Chu K.H., Li C.P., Tam Y.K., et al. (2003) Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Molecular Ecology Notes 3:120~122.
    11. Dall W., Hill B.J., Rothlisberg P.C., et al. (1990) The biology of the Penaeidae. Advance in Marine Biology 27:55~157.
    12. Flegel T.W. (2007) The right to refuse revision in the genus Penaeus. Aquaculture 264:2~8.
    13. Gallego D., Galian J. (2001) The internal transcribed spacers (ITS1 and ITS2) of the rDNA differentiate the bark beetle forest pests Tomicus destruens and T. piniperda. Insect Molecular Biology 10:415~420.
    14. Garcia D.K, Faggart M.A., Rhoades L., et al. (1994) Genetic diversity of cultured Penaeue vanname/shrimp using three molecular genetic techniques [J]. Molecular Marine Biology and Biotechnology 3(5):270~280.
    15. Garcia D.K., Benzie J.A.H. (1995) The use of RAPD markers on Penaeus prawn breeding program [J]. Aquaclture 130:137~144.
    16. Gillett R. (2008) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, Global study of shrimp fisheries
    17. Harris D.J, Crandall K.A. (2000) Intragenomic variation within ITS1 and ITS2 of freshwater crayfishes (Decapioda:Cambaridse):implications for phylogenetic and microsatellite studies [J]. Molecular Biology and Evolution 17(2):284~291.
    18. Huang Y.T., Chen C.A., Wu W.J., et al. (2004) Phylogenetic utility of the ribosomal internal transcribed spacer 2 in Strumigenys spp. (Hymenoptera:Formicidae). Molecular Phylogenetics and Evolution 32:407~415.
    19. Jiexia Quan, Zhimeng Zhuang, Jingyao Deng., et al. (2004)Phylogenetic relationships of 12 penaeoidea shrimp species deduced from mitochondrial. Biochemical genetics,42:3311~345.
    20. Kenchington E., Naidu K.S., Roddick., et al. (1993) Use of biochemical genetic markers to discriminate between adductor muscles of the sea scallop (Placopecten magellanicus) and the Iceland scallop (Chlamys islandica) [J]. Canadian Journal of Fish and Aquatic Sciences 50:1222~ 1228.
    21. Kimura M. (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111~120.
    22. Klinbunga S., Penman D.J., McAndrew B.J., et al. (1999) Mitochondrial DNA diversity in three populations of the giant tiger shrimp, P. monodon. Marine Biotechnology 1:113~121.
    23. Kubo I. (1949) Studies on the penaeids of Japanese and its adjacent waters. J.Tokyo Coll.Fish 36:1-467.
    24. Lavery S., Chan T.Y., Tam Y.K., et al. (2004) Phylogrnrtic relationships and evolutionary history of the shrimp genus Penaeus s.l. derived from mitochondrial DNA. Molecular Phylogenetics and Evolution 31:39-49.
    25. Liu Z.J., Cordes J.F. (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238:1~37.
    26. Maggioni R., Roger A.D., Maclean N., et al. (2001) Molecular phylogeny of western Atlantic Farfantepenaeus and Litopenaeus shrimp based on the mitochondrial 16s partial sequences. Molecular Phylogenetics and Evolution 18:66-73.
    27. Maggioni R., Rogers A.D., Maclean N. (2003) Population structure of Litopenaeus schmitti (Decapoda:Penaeidae) from the Brazilian coast identified using six polymorphic microsatellite loci[J]. Molecular Ecology 12(12):3213~3217.
    28. Nei M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences, USA 70:3321-3323.
    29. Nei M., Li W.H. (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, USA 76:5269~5273.
    30. Odorico D.M., Miller D.J. (1997) Variation in ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria:Scleractinia):pattern of variation consistent with reticulate evolution. Molecular Biology and Evolution 14:465-473.
    31. Page R.D.M. (1996) Treeview:An application to display phylogenetic trees on personal computers [J]. Computer Appt Bioscl 12:357~358.
    32. Pan Y.W., Chou H.H., You E.M., et al. (2004) Isolation and characterization of 23 polymorphic micmsatellite markers for diversity and stock analysis in tiger shrimp (Penaeus monodon)[J]. Molecular Ecology Notes 4:345-347.
    33. Paugam A., Pennec M.L., Genevieve A.F. (2000) Immunolgical recognition of marine bivalve larvae from lankton samples [J]. Journal of Shellfish Research 19:325~331.
