p300/CBP参与神经病理性疼痛的组蛋白乙酰转移酶作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     观察组蛋白乙酰转移酶p300、CBP、乙酰化底物组蛋白H3的乙酰化水平以及疼痛相关转录因子c-Jun在大鼠坐骨神经慢性压迫性损伤(chronic constriction injury, CCI)模型中的变化规律,采用组蛋白乙酰转移酶p300/CBP的特异性抑制剂姜黄素鞘内注射,观察其对CCI大鼠的镇痛作用,并使用p300 siRNA进行验证,探索p300/CBP参与神经病理性疼痛的表观遗传调控机制。
     方法
     1.雄性SD大鼠随机分为CCI组和假手术组,CCI组按照Bennett和Xie的方法建立大鼠左侧坐骨神经慢性压迫性损伤模型,假手术组仅暴露左侧坐骨神经不结扎,进行机械痛阈、热痛阈检测后于术后第3、7、14、21天处死取材,行p300、CBP的免疫组化、Western-blot以及RT-PCR测定,采用Western-blot检测乙酰化组蛋白H3(Ac-H3)、总的组蛋白H3、c-Jun的蛋白表达变化。
     2.腰段鞘内置管成功的雄性SD大鼠随机分为6组:假手术+生理盐水组、假手术+姜黄素500μg组、CCI+生理盐水组、CCI+DMSO组、CCI+姜黄素100μg组、CCI+姜黄素500μg组。术后第3天开始连续4天鞘内注射高纯度(≥98.5%)姜黄素(溶于50%的DMSO)或50%的DMSO各10μl。于术后7、14、21天各时点测完大鼠痛阈后处死取材进行p300、CBP、Ac-H3、H3、c-Jun的形态学和分子生物学相关检测,并进行大鼠脊髓腰膨大处HE染色以观察有无毒性作用。
     3.将腰段鞘内置管成功的雄性SD大鼠随机分为6组:假手术+生理盐水组、CCI+生理盐水组、CCI+转染试剂组、CCI+阴性对照siRNA组、CCI+p300 siRNA组、CCI+阳性对照siRNA组。siRNA经2'Ome修饰,采用聚乙烯亚胺(polyethyleneimine, PEI)体内导入系统,从第3天开始鞘内注射siRNA4μg/天(2μg/次,每天2次),连续4天,转染试剂组鞘内注射同样体积的转染试剂。检测各组大鼠的痛阈变化,并于术后7、14天处死取材进行各观察指标的形态学和分子生物学检测。
     结果
     1.CCI组与sham组相比,术后第1天痛阈值即明显下降,并于术后第7天降至最低点,持续至第21天仍下降明显。脊髓腰膨大处免疫组化显示p300、CBP阳性细胞以灰质表达为主,并可见于灰质全层均有较多表达,尤其在脊髓背角Ⅰ-Ⅲ层致密表达。阳性颗粒主要位于胞核,胞浆可见少量。CCI组脊髓背角浅层的p300、CBP阳性细胞表达从术后第3天开始明显增多,第7天表达最多,并持续至第14天。p300、CBP的mRNA表达于术后3天明显增高达最大值,并持续至第14天,于第21天恢复至仅略高于假手术组。p300、CBP、Ac-H3以及即早基因c-Jun的蛋白表达也表现出类似的变化,但表达峰值为第7天。
     2.姜黄素100μg(0.33-0.40mg/kg)、500μg(1.7-2.0mg/kg)组均能从第5天(注药2天后)开始显著改善CCI大鼠的痛敏现象,术后第7天(注药4天后)达到最大程度的改善,并呈剂量依赖性。姜黄素100μg组的镇痛作用可持续至术后第11天,姜黄素500μg组镇痛作用可持续至术后第14天。到术后第21天时,两个剂量组的姜黄素均已无镇痛作用。姜黄素100μg、500μg在术后第7天均能显著抑制p300、CBP的基因和蛋白表达以及Ac-H3、c-Jun的蛋白表达,并以500μg组更明显。到术后第14天时,仅姜黄素500μg组能降低p300的mRNA水平,对CBP的基因表达已无影响,此时,对各组大鼠指标的蛋白表达的抑制仅见于姜黄素500μg组。第21天时,姜黄素的抑制作用已经消失。在假手术组,姜黄素对大鼠的痛阈和各指标表达均没有明显的影响。HE染色显示鞘注姜黄素组未对大鼠脊髓组织产生明显的损伤。
     3.鞘内注射p300siRNA组大鼠从术后第5天(注射2天后)起即表现出痛敏现象的改善,第7天(注射4天后)到达最大缓解,持续至第9天(停止注射2天后),但不能恢复至正常水平。RT-PCR、Western-blot和免疫组化显示p300mRNA和蛋白表达在第7天可以见明显的下调,并且Ac-H3、c-Jun的表达也均被显著抑制。第14天时各指标已经未见明显的下调作用。阳性对照siRNA确认了实验系统的有效性。同时阴性对照siRNA未对p300的高度同源物CBP造成影响,验证了siRNA序列的特异性。各组大鼠未发现明显的毒副作用。
     结论
     1.神经病理性疼痛大鼠脊髓p300、CBP、Ac-H3和c-Jun表达增加,并与大鼠的疼痛学行为变化相平行。
     2.鞘内注射姜黄素能够剂量依赖性的抑制CCI大鼠神经病理性疼痛的发展,并降低脊髓p300、CBP、Ac-H3和c-Jun的表达。其镇痛作用是部分通过抑制组蛋白乙酰转移酶p300/CBP实现的。
     3.鞘内注射p300siRNA可减轻CCI大鼠的神经病理性疼痛,并能抑制脊髓p300、Ac-H3和c-Jun的表达,进一步验证了组蛋白乙酰转移酶p300在神经病理性疼痛中的作用。
     4.p300/CBP可能通过发挥其组蛋白乙酰转移酶的作用参与神经病理性疼痛的调制。
Objectives:
     To investigate the variation regularity of histone acetyltransferase p300、CBP、acetylation level of histone H3 and pain relevant transcription factor c-Jun in a rat modal of chronic constriction injury (CCI). To detect the analgesic effects of intrathecal curcumin, a specific inhibitor of histone acetyltransferase (HAT) p300/CBP and use intrathecal p300 siRNA as a validation in order to search for the epigenetic modulation mechanism of histone acetyltransferase p300/CBP in neuropathic pain.
