芽孢杆菌和中草药在凡纳滨对虾(Litopenaeus vannamei)饲料中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要运用微生物学、生理学、免疫学、营养学和生态学等研究方法,研究了芽孢杆菌和中草药在凡纳滨对虾饲料中的应用,主要结果如下:
     1.本实验研究了不同浓度中草药制剂对地衣芽孢杆菌生长繁殖的影响。结果表明适当的中草药浓度能够促进地衣芽孢杆菌的生长繁殖,两者在饲料中共同添加使用是可能的。
     2.本实验分成生长实验和消化酶活性实验两部分,研究了饲料中单独或共同添加芽孢杆菌和中草药制剂对凡纳滨对虾存活、生长、消化酶活性及体成分的影响。实验分成5个处理,分别投喂5种不同的饲料:基础饲料,中草药饲料(在基础饲料中添加0.20%中草药制剂,M),芽孢杆菌饲料(在基础饲料中添加0.30%芽孢杆菌制剂,B),中草药和芽孢杆菌饲料1(在基础饲料中添加0.20%中草药制剂和0.30%芽孢杆菌制剂,BM1),中草药和芽孢杆菌饲料2(在基础饲料中添加0.10%中草药制剂和0.15%芽孢杆菌制剂,BM2)。实验结果,芽孢杆菌和中草药能够提高对虾的增重率, M、BM1、BM2组与对照组差异显著(P<0.05), B、BM1、M组之间差异不显著。BM2组特定生长率最高,BM1组次之,均与对照组差异显著(P<0.05)。对虾常规体成分除粗脂肪外,无显著性差异。BM1组脂肪含量最低,而BM2组最高。在实验过程中,每隔2周取样一次分析凡纳滨对虾肝胰脏的蛋白酶和淀粉酶活性,结果发现单独或共同添加芽孢杆菌和中草药制剂可以在一定程度上提高消化酶的活性。在第2周和第6周的取样中,BM2组的蛋白酶和淀粉酶均显著高于对照组(P<0.05);在第8周的取样中,B组的淀粉酶活性显著高于对照组(P<0.05)。根据本实验的结果,在基础饲料中添加0.10%中草药制剂和0.15%芽孢杆菌制剂使用效果最好。
     3.本实验研究了饲料中单独或共同添加中草药和芽孢杆菌对凡纳滨对虾(Litopenaeus vannamei)生长和肠道细菌的影响。以基础饲料为对照组(C),通过添加中草药和芽孢杆菌配制成4种实验饲料:0.2%中草药(M),0.20%中草药制剂+0.30%芽孢杆菌(BM1),0.10%中草药制剂+0.15%芽孢杆菌(BM2),0.30%芽孢杆菌(B)。实验共进行了56d,各组对虾的成活率都很高(95.83~98.33%),各处理间无显著差异(P>0.05)。投喂实验饲料的各组对虾终末体重均高于对照组(C),其中BM2与C差异性显著(P<0.05)。M、BM1和BM2的增重率和特定增长率显著高于C和B。M组的对虾肠道异养菌总数和弧菌数均高于其它各组,而共同添加组BM1和BM2的异养菌和弧菌数则最少。从各组随机挑取30株细菌进行分类鉴定,结果C、M、BM1、BM2和B组细菌属数分别为11、8、6、5和7个。饲料中添加中草药和芽孢杆菌促进了对虾的生长,且共同添加的效果好于单独添加,它们的使用改变了肠道细菌的数量和组成。
     4.本实验研究了饲料中添加不同水平的芽孢杆菌和中草药制剂对凡纳滨对虾生长、存活、体成分、消化酶活性以及血清生化指标的影响。以基础饲料为对照(Diet0),通过添加中草药和芽孢杆菌配制成6种实验饲料:0.10%中草药+ 0.10%芽孢杆菌(Diet11),0.10%中草药+0.20%芽孢杆菌(Diet12),0.10%中草药+0.30%芽孢杆菌(Diet13),0.20%中草药+ 0.10%芽孢杆菌(Diet21),0.20%中草药+0.20%芽孢杆菌(Diet22),0.20%中草药+0.30%芽孢杆菌(Diet23)。实验共进行56d,各组对虾的成活率76.19~84.76%,各处理间无显著差异(P>0.05)。对虾的终末体重、特定生长率(SGR)、蛋白质效率(PER)和蛋白质累积率(PPV)随中草药和芽孢杆菌浓度的增加而增加,饵料系数(FCR)随添加浓度增加有所降低。芽孢杆菌和中草药交互作用对终末体重和SGR影响显著,Diet23组的终末体重和SGR均与对照组差异显著(P<0.05)。添加中草药和芽孢杆菌对虾体的水分、粗蛋白、灰分等指标影响不大(P>0.05),对粗脂肪含量产生显著影响(P<0.05),Diet23组对虾的粗脂肪含量最高,显著高于Diet0、Diet13和Diet22组。添加中草药和芽孢杆菌提高了对虾肠的淀粉酶和蛋白酶以及肝胰脏的蛋白酶(P<0.05),对肝胰脏的淀粉酶活性作用不明显(P>0.05)。此外,中草药和芽孢杆菌交互作用显著影响了对虾肝胰脏的碱性磷酸酶和酸性磷酸酶的活性(P<0.05)。血清中的蛋白和葡萄糖含量随中草药和芽孢杆菌添加量的增加而增加,低浓度的中草药(Diet11、Diet12和Diet13组)可提高甘油三酯含量,高浓度的芽孢杆菌提高了虾血清中胆固醇含量高(P<0.05)。
     5.本实验研究了饲料中添加芽孢杆菌和中草药制剂对凡纳滨对虾免疫功能的影响。以基础饲料为对照(Diet0),通过添加中草药和芽孢杆菌配制成6种实验饲料:0.10%中草药+ 0.10%芽孢杆菌(Diet11),0.10%中草药+0.20%芽孢杆菌(Diet12),0.10%中草药+0.30%芽孢杆菌(Diet13),0.20%中草药+ 0.10%芽孢杆菌(Diet21),0.20%中草药+0.20%芽孢杆菌(Diet22),0.20%中草药+0.30%芽孢杆菌(Diet23)。实验共进行了56d,对血细胞数目、酚氧化酶活力(PO)、溶菌酶活力、超氧化物歧化酶(T-SOD)活力以及总抗氧化能力进行了测定。芽孢杆菌对血细胞数目产生显著影响,Diet12,Diet13和Diet23组对虾的血细胞数显著高于其余各组(P<0.05)。中草药以及交互作用对血清PO产生显著影响(P<0.05),高浓度的中草药可以提高血清PO。大多数实验组对虾溶菌酶活力高于对照组。中草药、芽孢杆菌以及它们的交互作用对T-SOD未产生显著影响(P>0.05)。Diet23组对虾血清的总抗氧化能力最高,除Diet21组外,与其余各组差异显著(P<0.05)。
     6.本实验研究了中草药和芽孢杆菌共同添加到不同营养水平的饲料中,对凡纳滨对虾生长、消化酶活性、体成分组成以及血清生化指标的影响。基础饲料1为鱼粉含量29%的高档饲料,基础饲料2是以豆粕和花生粕替代部分鱼粉的低档料。通过在两种饲料中添加芽孢杆菌和中草药制剂作为实验用料:基础饲料1 (Diet10),基础饲料1+0.10%中草药+0.15%芽孢杆菌(Diet11),基础饲料1+0.20%中草药+0.30%芽孢杆菌(Diet12),基础饲料2 (Diet20),基础饲料2+0.10%中草药+0.15%芽孢杆菌(Diet21),基础饲料2+0.20%中草药+0.30%芽孢杆菌(Diet22)。实验共进行56d,基础饲料2各组对虾成活率高于基础饲料1。数据分析显示,不同水平的饲料及添加剂均对终末体重、特定生长率(SGR)、饵料系数(FCR)和蛋白质效率(PER)产生了显著影响。摄食基础饲料1的各组对虾终末体重和特定增长率均显著高于摄食基础饲料2的各组对虾。对于同一种基础饲料,添加芽孢杆菌和中草药制剂可以提高蛋白质效率(PER)和蛋白质累积率(PPV),降低饵料系数(FCR)。饲料和添加剂对虾体的常规成分有一定的影响。中草药和芽孢杆菌能够提高对虾肠道和肝胰脏消化酶活性以及肝胰脏碱性磷酸酶活性。基础饲料1各组的碱性磷酸酶和酸性磷酸酶显著低于基础饲料2各组。基础饲料1组的对虾血清葡萄糖高于基础饲料2组对虾,但是胆固醇含量低于基础饲料2组对虾。添加剂能够提高对虾的血清葡萄糖和蛋白质含量。
     7.本实验研究了在不同饲料中添加芽孢杆菌和中草药制剂对凡纳滨对虾免疫功能的影响。实验以两种商用饲料原料为基础饲料,基础饲料1为鱼粉含量29%的高档饲料,基础饲料2是以豆粕和花生粕替代部分鱼粉的低档料。通过在基础饲料中添加不同量的芽孢杆菌和中草药制剂作为实验用料:基础饲料1 (Diet10),基础饲料1+0.10%中草药+0.15%芽孢杆菌(Diet11),基础饲料1+0.20%中草药+0.30%芽孢杆菌(Diet12),基础饲料2 (Diet20),基础饲料2+0.10%中草药+0.15%芽孢杆菌(Diet21),基础饲料2+0.20%中草药+0.30%芽孢杆菌(Diet22)。实验共进行了56d,对血细胞数目、酚氧化酶活力(PO)、溶菌酶活力、超氧化物歧化酶(T-SOD)活力以及总抗氧化能力进行了测定。饲料和添加剂对血细胞数目、溶菌酶活力产生显著影响,添加剂以及饲料和添加剂的交互作用对血清总抗氧化能力产生显著影响(P<0.05)。总体来讲,在不同饲料中添加中草药和芽孢杆菌对血细胞数目、溶菌酶活力、酚氧化酶活力(PO)、总抗氧化能力和超氧化物歧化酶(T-SOD)活力均有不同程度的提高。通过添加芽孢杆菌和中草药制剂可以显著提高基础饲料1的血细胞数目和总抗氧化能力以及基础饲料2的血细胞数目和溶菌酶活力。不同营养水平的饲料对免疫指标也有一定的影响,Diet20组的总抗氧化能力显著高于Diet10组。
     8.本实验从碳、氮、磷等营养物质的角度研究了中草药和芽孢杆菌共同添加到不同营养水平的饲料中,对凡纳滨对虾生长、摄食、粪便、非粪便流失、体成分,消化率等方面的影响。实验以两种商用饲料原料为基础饲料,基础饲料1为鱼粉含量29%的高档饲料,基础饲料2是以豆粕和花生粕替代部分鱼粉的低档料。通过添加不同量的芽孢杆菌和中草药制剂共制成6种实验用料:基础饲料1 (Diet10),基础饲料1+0.10%中草药+0.15%芽孢杆菌(Diet11),基础饲料1+0.20%中草药+0.30%芽孢杆菌(Diet12),基础饲料2 (Diet20),基础饲料2+0.10%中草药+0.15%芽孢杆菌(Diet21),基础饲料2+0.20%中草药+0.30%芽孢杆菌(Diet22)。实验共进行了56d,从生长结果可以看出,在饲料中添加芽孢杆菌和中草药添加剂可以促进对虾的生长,增加食物的摄入量,减少排便量,从而提高饲料转化率和降低单位体重增加流失量。从碳、氮、磷等营养物质来看,基本上也是增加了其摄入量和生长量,减少了粪便量。从各营养物质的生长、粪便以及非粪流失量与摄食量的比值来看,对虾摄食的各营养物质用于生长的部分增加了,而用于粪便和非粪便流失量的部分相应的减少了。摄食基础饲料1的各组对虾其摄入量、终末总重、增重量以及饲料转化率均相应的高于基础饲料2各组对虾,单位体重增加流失量也有所减少。虾体的碳、氮含量受饲料和添加剂的影响不大,磷受影响较大,而粪便中的碳、氮、磷含量则变化较大。添加剂提高了干物质及各营养物质的表观消化率,不同饲料对其也有所影响。
A series of experiments were conducted to investigate the application of diatary Bacillus spp. and traditional Chinese medicine on shrimp Litopenaeus vannamei, based on microbiological, physiological, nutritional, immunological and ecological methods. The results are summarized as followed:
     1. A trial was conducted to investigate the effect of traditional Chinese medicines (TCM) on growth of Bacillus licheniformis. The growth of B. licheniformis could be promoted in some concentrations of TCM. Therefore, they were potential to be used together in the feed.