    34. Phillips R.B., Manley S.A., Daniels, T.J. (1994) Systematics of the salmonid genus Salvelinus inferred from ribosomal DNA sequences. Canadian Journal of Fish and Aquatic Sciences 51:198-204.
    35. Quan J., Zhuang Z., Deng J., et al. (2004) Phylogenetic relationships of 12 penaeoidea shrimp species deduced from mitochondrial DNA sequences. Biochemical Genetics 42:331~345.
    36. Rice R.W. (1989) Analyzing table of statistical tests [J]. Evolution 43:223~225.
    37. Robainas A., Monnerot M., Solignac M., et al. (2002) Microsatellite loci from the pink shrimp Farfantepenaeus notialis (Crustacea, Decapoda)[J]. Molecular Ecology Notes 2:344~345.
    38. Saitou N., Nei M. (1987) The Neighbor-joining method:a new method for reconstructing phylogenetic tree. Molecular Biology and Evolution 4:406~425.
    39. Sajdak S.L., Phillips R.B. (1997) Phylogenetic relationships among Coregonus species inferred from the DNA sequence of the first internal transcribed spacer (ITS1) of ribosomal DNA. Canadian Journal of Fish and Aquatic Sciences 54:1494-1503.
    40. Schneider S., Kueffer J.M., Roessli D., et al. (1997) A software for population genetic data analysis [M]. Switzerland:Genetics and Biometry Laboratory, University of Geneva.
    41. Sitnikova T., Rzhetsky A., Nei M. (1995) Interior-branch and bootstrap tests of phylogenetic trees. Molecular Biology and Evolution 12:319~333.
    42. Stothard J.R., Hughes S., Rollinson D. (1996) Variation within the internal transcribed spacer (ITS) of ribosomal DNA genes of intermediate snail hosts within the genus Bulinus (Gastropoda:Planorbidae). Acta Tropica 61:19-29.
    43. Sugaga T., lkeda M., Taniguchi N. (2002) Relatedness structure estimated by microsatellites DNA and mitochondrial DNA polymerase chain Reaction-restriction fragment length polymorphisms analyses in the wild population of kuruma prawn Penaeus japonicus[J]. Fisheries Science 68:793~ 802.
    44. Tamura K., Dudley J., Nei M., et al. (2007) MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24:1596~1599.
    45. TassaLkajon A., Pongsombonn S., Jarayabhand P., et al. (1998) Genetic structure in wild populations of black tiger shrimp(Penaeus monodon) using randomly amplified polymorphic DNA analysis[J]. Marine Biotechnology 6:249~254.
    46. Tassanakajon A., Pongsomboon S., Rimphanitchayakit V. (1997) Random amplified polymorphic DNA (RAPD) markers for determination of genetic variation in wild populations of the black tiger prawn (Penaeus monodon) in Thailand [J]. Molecular Marine Biology and Biotechnology 6:110~ 115.
    47. Thompson J.D., Gibson T.J., Plewniak F.,et al. (1997) The ClustalX windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 24:4876~4882.
    48. Tirmizi N.M. (1971) Marsupenaeus, a new subgenus of Penaeus Fabricius,1798 (Decapoda, Natantia). Pakistan Journal of Zoology 3(2):193~194.
    49.Valles-Jimenez R., Cruz P.; Perez-Enriquez R. (2004) Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama:microsatellite DNA variation[J]. Marine Biotechnology(NY) 6(5):475~484.
    50. Voloch C.M., Freire P.R., Russo C.A.M. (2005) Molecular phylogeny of peneid shrimps inferred from two mitochondrial markers. Genetics and Molecular Resaerch 4:668~674.
    51. Wang Z.Y., Tsoi K.H., Chu K.H. (2004) Application of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp. Biochemical Systematics and Ecology 32:399~407.
    52. Wanna W., Chotigeat W., Phongdara A. (2006) Sequence variations of the first ribosomal internal transcribed spacer of Penaeus species in Thailand. Journal of Experimental Marine Biology and Ecology 331:64-73.
    53. Xu Z., Primavera J.H., Pena L.D., et al. (2001) Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites [J]. Aquaculture 199:13~40.
    54.颉晓勇,苏天凤,陈文等.(2008)凡纳滨对虾6个养殖群体遗传多样性的比较分析[J].南方水产4(6):42~49.
    55.李锋,林继辉,刘楚吾.(2006)凡纳滨对虾引进亲虾及其子一代的遗传多样性研究[J].海洋科学30(4):64~68.