     2. The basal diet (C); with 0.20% TCM (M), with 0.30% Bacillus spp. and 0.20% TCM (BM1), with 0.15% Bacillus spp. and 0.10% TCM (BM2), with 0.30% Bacillus spp. (B) was used to fed white shrimp Litopenaeus vannamei (1.91±0.03 g) in order to assess the survival, growth, body composition and digestive enzyme activity. Growth measured as weight gain was significantly (P<0.05) higher in shrimp fed with BM2, BM1 and M compared to that of C. However no significant differences were found among B, BM1 and M. In the case of specific growth rate, the shrimp fed with BM1 and BM2 exhibited significantly (P<0.05) higher values than that of the C. The contents of body moisture, crude protein and ash seemed to be unaffected by the feed supplements, though lipid content was found to be significantly (P<0.05) different among the treatments. The shrimp fed with BM1 and BM2 had the lowest and highest lipid contents respectively. The digestive enzyme activity assessed using shrimp hepatopancreas revealed that the activities of protease and amylase in shrimp fed with BM2 were significantly (P<0.05) higher than those of the C at the end of 2nd and 6th week. However, better performance of the specific amylase activity was shown by the shrimp fed with B at the end of 8th week.
     3. A feeding experiment was conducted to investigate the effects of Bacillus and traditional Chinese medicines (TCM) on growth and intestinal bacterial flora of shrimp L. vannamei. Four experimental diets were formulated by adding the Bacillus and TCM to basal diet (C): 0.2% TCM (M), 0.20% TCM+0.30% Bacillus (BM1), 0.10% TCM+0.15% Bacillus (BM2), 0.30% Bacillus (B). The concentration of Bacillus was 109 CFU/g. The TCM consisted of a mixture of herbs and plant materials Isatis tinctoria L., Isatis indigodica Fort, Forsythia suspersa Vahl, Corydalis bungeana Turez, Pogostemon cablin (blanco) Benth and Astragalus menbranaceus (Fisch.) Bge. Acclimatized shrimp with an average initial weight 1.91±0.03 g were selected and stocked into 15 cement tanks at a stocking density of 80 shrimp. Each aquarium contained 1500-l of sand filtered seawater with a flow rate of 0.9-l min-1. The water was continuously aerated with two air stones. Each diet was given to shrimp four times (07:00, 12:00, 17:00, 23:00) a day to saturation for a period of 56 days. During the experimental period, the water temperature fluctuated between 19.6 and 25.2℃, salinity between 30 and 31. At the end of feeding trial, survival ranged from 95.83% to 98.33% with no significant difference (P>0.05) among all groups. Growth measured as final weight was slightly higher (P>0.05) in shrimp fed with BM1, M and B than that of C, and there was a significant difference (P<0.05) between BM2 and C. In case of weight gain (WG) and specific growth rate (SGR), the shrimp fed with M, BM1 and BM2 exhibited significantly (P<0.05) higher values than that of the C and B. Of the five diets, BM2 exhibited the best performance followed by BM1. The combination of Bacillus spp. and TCM, therefore, proved to be more effective and economically viable. The total bacteria counts and Vibrio counts in shrimp fed with M was the most, which fed with BM1 and BM2 was the least. In each group 30 bacterial strains were purified and identified. These bacterial strains belonged to 12, 8, 6, 5, 7 genera in C, M, BM1, BM2 and B respectively. Most of the bacteria were gram negative bacteria, they counted a percentage of 86% to 93% in each group. Vibrio spp., Photobacterium spp. and Pseudomonas spp were the predominant bacterial flora, however, their values varied in different groups. The results showed that the diets supplemented with TCM and Bacillus also changed the number and composition of intestinal bacterial flora.
     4. A feeding experiment was conducted to investigate the effects of Bacillus and traditional Chinese medicines (TCM) on the survival, growth, body composition, digestive enzyme activity and serum biochemical values of shrimp L. vannamei. Six experimental diets were formulated by adding the Bacillus and TCM to basal diet (Diet0, Control): 0.10% TCM+0.10% Bacillus (Diet11), 0.10% TCM+0.20% Bacillus (Diet12), 0.10% TCM +0.30% Bacillus (Diet13), 0.20% TCM+0.10% Bacillus (Diet21), 0.20% TCM+0.20% Bacillus (Diet22), 0.20% TCM +0.30% Bacillus (Diet23). After 56 days of feeding, survival ranged from 76.19% to 84.76% with no significant difference (P>0.05) among all groups. Growth measured as final weight, specific growth rate (SGR), protein efficiency ratio (PER), protein productive value (PPV) and feed efficiency ratio (FER) were improved as the addition of TCM and Bacillus increasing. In the case of final weight and SGR, the shrimp fed with Diet23 exhibited significantly (P<0.05) higher values than that of Diet0. The contents of body moisture, crude protein and ash seemed to be unaffected by the feed supplements, though lipid content was found to be significantly (P<0.05) different among the treatments. The shrimp fed with Diet23 had a higher lipid contents than which fed with Diet0, Diet13 and Diet22 (P<0.05). The digestive enzyme activity assessed using shrimp hepatopancreas and intestines revealed that the activities of protease and amylase in shrimp were significantly (P<0.05) enhanced by the feed supplements, but amylase of hepatopancreas was except. The alkaline phosphatease and acid phosphatease values were significantly affected by the interaction of Bacillus and TCM (P<0.05). Serum protein and glucose content were enhanced as the addition of TCM and Bacillus increasing. However, Serum triglyceride in shrimp of low TCM groups (Diet11, Diet12 and Diet13) and cholesterol in shrimp of high Bacillus groups (Diet12, Diet13 and Diet23) were significantly higher than that of Control (Diet0).