    56.李锋,刘楚吾,林继辉.(2003)两个凡纳滨对虾亲本群体的RAPD研究[J].湛江海洋大学学报23(4):1~5.
    57.李新正,刘瑞玉,梁象秋.(2007)中国动物志,无脊椎动物,第四十四卷,甲壳动物亚门,十足目,长臂虾总科[M].科学出版社128~131.
    58.联合国粮食及农业组织渔业及水产养殖部,2009年,世界渔业和水产养殖状况2008
    59.粱斌,陈斌,洛昊等.(2008)基于ITS序列分析的赤潮异弯藻(Heterosigma akashiwo)分子鉴别[J].海洋学报30(5):107-112.
    60.粱华芳.(2001)我国9种养殖对虾形态特征之比较[J].湛江海洋大学学报21(2):13~18.
    61.刘焕亮,黄樟韩.(2008)中国水产养殖学[M],科学出版社.
    62.刘萍,孔杰,石拓等.(2000)中国对虾黄渤海沿岸群亲本及子一代RAPD分析[J].海洋水产研究21(1):13~20.
    63.刘萍,孔杰,徐怀恕等.(2000)中国对虾黄渤海沿岸地理群的RAPD分析[J].海洋学报22(5):88—93.
    64.刘萍,孟宪红,何玉英等.(2004)中国对虾黄、渤海3个野生地理群遗传多样性的微卫星DNA分析[J].海洋与湖沼35(3):252~257.
    65.刘萍,孟宪红,庄志猛等.(2002)3种对虾种间RAPD遗传标记[J].海洋水产研究23(2):1-6.
    66.刘振辉,孔杰,石拓等.(2000)中国对虾两个不同地理种群遗传结构的RAPD分析[J].应用与环境生物学报6(5):440~443.
    67.孟宪红,孔杰,王清印等.(2008)微卫星技术对黄、渤海海域7个不同地理群体中国对虾的遗传结构和遗传分化研究[J].海洋水产研究29(5):1~10.
    68.潘宝平,吴琪,张素萍等.(2006)文蛤属(Meretrix)16S rRNA基因及ITSI序列的系统学分析[J].海洋与湖沼37(4):342-347.
    69.潘国良,宋海堂.(2003)浙江渔场戴氏赤虾生物学特征研究[J].浙江海洋学院学报22(3):228--231.
    70.石拓,孔杰,刘萍等.(1999)中国对虾遗传多样性的RAPD分析:朝鲜半岛西海岸群体的DNA多态性[J].海洋与湖沼30(6):609~615.
    71.石拓,庄志猛,孔杰等.(2001)中国对虾遗传多样性的RAPD分析[J].自然科学进展11(4):360-365.
    72.时冬晴.(2007)刀额新对虾生物学特性及海水池塘健康养殖技术[J].河北渔业2:24--25.
    73.宋海堂,俞存根,薛利建.(2009)东海哈氏仿对虾的数量分布和生长特性研究[J].水生生物学报33(1):15~21.
    74.宋海堂,俞存根,姚光展.(2004)东海鹰爪虾的数量分布和变动[J].海洋渔业26(3):184-188.
    75.宋林生,相建海,李晨曦.(1999)日本对虾野生种群和养殖种群遗传结构的RAPD标记研究[J].海洋与湖沼30(3):261-266.
    76.宋林生,相建海,李晨曦等.(1998)用RAPD标记研究对虾属六个种间的亲缘关系[J].动物学报4(3):353~359.
    77.王克行主编.(2008)虾类健康养殖原理与技术[M],科学出版社.
    78.王师,包振民,张玲玲等.(2006)应用PCR-RFLP技术鉴别区分中国沿海四种主要养殖扇贝[J].食品科学27(07):210~214.
    79.薛俊增,堵南山.(2008)甲壳动物学[M],上海教育出版社.
    80.杨彦豪,陈晓汉,谢达祥.(2007)分子标记技术在凡纳滨对虾中的应用进展[J].广西水产科技03:17-23.
    81.张天时,王清印,刘萍.(2005)中国对虾(Fenneropenaeus chinensis)人工选育群体不同世代的微卫星分析[J].海洋与湖沼36(1):72~80.
    82.中国商务部,2004年,中国对虾产品出口指南.
    83.朱伟铨,王义权.(2003)AFLP分子标记技术及其在动物学研究中的应用[J].动物学杂志38(2):101~107.
    84.庄志猛,孔杰,石拓等.(2001)中国对虾野生和养殖群体遗传多样性的RAPD分析.自然科学进展11(3):250-255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700