     5. A feeding experiment was conducted to investigate the effects of Bacillus and traditional Chinese medicines (TCM) on immunity of shrimp L. vannamei. Six experimental diets were formulated by adding the Bacillus and TCM to basal diet (Diet0, Control): 0.10% TCM+0.10% Bacillus (Diet11), 0.10% TCM+0.20% Bacillus (Diet12), 0.10% TCM +0.30% Bacillus (Diet13), 0.20% TCM+0.10% Bacillus (Diet21), 0.20% TCM+0.20% Bacillus (Diet22), 0.20% TCM +0.30% Bacillus (Diet23). After 56 days of feeding, the total haemocyte count (THC), phenoloxidase (PO), lysozyme activity, superoxide dismutase (SOD) and total antioxidant was measured. The data indicated that THC was significantly affected by Bacillus so that it was higher in shrimp fed with Diet 12, Diet13 and Diet23 than that of others (P<0.05). The value of PO was improved by high content of TCM. The lysozyme activity of shrimp in most experimental diet groups was higher than that of control. However, SOD seemed to be unaffected by the feed supplements. In the case of total antioxidant, the shrimp fed with Diet23 exhibited significantly (P<0.05) higher values than that of other groups except for Diet21.
     6. A feeding experiment was conducted to investigate the effects of Bacillus and traditional Chinese medicines (TCM) on the survival, growth, body composition, digestive enzyme activity and serum biochemical values of shrimp L. vannamei. Two practical diets were used as basal diets in the experiment, one of which is high quality diet contained 29% fish meal (basal diet 1), the other one of which is low quality diet contained 17% fish meal (basal diet 2). Six experimental diets were formulated by adding the Bacillus and TCM to the basal diets: Basal diet 1 (Diet10), Basal diet 1+0.10% TCM+0.15% Bacillus (Diet11), Basal diet 1+0.20% TCM+0.30% Bacillus (Diet12), Basal diet 2 (Diet20), Basal diet 2+0.10% TCM + 0.15% Bacillus (Diet21), Basal diet 2+0.20% TCM+0.30% Bacillus (Diet22). After 56 days of feeding, shrimp in the groups fed with basal diet 2 had a higher survival than that of basal diet 1. Growth measured as final weight, specific growth rate (SGR), protein efficiency ratio (PER), protein productive value (PPV) and feed efficiency ratio (FER) were significantly affected by the different basal diets and supplements. In the case of final weight and SGR, the shrimp in the groups fed with basal diet 1 exhibited significantly (P<0.05) higher values than that of basal diet 2. While for the same basal diet group, PER, PPV and FER of shrimp were improved by the supplement. The contents of body compositions were also affected by the feed supplements and different basal diets. The digestive enzyme activities assessed using shrimp hepatopancreas and intestines revealed that the activities of protease and amylase in shrimp were significantly (P<0.05) enhanced by the feed supplements. The alkaline phosphatease in shrimp hepatopancreas were significantly (P<0.05) enhanced by the feed supplements too. The alkaline phosphatease and acid phosphatease values were significantly higher in shrimp fed with basal diet 2 than basal diet 1. Serum cholesterol and glucose contents had a significant difference among different basal diet groups. However, Serum protein and glucose contents were enhanced by the supplements.
     7. A feeding experiment was conducted to investigate the effects of Bacillus and traditional Chinese medicines (TCM) on immunity of shrimp L. vannamei. Two practical diets were used as basal diets in the experiment, one of which is high quality diet contained 29% fish meal (basal diet 1), the other one of which is low quality diet contained 17% fish meal (basal diet 2). Six experimental diets were formulated by adding the Bacillus and TCM to basal diets: Basal diet 1 (Diet10), Basal diet 1+0.10% TCM+0.15% Bacillus (Diet11), Basal diet 1+0.20% TCM+0.30% Bacillus (Diet12), Basal diet 2 (Diet20), Basal diet 2+0.10% TCM + 0.15% Bacillus (Diet21), Basal diet 2+0.20% TCM + 0.30% Bacillus (Diet22). After 56 days of feeding, the total haemocyte count (THC), phenoloxidase (PO), lysozyme activity, superoxide dismutase (SOD) and total antioxidant were measured. The data indicated that THC and lysozyme activity were significantly affected by the feed and supplement, while total antioxidant was significantly (P<0.05) affected by the supplement and their interaction. As a whole, THC, PO, lysozyme activity, SOD and total antioxidant were enhanced more or less by adding the supplement in different diets. The values of THC and lysozyme activity in basal diet1 groups were significantly enhanced by the supplement. The values of THC and total antioxidant in basal diet2 groups were significantly enhanced by the supplement too. Total antioxidant were significantly (P<0.05) higher in Diet20 than in Diet10, which indicated that the immunity were also affected by the feed.
     8. A feeding experiment was conducted to investigate the effects of Bacillus and traditional Chinese medicines (TCM) on the growth, intake, faecal loss, non-faecal loss, body composition and apparent digestibility coefficients (ADCs) of shrimp L. vannamei. Two practical diets were used as basal diets in the experiment, one of which is high quality diet contained 29% fish meal (basal diet 1), the other one of which is low quality diet contained 17% fish meal (basal diet 2). Six diets were formulated by adding the Bacillus and TCM to the basal diets: Basal diet 1 (Diet10), Basal diet 1+0.10% TCM+0.15% Bacillus (Diet11), Basal diet 1+0.20% TCM+0.30% Bacillus (Diet12), Basal diet 2 (Diet20), Basal diet 2+0.10% TCM + 0.15% Bacillus (Diet21), Basal diet 2+0.20% TCM+0.30% Bacillus (Diet22). After 56 days of feeding, the results showed that growth, intake, feed conversion were increased while faecal loss and loss in unit weight gain were decreased by adding the supplement. The element of carbon, nitrogen and phosphorus in growth and intake were improved while which in faecal loss was reduced by adding the supplement. The value of intake, final weight, weight gain and feed conversion in shrimp of basal diet1 groups were higher than that of basal diet2 groups, while the value of loss in unit weight gain were reversed. Body carbon and nitrogen seemed not to be affected by the feed and supplement, while body phosphorus, faecal carbon, faecal nitrogen and faecal phosphorus were affected by them. ADCs of dry matter, carbon, nitrogen and phosphorus were improved by the supplement and also affected by the feed.
引文
[1] BOYD C E, MASSAAUT L. Risks associated with the use of chemicals in pond aquaculture [J]. Aqua Engin, 1999, 20 (2): 113-132.
    [2]俞勇,李会荣,李筠,等.益生菌制剂在水产养殖中的应用[J].中国水产科学,2001,8(2):92-96.
    [3] VERSCHUERE L, ROMBAUT G, SORGELOOS P, et al. Probiotic bacteria as biological control agents in aquaculture [J]. Microbio and Molecuar Biology Review, 2000, 12: 655-671.
    [4] MORIARTY D J W. Control of luminous Vibrio species in penaeid aquaculture ponds [J]. Aquaculture, 1998, 164: 351–358.
    [5] QUEIROZ J F, BOYD C E. Effects of a bacterial inoculum in channel catfish ponds [J]. J World Aquacult Soc, 1998, 29: 67–73.
    [6] KENNEDY S B, TUCKER J W, NEIDIG C L, et al. Bacterial management strategies for stock enhancement of warm water marine fish: a case study with common snook Centropomus undecimalis [J]. Bull Mar Sci, 1998, 62: 573–588.
    [7] RENGPIPAT S, PHIANPHAK W, PIYATIRATITIVORAKUL S, et al. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth [J]. Aquaculture, 1998, 167: 301–313.
    [8] SUGITA H, HIROSE Y, MATSUO N, et al. Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish [J]. Aquaculture, 1998, 165: 269–280.
    [9] KOZASA M. Toyocerin Bacillus toyoi as growth promotor for animal feeding [J]. Microbiol Aliment Nutr, 1986, 4: 121–135.
    [10] GATESOUPE F J. Bacillus sp. spores as food additive for the rotifer Brachionus plicatilis: improvement of their bacterial environment and their dietary value for larval turbot, Scophthalmus maximus L [C]. // KAUSHIK S J, LUQUET P. Fish Nutrition in Practice. Institut National de la Recherche Agronomique, Paris, France, Les Colloques, 1993, 61: 561–568.
    [11] RENGPIPAT S, RUKPRATANPORN S, PIYATIRATITIVORAKUL S, et al. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (BacillusS11) [J]. Aquaculture, 2000, 191: 271–288.
    [12] BALCAZAR J L. Evaluation of probiotic bacterial strains in Litopenaeus vannamei [R]. Final Report, National Center for Marine and Aquaculture Research, Guayaquil, Ecuador, 2003.
    [13] VASEEHARAN B, RAMASAMY P. Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon [J]. Lett Appl Microbiol, 2003, 36: 83–87.
    [14]李卓佳,林亮,杨莺莺,等.芽孢杆菌对凡纳滨对虾Litopenaeus vannamei肠道微生物群落的影响[J].南方水产,2005,1(3):54-59.
    [15]刘小刚,周洪琪,华雪铭,等.微生态制剂对异育银鲫消化酶活性的影响[J].水产学报,2002,26(5):448-451.
    [16]丁贤,李卓佳,陈永青,等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响[J].中国水产科学,2004, 6(11):580-584.
    [17] LIN H Z, GUO Z X, YANGY Y, et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone [J]. Aquac Res, 2004, 35: 1441–1447.
    [18]刘波,刘文斌,王恬.地衣芽孢杆菌对异育银鲫消化机能和生长的影响[J].南京农业大学学报,2005,28(4):80-84
    [19] SAEED Z N, MEHRAN H R, GHOBAD A T, et al. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus [J]. Aquaculture, 252: 516–524.
    [20] THIMMALAPURA N D, FATIMAH M Y, MOHAMED S. Changes in bacterial populations and shrimp production in ponds treated with commercial microbial products [J]. Aquaculture, 2002, 206: 245-256.
    [20]李卓佳,张庆,陈康德.有益微生物改善养殖生态研究I.复合微生物分解有机底泥及对鱼类的促生长效应[J].湛江海洋大学学报,1998,18(1):5-8.
    [21]张庆,李卓佳,陈康德.复合微生物对养殖水体生态因子的影响[J].上海水产大学学报,1999,8(1):43-47.
    [22]林亮,李卓佳,郭志勋,等.施用芽孢杆菌对虾池底泥细菌群落的影响[J].生态科学,2004,24(1):26-29.
    [23] PORUBCAN R S. Reduction in chemical oxygen demand and improvement in Penaeus monodon yield in ponds inoculated with aerobic Bacillus bacteria [C].// Program and Abstracts of the 22nd Annual Conference and Exposition, San Juan, Puerto Rico, World Aquaculture Society, 1991, 1: 16–20.
    [24] DALMIN G, KATHIRESAN K, PURUSHOTHAMAN A. Effect of probiotics on bacterial population and health status of shrimp in culture pond ecosystem [J]. Indian J Exp Biol, 2001, 39: 939–942.
    [25]叶乐,杨莺莺,吴开畅,等.益生菌在凡纳滨对虾育苗中的应用[J].南方水产,2006,2(4):13-18.
    [26] TIMMERMANS L P M. Early development and differentiation in fish [J]. Sarsia, 1987, 72: 331–339.
    [27] VADSTEIN O. The use of immunostimulation in marine larviculture: possibilities and challenges [J]. Aquaculture, 1997, 155: 401–417.
    [28] RIQUELME C, ARAYA R, VERGARA N, et al. Potential probiotic strains in the culture of the Chilean scallop Argopecten purpuratus (Lamarck,1819) [J]. Aquaculture, 1997, 154: 17-26.
    [1]陈寒青,金征宇.中草药饲料添加剂研究进展.饲料工业,2002,23(10):18-23.
    [2]谢仲权,牛树琦.天然物中草药饲料添加剂大全.北京:学苑出版社,1996.
    [3]蔡辉益.常用饲料添加剂无公害使用技术.中国农业出版社,2003.
    [4]朴香淑,李德发.中草药饲料添加剂促进畜禽生长性能研究现状及展望.饲料工业,2002,1:12-15.
    [5]刘晓明,童岩,徐学华.新型鱼用添加剂试验初报[J].水利渔业,1990,6:5-7.
    [6]吴文,叶金云,陆清尔等.绞股兰作为鱼饲料添加剂的探讨[J].上海水产大学学报,1998,7(8):367-370.
    [7]段铭,冯现伟,高宏伟等。复方中草药添加剂饲喂鲫鱼试验。饲料研究,1999,12:28-29
    [8]邱小琮,周洪琪,刘小刚等.中草药添加剂对异育银鲫生长和蛋白质消化吸收的影响.水产学报,2002,26(6):551–555
    [9]曾红,任泽林,郭庆.大蒜素在罗非鱼饲料中的应用.中国饲料,1996,21:29-30.
    [10]王吉桥,孙永新,张剑诚.金银花等复方草药对牙鲆生长、消化和免疫能力的影响.水产学报,2006,30(1)90-96
    [11]Lin, H.Z., Li, Z.J., Chen, Y.Q., Zheng, W.H., Yang, K., 2006. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture ,253,495– 501.
    [12]童圣英,赵艳,李宏,王子臣.几种常见中草药对皱纹盘鲍摄食行为的影响.大连水产学院学报,1998,13(4):71-73.
    [13]Katsuhiko H. Attraction activities of herbal crude drugs for abalone, oriental weatherfish and yellowtail. Nippon Suisan Gakkaishi, 1991, 57(11): 2083-2088.
    [14]向袅,周兴华.中草药添加剂在水产养殖上的作用.粮食与饲料工业,2000,3:27-29.
    [15]李凤双.饲料添加剂基础.青岛:青岛海洋大学出版社,1990,445-446.
    [16]陈振昆,丁光.陈皮对草鱼诱食作用的研究.云南农业大学学报,1996,11(1):35-37.
    [17]邱小琮,周洪琪,横山雅仁等.中草药添加剂对异育银鲫肌肉生化成分的影响.上海水产大学学报,2003,12(1):24-28.
    [18]马俊岭.四种中药对鲤鱼的非特异性免疫功能的影响[A].中国水产学会鱼病研究会,第四次会员代表大会暨学术讨论会论文摘要汇编,1997.108.
    [19]杜爱芳.复方大蒜油添加剂对中国对虾免疫机能的增强作用.浙江大学学报(农业与生命科学版),1997,23(3):317-320
    [20]崔青曼,张耀红.中草药、多糖复方添加剂提高河蟹机体免疫的研究.水利渔业,2001,21(4):40-41
    [21]王胜林.中草药添加剂的作用与应用.畜禽业, 2001, (9):12-13.
    [1]叶嗣。医学微生物中的微生态学问题。中国微生态学杂志,1998,10(4):253-255。
    [2]丁轲,倪学勤。乳酸菌和中草药协同作用的研究进展。饲料广角,2002,21:27-29。
    [3]蔡子微,康白.关于中医学与微生态学在原理上的统一性.大连医科大学微生态学研究所论文集,1995:51—56
    [4]赵玲,李英伦,王讯。中草药与肠道微生态系的相互影响。兽药与饲料添加剂,2003,8:24-26。
    [5]刘一尘,何明清,倪学勤。益生菌剂与益生协同剂的协同作用的研究及应用现状。中国微生态学杂志,2001,13(3):179-180。
    [6]丁克祥等。鹿茸的抗衰老作用及其机理。中华老年学杂志,1994,14(2):108。
    [7]田碧文,胡宏.阿胶,五味子,刺五加和枸杞对双歧杆菌生长的影响。中国微生态学杂志,1996,8(2):11-13。
    [8]魏林,张永红,郝维善。不同浓度的中药合剂对双歧杆菌增殖的影响。中国微生态学杂志,1997,9(5):29-31。
    [9]江志杰,李平兰,欧阳清波。耐消化道逆环境双歧杆菌菌株A04体外促进生长因子的研究,微生物学通报,2005,32(5):29-34。
    [10]张火云。枸杞浸提物对青春双歧杆菌发酵的影响。食品研究与开发,2006,27(1):32-34。
    [11]许兵,周新婷,徐怀恕等。几种中草药对光合细菌生长的促进作用。青岛海洋大学学报,1994,24(1):47-51。
    [12]丁轲。益生乳酸杆菌的筛选及中草药协同作用的研究。四川农业大学硕士学位论文,四川雅安,2003。
    [13]刘红柏,张颖,杨雨辉等.5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响[J].大连水产学院学报,2004,19 (1):16-21.
    [14]刘德麟。分子网络调节—分析中药分子药理的理论工具与实验方法。中国中医基础医学杂志,1997,3(6):1-5。
    [15]贺玉琢。葡糖甙为天然前体药物,国外医学—中医中药分册,1999,21(3):14-17。
    [16]刘明杰,林琳,王钊。肠道细菌对天然药物代谢的研究进展。中国现代应用药学杂志,2001,1 (2):90-91。
    [1]康白.与正常微生物群有关的新概念[J].中国微生态学杂志, 1992, 4(4):1-5.
    [2] Lesel R. Thermal effect on bacterial flora in the gut of rainbow trout and African catfish.// Lesel R. Microbiology in Poecilotherms [M]. Elsevier, Amsterdam, 1990,33–38.
    [3] Sakata T, Koreeda Y. A numerical taxonomic study of the dominant bacteria isolated from Tilapia reared in fresh and seawater [J]. Bull Japan Soc Sci Fish, 1980, 46(3): 313-317.
    [4] Moriarty D J W. Control of luminous Vibrio species in penaeid aquaculture ponds [J]. Aquaculture, 1998, 164(1), 351–358.
    [5]李筠,吕艳,李军,等.苗期中国对虾幼体异养细菌区系及其变化与病害发生的关系[J].中国海洋大学学报, 2004, 34(6), 1003-1007.
    [6]杨莺莺,李卓佳,林亮,等.人工饲料饲养的对虾肠道菌群和水体细菌区系的研究[J].热带海洋学报, 2006, 5(3): 53-56.
    [7] Moriarty D J W. Interactions of microorganisms and aquatic animals, particularly the nutritional role of the gut flora. // Lesel R. Microbiology in Poecilotherms [M]. Elsevier, Amsterdam, 1990, 217–222.
    [8] Dempsey A C, Kitting C T, Rosson R A. Bacterial variability among individual Penaeid shrimp digestive tract[J]. Crustaceana , 1989, 56(3): 267–278.
    [9] Yasuda K, Kitao T. Bacterial flora in the digestive tract of prawns, Penaeus japonicus Bate [J]. Aquaculture, 1980, 19: 229-234.
    [10]王祥红,李会荣,张晓华,等.中国对虾肠道微生物区系(英文)[J].青岛海洋大学学报, 2000,30(3):493-498.
    [11]宛立,王吉桥,高峰,等.南美白对虾肠道细菌菌群分析[J].水产科学, 2006,25(1):13-15.
    [12]李卓佳,林亮,杨莺莺,等.芽孢杆菌制剂对凡纳滨对虾Litopenaeus vannamei肠道微生物群落的影响[J].南方水产, 2005, 1(3) : 54-59.
    [13] Kimiaki Y, Tadatoshi K. Bacterial flora in the digestive tract of prawn, Penaeus japonicus Bate [J]. Aquaculture, 1980, (19):229-234.
    [14] Hamid A, Sakata T, Kakimoto D.Microflora in the alimentary tract of grey mullet: A comparison of mullet intestinal Microflora in fresh and sea water [J]. Bull Jap Soc Sci Fish, 44: 53-57.
    [15]尾崎久雄.鱼类消化生理[M].李爱杰,沈宗武,译.上海:上海科技出版社,1985.
    [16]康白、微生态学原理[M].第2版.大连:大连出版社,2002:187。
    [17] Sung, H.H., Li, H.C., Tsai, F.M., et al.1999. Changes in the composition of Vibrio communities in pond water during tiger shrimp Penaeus monodon cultivation and in the hepatopancreas of healthy and diseased shrimp. J. Exp. Mar. Biol. Ecol. 236, 261–271.
    [18] Colwell R R. Vibrios in the environment [M]. New York, Wiley,1984.
    [19] Daniels H V. Disease control in shrimp ponds and hatcheries in Ecuador. Associacao Brasileira de Aquicultura. IV simposio brasileiro sobre cultivo de camarao, 22–27 November, Brasil.1993,175–184.
    [20] Oxley A, Shipton W, Owens L, et al. Bacterial flora from the gut of the wild and cultured banana prawn, Penaeus merguiensis [J]. Journal of Applied Microbiology, 2002, 93: 214-223.
    [21] Chen S. Coping with diseases in shrimp farming [C]. // Saram H, Singh T. Proceedings of the First Global Congress on the Shrimp Industry. INFOFISH,Kuala Lumpur, Malaysia. 1992, 113–117.
    [22] Frelier P F, Sis R F, Bell T A, et al.. Microscopic and ultrastructural studies of necrotizing hepatopancreatitis in Pacific white shrimp Penaeus Vannamei culture in Texas [J]. Vet. Pathol. 1992, 29: 269–277.
    [23] Eduardo M L, Celia R, Lavilla-Pitogo, Milagros G P.Bacterial flora in the hepatopancreas of pond-reared Penaeus monodon juveniles with luminous vibriosis [J]. Aquaculture, 1998,164: 367-374.
    [24] Colorni A. A study on the bacterial flora of giant prawn, Macrobrachium rosenbergii, larvae fed with Artemia salina nauplii [J]. Aquaculture, 1985, 49: 1–10.
    [25]李继秋,谭北平,麦康森.白斑综合征病毒与凡纳滨对虾肠道菌群区系之间关系的初步研究[J].上海水产大学学报, 2006, 15(1): 109-113.
    [26] Scott J, Thune R L. Bacterial flora of hemolymph from red swamp crawfish, Procambarus clarkii (Girard), from commercial ponds [J]. Aquaculture. 1986, 58: 161-165.
    [27]尹军霞,沈文英,郦萍.水温对南美白对虾肠道菌群影响的研究[J].海洋科学, 2004, 28(5): 33-36.
    [28] Sakata T. Microflora in the digestive tract of fish and shell-fish [M].// Lesel R, Microbiology in Poecilotherms. Elsevier, Amsterdam, 1990, 171–176.
    [29] Sugita H, Takahashi T, Kamemoto F I,et al. Aerobic bacterial flora in the digestive tracts of freshwater shrimp Palaemon paucidens acclimated with seawater [J]. Nippon Suisan Gakkaishi, 1987, 53(3): 511.
    [30] Otta S K, Karunasagar I, Karunasagar I, Bacteriological study of shrimp,Penaeus monodon Fabricius,hatcheries in India [J]. J Appl Ichtyol, 2001, 17: 59-63.
    [31]周文豪,陈孝煊,陈昌福.投喂氯霉素和土霉素后草鱼肠道菌群变化[J].华中农业大学学报, 1997, 25(增刊):91-100.
    [32]苑丽,胡功政.十一种中草药对常见病原菌的体外抑菌作用[J].兽药与饲料添加剂, 2001, 6(1): 20.
    [33]小桥恭一.中药有效成分与肠道细菌的关系[J].医学与哲学, 1995,16(11):598.
    [34] Gatesoupe F J. The use of probiotics in aquaculture [J]. Aquaculture, 1999,180: 147–165.
    [35] Canganella F, Gasbarri M, Massa S et al. A microbiological investigation on probiotic preparations used for animal feeding [J]. Microbiological Research, 1996, 151: 167–175.
    [36] Vine N G, Leukes W D, Kaiser H. In vitro growth characteristics of five candidate aquaculture probiotics and two fish pathogens grown in fish intestinal mucus [J]. FEMS Microbiology Letters 2004, 231: 145–152.
    [37] Sugita H, Hirose Y, Matsuo N, et al.Production of the antibacterial substance by Bacillus sp. strain NM 12, an intestinal bacterium of Japanese coastal fish [J]. Aquaculture,1998, 165: 269–280.
    [38] Venkat H K, Sahu NP, Jain K K. Effect of feeding Lactobacillus-based probiotics on the gut microflora, growth and survival of postlarvae of Macrobrachium rosenbergii (de Man) [J]. Aquaculture research, 2004, 35(5), 501-507.
    [1]许兵,纪伟尚,张鹏等.对虾病原菌抑菌药物的研究.青岛海洋大学学报,1993,23(2):43-51
    [2] Boyd C E, Massaaut L. Risks associated with the use of chemical in pond aquaculture. AquaEngin, 1999, 20(2): 113-132
    [3] Gatesoupe F J. The use of probiotics in aquaculture. Aquaculture, 1999, 180: 147– 165
    [4] Jian J C, Wu Z H. Effects of Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosiaena crocea (Richardson). Aquaculture, 2003, 218: 1–9
    [5] Thompson F L, Abreu P C, Cavalli R. The use of microorganisms as food source for Penaeus paulensis larvae. Aquaculture, 1999, 174: 139– 153
    [6] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev, 2000, 64: 655– 671
    [7] Lin H Z, Guo Z X, Yang Y Y, et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone. Aquaculture Research, 2004, 35: 1441–1447
    [8] Jian J C, Wu Z H. Influences of traditional Chinese medicine on non-specific immunity of Jian common carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol, 2004, 16: 185–191
    [9]罗日祥.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼,1997,28(6):573–578
    [10] Chansue N, Ponpornpisit A, Endo M, et al. Improved immunity of tilapia Oreochromis niloticus by C-UP III, a herb medicine. Fish Pathol, 2000, 35: 89–90
    [11] Lin H Z, Li Z J, Chen Y Q, et al. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture, 2006, 253: 495– 501
    [12]丁克祥等。鹿茸的抗衰老作用及其机理。中华老年学杂志,1994,14(2):108。
    [13]田碧文,胡宏.阿胶、五味子、刺五加、枸杞对双歧杆菌生长的影响[J].中国微生态学杂志, 1996,8(2):11-131
    [14]魏林.不同浓度的中药合剂对双歧杆菌增殖的影响[J].中国微生态学杂志, 1997,9(5):29-30
    [15]张火云,孙启玲,袁月祥等..中药及其优化培养基对双歧杆菌增值的影响.四川大学学报. 2004,2(1):189-191
    [16]李卓佳,杨莺莺,陈永青等.几株有益芽孢杆菌对温度、制粒工艺及pH值的耐受性.湛江海洋大学学报,2003,23(6):16-20
    [1] Williams, A.S., Davis, D.A., Arnold, C.R., 1996. Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system. J. World Aquac. Soc. 27,107– 112.
    [2] Ponce-Palafox, J., Martine-Palacios, C.A., Ross, L.G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannameiBoone, 1931.Aquaculture 157, 107–115.
    [3] Gatesoupe, F.J., 1999. The use of probiotics in aquaculture. Aquaculture.180, 147– 165.
    [4] Thompson, F.L., Abreu, P.C., Cavalli, R., 1999. The use of microorganisms as food source for Penaeus paulensis larvae. Aquaculture174, 139– 153.
    [5] Verschuere, L., Rombaut, G., Sorgeloos, P., Verstraete, W., 2000.Probiotic bacteria as biological control agents in aquaculture.Microbiol. Mol. Biol. Rev. 64, 655– 671.
    [6] Lin, H.Z., Guo, Z.X., Yang,Y.Y., Zheng, W.H., Li, Z.J., 2004.Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone.Aqaculture Research ,35,1441-1447.
    [7] Saeed Ziaei-Nejad, Mehran Habibi Rezaei, Ghobad Azari Takami. The effect of Bacillus spp. bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture 252 (2006) 516– 524.
    [8] Rengpipat, S., Phianphak, W., Piyatiratitivorakul, S., Menasveta, P., 1998a. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture167, 301– 313.
    [9]罗日祥.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼[J]1997,28(6):573–578.
    [10] Chansue, N., Ponpornpisit, A., Endo, M., Sakai, M., Satoshi, Y., 2000. Improved immunity of tilapia Oreochromis niloticus by C-UP III, a herb medicine. Fish Pathol. 35, 89–90.
    [11]向枭,周兴华.中草药添加剂在水产动物营养中的应用.粮油食品科技[J]2000,(3):27-29.
    [12] Lin, H.Z., Li, Z.J., Chen, Y.Q., Zheng, W.H., Yang, K., 2006. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture ,253,495– 501.
    [13]刘红柏,张颖,杨雨辉等. 5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响.大连水产学院学报[J],2004(1):16-20.
    [14] Anson, M.L., 1938. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79– 89.
    [15] Bernfeld, P., 1955. Amylase. In: Colowick, S.P., Kaplan, N.O.(Eds.), Methods in Enzymology. Academic Press, New York,pp. 149–158.
    [16] Bradford, M., 1976. A rapid and sensitive method for the quantitationof microgram quantitiesof protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248– 254. [17] Kozasa, M., 1986. Toyocerin Bacillus toyoi as growth promotor for animal feeding. Microbiol. Aliment.Nutr. 4, 121–135.
    [17]丁贤,李卓佳,陈永青等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响.中国水产科学[J],2004(11):17-21.
    [18] Vazquez-Juarez, R., Andlid, T., Gustafsson, L., 1997. Adhesion of yeast isolated from fish gut to crude intestinal mucus of rainbow trout, Salmo gairdneri. Molec. Mar. Biol. Biotechnol. 6, 64–71.
    [19] Moriarty, D.J.W., 1996. Microbial biotechnology: a key ingredien for sustainable aquaculture. Infofish Int. 4, 29– 33.
    [20] Moriarty, D.J.W., 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164, 351– 358.
    [21]小桥恭一.中药有效成分与肠道细菌的关系.医学与哲学[J]1995,16(11):598.
    [22]刘明杰,林琳.王钊.肠道细菌对天然药物代谢的研究进展.中国现代应用药学杂志[J],2001,18(2):90-91.
    [23]陈勇,黄权,李月红.溢康素对鲤鱼肠道菌群生长的影响.北华大学学报[J],2001,(5):441-445.
    [24]邱小琮,周洪琪,横山雅仁等.中草药添加剂对异育银鲫肌肉生化成分的影响.上海水产大学学报[J]2003,12(1):24-28.
    [1]许兵,纪伟尚,张鹏等.对虾病原菌抑菌药物的研究.青岛海洋大学学报,1993,23(2):43-51
    [2] Boyd C E, Massaaut L. Risks associated with the use of chemical in pond aquaculture. Aqua Engin, 1999, 20(2): 113-132
    [3] Gatesoupe F J. The use of probiotics in aquaculture. Aquaculture, 1999, 180: 147– 165
    [4] Jian J C, Wu Z H. Effects of Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosiaena crocea (Richardson). Aquaculture, 2003, 218: 1–9
    [5] Thompson F L, Abreu P C, Cavalli R. The use of microorganisms as food source for Penaeus paulensis larvae. Aquaculture, 1999, 174: 139– 153
    [6] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev, 2000, 64: 655– 671
    [7] Lin H Z, Guo Z X, Yang Y Y, et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone. Aquaculture Research, 2004, 35: 1441–1447
    [8] Jian J C, Wu Z H. Influences of traditional Chinese medicine on non-specific immunity of Jian common carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol, 2004, 16: 185–191
    [9]罗日祥.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼,1997,28(6):573–578
    [10] Chansue N, Ponpornpisit A, Endo M, et al. Improved immunity of tilapia Oreochromis niloticus by C-UP III, a herb medicine. Fish Pathol, 2000, 35: 89–90
    [11] Lin H Z, Li Z J, Chen Y Q, et al. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture, 2006, 253: 495– 501
    [12] Oliver J D. Taxonomic scheme for the identification of marine bacteria. Doco Sea Res. 1982, 29 (6): 795–798
    [13]东秀珠,蔡妙英.常见细菌系统鉴定手册,北京:科学出版社.2001,353-372
    [14]丁贤,李卓佳,陈永青等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响.中国水产科学,2004, (11):17–21
    [15]李卓佳,曹煜成,陈永青等.地衣芽孢杆菌De株的胞外产物对凡纳滨对虾脂肪酶活性影响的体外实验.高技术通讯,2006,16(2):191-195
    [16] Rengpipat S, Phianphak W, Piyatiratitivorakul S, et al. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture, 1998, 167: 301– 313
    [17] Bomba A, Nemcoe R, Gancarcikova S, et al. Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. British Journal of Nutrition, 2002, 88 (Suppl. 1): 95-99
    [18]王吉桥,孙永新,张剑诚.金银花等复方草药对牙鲆生长、消化和免疫能力的影响.水产学报,2006,30(1)90-96
    [19]邱小琮,周洪琪,刘小刚等.中草药添加剂对异育银鲫生长和蛋白质消化吸收的影响.水产学报,2002,26(6):551–555
    [20]宛立,王吉桥,高峰等.南美白对虾肠道细菌菌群分析.水产科学,2006, 25(1):13–15
    [21]李卓佳,林亮,杨莺莺等.芽孢杆菌制剂对凡纳滨对虾Litopenaeus vannamei肠道微生物群落的影响.南方水产, 2005,1(3):54–59
    [22]刘红柏,张颖,杨雨辉等.5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响.大连水产学院学报,2004(1):16–20
    [23]李莉,陈孝煊,蔡雪峰.穿心莲对草鱼肠内细菌的影响.内陆水产,2002,(8):35–37
    [24]徐怀恕,杨学宋,李筠.对虾苗期细菌病害的诊断与控制.北京:海洋出版社,1999,136–145
    [25] Aguirre Guzman G, Vazquez Juarez R, Ascencio F. Differences in the susceptibility of American white shrimp larval substages (Litopenaeus vannamei) to four Vibrio species. Invertebr Pathol, 2001, 78 (4): 215-219.
    [26]李筠,吕艳,李军等.苗期中国对虾幼体异养细菌区系及其变化与病害发生的关系.中国海洋大学学报,2004,34(6),1003–1007
    [27]许兵,周新婷,徐怀恕等.几种中草药对光合细菌生长的促进作用.青岛海洋大学学报,1994,24(1): 47–51
    [28]丁轲.益生乳酸杆菌的筛选及中草药协同作用的研究: [学位论文].雅安:四川农业大学预防兽医学, 2003
    [29]小桥恭一.中药有效成分与肠道细菌的关系.医学与哲学,1995,16(11):598
    [30]刘明杰,林琳,王钊.肠道细菌对天然药物代谢的研究进展.中国现代应用药学杂志,2001,18(2):90-91
    [1]许兵,纪伟尚,张鹏等.对虾病原菌抑菌药物的研究.青岛海洋大学学报,1993,23(2):43-51
    [2] Boyd C E, Massaaut L. Risks associated with the use of chemical in pond aquaculture. Aqua Engin, 1999, 20(2): 113-132
    [3] Gatesoupe F J. The use of probiotics in aquaculture. Aquaculture, 1999, 180: 147– 165
    [4] Jian J C, Wu Z H. Effects of Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosiaena crocea (Richardson). Aquaculture, 2003, 218: 1–9
    [5] Thompson F L, Abreu P C, Cavalli R. The use of microorganisms as food source for Penaeus paulensis larvae. Aquaculture, 1999, 174: 139– 153
    [6] Verschuere L, Rombaut G, Sorgeloos P, et al. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev, 2000, 64: 655– 671
    [7] Lin H Z, Guo Z X, Yang Y Y, et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone. Aquaculture Research, 2004, 35: 1441–1447
    [8] Jian J C, Wu Z H. Influences of traditional Chinese medicine on non-specific immunity of Jian common carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol, 2004, 16: 185–191
    [9]罗日祥.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼,1997,28(6):573–578
    [10] Chansue N, Ponpornpisit A, Endo M, et al. Improved immunity of tilapia Oreochromis niloticus by C-UP III, a herb medicine. Fish Pathol, 2000, 35: 89–90
    [11] Lin H Z, Li Z J, Chen Y Q, et al. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture, 2006, 253: 495– 501
    [12] Anson, M.L., 1938. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79– 89.
    [13] Rengpipat S, Phianphak W, Piyatiratitivorakul S, et al. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture, 1998, 167: 301– 313
    [14]刘红柏,张颖,杨雨辉等. 5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响.大连水产学院学报,2004(1):16-20.
    [15] Bomba A, Nemcoe R, Gancarcikova S, et al. Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. British Journal of Nutrition, 2002, 88 (Suppl. 1): 95-99
    [16]邱小琮,周洪琪,横山雅仁等.中草药添加剂对异育银鲫肌肉生化成分的影响.上海水产大学学报. 2003,12(1):24-28.
    [17]夏新山,袁书林,杨元青,宋成义。中草药添加剂及不同饲粮类型对生长育肥猪血液生化指标的影响。动物科学与动物医学,2003,12:38-39
    [18]刘彦慈.中草药饲料添加剂对肉仔鸡生产性能及肉质风味的影响.硕士学位论文,河北农业大学.河北保定,2004.
    [19] Moriarty, D.J.W., 1996. Microbial biotechnology: a key ingredien for sustainable aquaculture. Infofish Int. 4, 29– 33.
    [20] Moriarty, D.J.W., 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164, 351– 358.
    [21]丁贤,李卓佳,陈永青等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响.中国水产科学, 2004 (11):17-21.
    [22]李卓佳,曹煜成,陈永青等.地衣芽孢杆菌De株的胞外产物对凡纳滨对虾脂肪酶活性影响的体外实验.高技术通讯,2006,16(2):191-195
    [23]王吉桥,孙永新,张剑诚.金银花等复方草药对牙鲆生长、消化和免疫能力的影响.水产学报,2006,30(1)90-96
    [24]陈清西,陈素丽,石艳,等.长毛对虾碱性磷酸酶性质.厦门大学学报(自然科学版), 1996, 35 (20): 257-261.
    [25]吴垠,孙建明,周遵春,桂远明.饲料蛋白质水平对中国对虾生长和消化酶活性的影响. 2003 18 (4): 258-262.
    [26]宋凯、单安山,李建平,不同配伍酶制剂添加于小麦日粮中对肉仔鸡生长和血液生化指标的影响,动物营养学报,2004,16(4):25-29
    [27]张日俊、潘淑媛、白永义等.微生物饲料添加剂益生康对肉仔鸡营养代谢与免疫功能的调控机理.中国农业大学学报,2005,10(3):40-47.
    [28]宋宇轩,金彪,王杏利等.中草药添加剂对鸡蛋胆固醇含量的影响.西北农业学报,2002,11(3):4-7.
    [1]许兵,纪伟尚,张鹏等.对虾病原菌抑菌药物的研究.青岛海洋大学学报,1993,23(2):43-51
    [2] Boyd C E, Massaaut L. Risks associated with the use of chemical in pond aquaculture. Aqua Engin, 1999, 20(2): 113-132
    [3] Gatesoupe F J. The use of probiotics in aquaculture. Aquaculture, 1999, 180: 147– 165
    [4] Jian J C, Wu Z H. Effects of Chinese medicine on nonspecific immunity and disease resistanceof large yellow croaker, Pseudosiaena crocea (Richardson). Aquaculture, 2003, 218: 1–9
    [5] Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S., Menasaveta, P., 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191, 271–288.
    [6] Lin, H.Z., Li, Z.J., Chen, Y.Q., Zheng, W.H., Yang, K., 2006. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture ,253,495– 501.
    [7]Jian, J.C., Wu, Z.H., 2004. Influences of traditional Chinese medicine on non-specific immunity of Jian common carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 16,185–191.
    [8]罗日祥.中药制剂对中国对虾免疫活性物的诱导作用.海洋与湖沼.1997,28(6):573–578.
    [9] Hernández-López J, Gollas-Galván T. Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp. Biochem.Physiol. 1996, 113C: 61-66.
    [10]Anderson D P. Immunostimulants, adjuvants and vaccine carriers in fish: applications to aquaculture. Annu. Rev. Fish Dis. 1992, 2: 281-307
    [11]Jenny Rodríguez, Gilles Le Moullac. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 2000, 191: 109-119
    [12]S?derh?ll K.β-1,3-Glucan enhancement of protease activity in crayfish hemocytelysate. Comp Biochem Physiol,1996, 74B:221-224
    [13]Sung, H. H., Hwang, S. F, and Tasi, F. M., 2000. Responses of Giant Freshwater Prawn (Macrobrachium rosenbergii) to Challenge by Two Strains of Aeromonas spp. J. Invertebr. Pathol. 2000,76: 278–284
    [14] Le Moullac, G., Haffner, P.. Environmental factors affecting immune response in crustacea. Aquaculture. 2000, 191: 121-131.
    [15] Van de Braak C.B.T., Botterblom M.H.A., Liu W., Taverne N., Van der Knaap W.P.W. and Rombout M.J.H.W.. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish & Shellfish Immunology, 2002a, 12: 253–272
    [16] Song, Y-L., Yu, C., Lien, T-W, Huang, C-C, Lin M-N. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrom virus. Fish and ShellfishImmunology. 2003, 14, 317-331.
    [17]Van De Braak C. B. T., Botterblom M. H. A., Huisman E. A., et al.,. Preliminary study on haemocyte response to white spot syndrom virus infection in the black tiger shrimp Penaeus monodon. Dis Aquat. Org., 2002b, 51: 149-155
    [18]姚翠鸾.免疫刺激后中国明对虾血液抗菌力应答及两种免疫相关因子LYZ和AK的研究.博士学位论文,中国科学院海洋研究所, 2004.
    [19]Campa-Córdova A.I., Hernáundez-Saavedra N.Y., Ascencio F. Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp. Biochem. Physiol. 2002, 133C: 557-565
    [20]王新霞.对虾免疫增强剂的研究与应用。博士学位论文,中国海洋大学,2004.
    [21] Hernández-López J., Gollas-Galvan, T., Vargas-Albores, F. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes haemolymph. Comp. Biochem. Physiol. 1996, 104B: 407–413.
    [22] Bachere, E., Miahle, E., Noel, T., Boulo, V., Morvan, A., Rodriguez, J. Knowledge and research prospects in marine mollusc and crustacean immunology. Aquaculture, 1995, 132: 17–32.
    [23]李义,宋学宏,蔡春芳等.复方中药添加剂对罗氏沼虾免疫功能的增强作用.饲料工业,2002,23(7):45-47
    [24]王雷.口服免疫型药物对养殖中国对虾病害防治作用的研究.海洋与湖沼,1994,25(5):486-491。
    [25]江晓路,刘树青,张朝晖,管华诗.多糖对中国对虾免疫功能的影响.中国水产科学,1999,6(1):66-68.
    [26]刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼,1998,29(2):113-117.
    [27]Paulsen S M. Enhanced lysozyeme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeastβ-glucan and bacterial lipopolysaccharide. Fish shellfish immunol. 2001, 11:23-37.
    [28]杜爱芳.复方大蒜油添加剂对中国对虾免疫机能的增强作用.浙江大学学报(农业与生命科学版),1997,23(3):317-320.
    [29] Holmblad T., S?derh?ll K. Cell adhesion molecules and antioxidative enzymes in acrustacean, possible role in immunity. Aquaculture. 1999, 172: 111–123
    [30]王秀华,宋晓玲,黄倢.肽聚糖制剂对南美白对虾体液免疫因子的影响.中国水产科学,2004,11(1):26-30.
    [1] Williams, A.S., Davis, D.A., Arnold, C.R., 1996. Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system. J. World Aquac. Soc. 27,107– 112.
    [2] Ponce-Palafox, J., Martine-Palacios, C.A., Ross, L.G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei Boone, 1931.Aquaculture 157, 107–115.
    [3] Davis, D.A., Arnold, C.R., 2000. Replacement of fish meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 185, 291– 298.
    [4] Guillaume, J., 1997. Protein and amino acids. In: D’Abramo, L.R., Conklin, D.E., Akiyama, D.M. (Eds.) , Crustacean Nutrition. Adv. World Aquacult. Vol. 6 World Aquaculture Society, Baton Rouge, LA, USA, pp. 26–50.
    [5] Lin H Z, Guo Z X, Yang Y Y, et al. Effect of dietary probiotics on apparent digestibility coefficients of nutrients of white shrimp Litopenaeus vannamei Boone. Aquaculture Research, 2004, 35: 1441–1447
    [6]丁贤,李卓佳,陈永青等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响.中国水产科学, 2004(11):17-21.
    [7]李卓佳,曹煜成,陈永青等.地衣芽孢杆菌De株的胞外产物对凡纳滨对虾脂肪酶活性影响的体外实验.高技术通讯,2006,16(2):191-195
    [8]王吉桥,孙永新,张剑诚.金银花等复方草药对牙鲆生长、消化和免疫能力的影响.水产学报,2006,30(1)90-96
    [9] Lin H Z, Li Z J, Chen Y Q, et al. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture, 2006, 253: 495– 501
    [10] Anson, M.L., 1938. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J. Gen. Physiol. 22, 79– 89.
    [11] Rengpipat S, Phianphak W, Piyatiratitivorakul S, et al. Effects of a probiotic bacterium on black tiger shrimp Penaeus monodon survival and growth. Aquaculture, 1998, 167: 301– 313
    [12]刘红柏,张颖,杨雨辉等. 5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响.大连水产学院学报,2004(1):16-20.
    [13] Bomba A, Nemcoe R, Gancarcikova S, et al. Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. British Journal of Nutrition, 2002, 88 (Suppl. 1): 95-99
    [14]Colvin, L.B., Brand, C.W., 1977. The protein requirement of penaeid shrimp at various life cycle stages in controlled environmental systems. Proc. World Maric. Soc. 8, 821–840.
    [15]Smith, L.L., Lawrence, A., Strawn, K., 1984. Growth and digestibility by three sizes of Penaeus vannamei Boone: effects of dietary protein level and protein source. Aquaculture 46, 85–96.
    [16]Kureshy, N., Davis, D.A., 2002. Protein requirement fro maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 204, 125– 143.
    [17]Cristina P, Edgar Z, Gerard C, Jaime S,Ariadna S, Gabriela G, Gabriel T,Teresita M, Carlos R Litopenaeus vannamei juveniles energetic balance and immunological response to dietary proteins. Aquaculture, 2004, 239: 375–395
    [18]邱小琮,周洪琪,横山雅仁等.中草药添加剂对异育银鲫肌肉生化成分的影响.上海水产大学学报. 2003,12(1):24-28.
    [19]刘彦慈.中草药饲料添加剂对肉仔鸡生产性能及肉质风味的影响.硕士学位论文,河北农业大学.河北保定,2004.
    [20] Moriarty, D.J.W., 1996. Microbial biotechnology: a key ingredien for sustainable aquaculture. Infofish Int. 4, 29– 33.
    [21] Moriarty, D.J.W., 1998. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture 164, 351– 358.
    [22] Lee P G, Smith L L , Lawrence A L. Digestive protease of Penaeus vannamei Boone: relationship between enzyme activity, size and diet. Aquaculture, 1984, 42: 225-239.
    [23]陈清西,陈素丽,石艳等.长毛对虾碱性磷酸酶性质.厦门大学学报(自然科学版), 1996, 35(20): 257-261.
    [24]吴垠,孙建明,周遵春等.饲料蛋白质水平对中国对虾生长和消化酶活性的影响.2003 18(4): 258-262.
    [25]宋凯,单安山,李建平,不同配伍酶制剂添加于小麦日粮中对肉仔鸡生长和血液生化指标的影响,动物营养学报,2004,16(4):25-29
    [26]张日俊,潘淑媛,白永义等.微生物饲料添加剂益生康对肉仔鸡营养代谢与免疫功能的调控机理.中国农业大学学报,2005,10(3):40-47.
    [27]宋宇轩,金彪,王杏利等.中草药添加剂对鸡蛋胆固醇含量的影响.西北农业学报,2002,11(3):4-7.
    [1] Williams, A.S., Davis, D.A., Arnold, C.R., 1996. Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system. J. World Aquac. Soc. 27,107– 112.
    [2] Ponce-Palafox, J., Martine-Palacios, C.A., Ross, L.G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei Boone, 1931.Aquaculture 157, 107–115.
    [3] Davis, D.A., Arnold, C.R., 2000. Replacement of fish meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 185, 291– 298.
    [4] Guillaume, J., 1997. Protein and amino acids. In: D’Abramo, L.R., Conklin, D.E., Akiyama, D.M. (Eds.) , Crustacean Nutrition. Adv. World Aquacult. Vol. 6 World Aquaculture Society, Baton Rouge, LA, USA, pp. 26–50.
    [5] Rengpipat, S., Rukpratanporn, S., Piyatiratitivorakul, S., Menasaveta, P., 2000. Immunity enhancement in black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11). Aquaculture 191, 271–288.
    [6] Jian J C, Wu Z H. Effects of Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosiaena crocea (Richardson). Aquaculture, 2003, 218: 1–9
    [7]Jian, J.C., Wu, Z.H., 2004. Influences of traditional Chinese medicine on non-specific immunity of Jian common carp (Cyprinus carpio var. Jian). Fish Shellfish Immunol. 16,185–191.
    [8] Hernández-López J, Gollas-Galván T. Activation of the prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes). Comp. Biochem.Physiol. 1996, 113C: 61-66.
    [9]Anderson D P. Immunostimulants, adjuvants and vaccine carriers in fish: applications to aquaculture. Annu. Rev. Fish Dis. 1992, 2: 281-307
    [10]Jenny Rodríguez, Gilles Le Moullac. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture, 2000, 191: 109-119
    [11]S?derh?ll K.β-1,3-Glucan enhancement of protease activity in crayfish hemocytelysate. Comp Biochem Physiol,1996, 74B:221-224
    [12]Sung, H. H., Hwang, S. F, and Tasi, F. M., 2000. Responses of Giant Freshwater Prawn (Macrobrachium rosenbergii) to Challenge by Two Strains of Aeromonas spp. J. Invertebr. Pathol. 2000,76: 278–284
    [13] Le Moullac, G., Haffner, P.. Environmental factors affecting immune response in crustacea. Aquaculture. 2000, 191: 121-131.
    [14] Van de Braak C.B.T., Botterblom M.H.A., Liu W., Taverne N., Van der Knaap W.P.W. and Rombout M.J.H.W.. The role of the haematopoietic tissue in haemocyte production and maturation in the black tiger shrimp (Penaeus monodon). Fish & Shellfish Immunology, 2002a, 12: 253–272
    [15] Song, Y-L., Yu, C., Lien, T-W, Huang, C-C, Lin M-N. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrom virus. Fish and Shellfish Immunology. 2003, 14, 317-331.
    [16]Van De Braak C. B. T., Botterblom M. H. A., Huisman E. A., et al.,. Preliminary study on haemocyte response to white spot syndrom virus infection in the black tiger shrimp Penaeus monodon. Dis Aquat. Org., 2002b, 51: 149-155
    [17]姚翠鸾.免疫刺激后中国明对虾血液抗菌力应答及两种免疫相关因子LYZ和AK的研究.博士学位论文,中国科学院海洋研究所, 2004.
    [18]Campa-Córdova A.I., Hernáundez-Saavedra N.Y., Ascencio F. Superoxide dismutase as modulator of immune function in American white shrimp (Litopenaeus vannamei). Comp. Biochem. Physiol. 2002, 133C: 557-565
    [19]王新霞.对虾免疫增强剂的研究与应用。博士学位论文,中国海洋大学,2004.
    [20]Cristina P, Edgar Z, Gerard C, et al. Litopenaeus vannamei juveniles energetic balance and immunological response to dietary proteins. Aquaculture, 2004, 239: 375–395
    [21] Hernández-López J., Gollas-Galvan, T., Vargas-Albores, F. Activation of the prophenoloxidase system of the brown shrimp Penaeus californiensis Holmes haemolymph. Comp. Biochem. Physiol. 1996, 104B: 407–413.
    [22] Bachere, E., Miahle, E., Noel, T., Boulo, V., Morvan, A., Rodriguez, J. Knowledge and research prospects in marine mollusc and crustacean immunology. Aquaculture, 1995, 132: 17–32.
    [23]李义,宋学宏,蔡春芳等.复方中药添加剂对罗氏沼虾免疫功能的增强作用.饲料工业,2002,23(7):45-47
    [24]王雷.口服免疫型药物对养殖中国对虾病害防治作用的研究.海洋与湖沼,1994,25(5):486-491。
    [25]江晓路,刘树青,张朝晖,管华诗.多糖对中国对虾免疫功能的影响.中国水产科学,1999,6(1):66-68.
    [26]刘恒,李光友.免疫多糖对养殖南美白对虾作用的研究.海洋与湖沼,1998,29(2):113-117.
    [27]Paulsen S M. Enhanced lysozyeme production in Atlantic salmon (Salmo salar L.) macrophages treated with yeastβ-glucan and bacterial lipopolysaccharide. Fish shellfish immunol. 2001, 11:23-37.
    [28]杜爱芳.复方大蒜油添加剂对中国对虾免疫机能的增强作用.浙江大学学报(农业与生命科学版),1997,23(3):317-320.
    [29] Holmblad T., S?derh?ll K. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture. 1999, 172: 111–123
    [30]王秀华,宋晓玲,黄倢.肽聚糖制剂对南美白对虾体液免疫因子的影响.中国水产科学,2004,11(1):26-30.
    [1] Williams, A.S., Davis, D.A., Arnold, C.R., 1996. Density-dependent growth and survival of Penaeus setiferus and Penaeus vannamei in a semi-closed recirculating system. J. World Aquac. Soc. 27,107– 112.
    [2] Ponce-Palafox, J., Martine-Palacios, C.A., Ross, L.G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei Boone, 1931.Aquaculture 157, 107–115.
    [3] Davis, D.A., Arnold, C.R., 2000. Replacement of fish meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 185, 291– 298.
    [4] Guillaume, J., 1997. Protein and amino acids. In: D’Abramo, L.R., Conklin, D.E., Akiyama, D.M. (Eds.) , Crustacean Nutrition. Adv. World Aquacult. Vol. 6 World Aquaculture Society, Baton Rouge, LA, USA, pp. 26–50.
    [5] Lin H Z, Guo Z X, Yang Y Y, et al. Effect of dietary probiotics on apparent digestibilitycoefficients of nutrients of white shrimp Litopenaeus vannamei Boone. Aquaculture Research, 2004, 35: 1441–1447
    [6]丁贤,李卓佳,陈永青等.芽孢杆菌对凡纳滨对虾生长和消化酶活性的影响.中国水产科学, 2004(11):17-21.
    [7]李卓佳,曹煜成,陈永青等.地衣芽孢杆菌De株的胞外产物对凡纳滨对虾脂肪酶活性影响的体外实验.高技术通讯,2006,16(2):191-195
    [8]王吉桥,孙永新,张剑诚.金银花等复方草药对牙鲆生长、消化和免疫能力的影响.水产学报,2006,30(1)90-96
    [9] Lin H Z, Li Z J, Chen Y Q, et al. Effect of dietary traditional Chinese medicines on apparent digestibility coefficients of nutrients for white shrimp Litopenaeus vannamei, Boone. Aquaculture, 2006, 253: 495– 501
    [10] Gatesoupe F J. The use of p robiotics in aquaculture. Aquaculture, 1999, 180: 147-155.
    [11] Ghosh K, Sen S K, RayA K, et al. Characterization of Bacillus isolated from the gut of rohu, Labeo rohita, fingerlings and its significance in digestion. Journal of Applied Aquaculture, 2002, 12 (3): 33-42.
    [12]刘红柏,张颖,杨雨辉等. 5种中草药作为饲料添加剂对鲤肠内细菌及生长的影响.大连水产学院学报,2004(1):16-20.
    [13] Jackson C, Preston N, Thompson P J, et al. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture, 2003, 218: 397-411.
    [14] Thakur D P, Lin C. K Water quality and nutrient budget in closed shrimp ( Penaeus monodon) culture systems. Aquacultural Engineering, 2003, 27: 159-176
    [15]沈晓民,刘永发.中国对虾对蛋白质、脂肪和淀粉消化率的初步研究.水产学报,1991,15(3):236-240。
    [16] Glencross B D, Smith D M, Thomas M R, et al. The effects of dietary lipid amount and fatty-acid composition on the digestibility of lipids by the prawn, Penaeus monodon.Aquaculture, 2005, 205: 157-169.
    [17] Schneider B H and Flatt W P. The evaluation of feeds through digestibility experiments. The university of georgia press, Athens, 1975, pp. 233-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700