     Methods:
     1. Male SD rats were divided randomly into 2 groups. In group CCI, we established a rat modal of chronic constriction injury on the left sciatic nerve according to Bennett and Xie. In group sham rats only underwent surgery of exposing the left sciatic nerve without ligation. After detection of paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) after surgery, rats were sacrified on postoperative day 3、7、14、21 for immunohistochemisty、reverse transciptase polymerase chain reaction (RT-PCR)、western-blot of p300、CBP and western-blot detection of acetylated histone H3 (Ac-H3)、total histone H3、c-Jun.
     2. Male SD rats, fitted with intrathecal (i.t.) catheters, were divided randomly into 6 groups:group sham+NS、group sham+curcumin 500μg、group CCI+NS、group CCI+DMSO、group CCI+curcumin 100μg、group CCI+curcumin 500μg. High purity ((?)98.5%) curcumin (dissolved in 50% DMSO) or 50% DMSO 10μl was intrathecally injected beginning from day 3 to day 6 after surgery. On postoperative day 7、14、21, rats were sacrified after pain threshold measurement for morphology molecular biology detection. The lumbar spinal cord was stained with hematoxylin and eosin (HE) to check for toxic action.
     3. Male SD rats, fitted with intrathecal (i.t.) catheters, were divided randomly into 6 groups:group sham +NS、group CCI+NS、group CCI+vehie、group CCI+negative control siRN、group CCI+p300 siRNA、group CCI+positive control siRNA.2'Ome modified siRNAs were delivered 4μg/d (2μg, bid) intrathecally by a PEI (polyethyleneimine) system beginning from day 3 to day 6. The same scheme (10μl, bid) of intrathecal transfection agent was used for control. After detecting the pain threshold, rats were sacrified on day 7、14 for indexes detection.
     Results:
     1. Compared to group sham, the pain threshold in group CCI significantly decreased at all postoperative timepoints, beginning on day 1, reaching a nadir on day 7 and still existing on day 21. Immunonohistochemistry displayed that both p300 and CBP positive cells expressed mainly in the grey matter, abundantly in all layers, especially densely inⅠ-Ⅲlayers of the grey matter. The positive staining was mainly seen in cell nucleus, a small amounts in cytoplasm. In group CCI, p300 and CBP immuno-positive cells in superficial laminae obviously increased from day 3 after surgery, the most on day 7 and lasted to day 14. The mRNA expression of p300、CBP significantly increased and reached the apogee on operative day 3, lasted to day 14 and recovered to a level only slightly higher than group sham on day 21. The protein expression of p300、CBP、Ac-H3 and c-Jun also showed a similar change but with a peak on day 7.
     2. Intrathecal curcumin 100μg (0.33-0.4mg/kg)、500μg (1.7-2mg/kg) can both obviously improve the pain-sensitive phenomenon in CCI rats from postoperative day 5(2 days after injection) and reached a greatest improvement on day 7 (4 days after injection) dose dependently. The analgesic effect of curcumin 100μg can last to day 11 (4 days after withdrawal) while curcumin 500μg can last to day 14 (7 days after withdrawal). Neither of the two curcumin groups had analgesic effect on day 21. Curcumin can dose dependently inhibit the mRNA、protein expression of p300、CBP and protein expression of Ac-H3、c-Jun on day 7. When on day 14, only curcumin 500μg can lower the p300 mRNA but not CBP, and only curcumin 500μg had inhibited all the proteins. Curcumin's inhition effect disappeared on postoperative day 21. In group sham, curcumin didn't present anly effect. HE staining showed that intrathecal curcumin didn't produce any overt toxic lesion to the spinal cord.
     3. There was an improvement of nociception in group p300 siRNA beginning on day 5(2 days after injection), a maximum relief on day 7 (4 days after injection) and a persistence to day 9 (2 days after withdrawal), but still couldn't recover to the normal level. mRNA and protein expression of p300 were obviously down regulated on day 7 but couldn't be lowered on day 14. The protein expressions of both Ac-H3 and c-Jun were significantly inhibited on day 7. Positive control siRNA affirmed the validity of this essay system. Meanwhile, negative control siRNA had no impaction on CBP, the homology of p300. There were no observed adverse reaction in all the rats.
     Conclusions:
     1. The expression of p300、CBP、Ac-H3 and c-Jun increased in the spinal cord of CCI rats of neuropathic pain and parallelled with the change of nociceptive behaviors.
     2. Intrathecal curcumin can dose dependently inhibit the development of neuropathic pain in CCI rats and depress the expression of p300、CBP、Ac-H3 and c-Jun in spinal cord. The analgesic effect of curcumin was implemented partly via inhibiting the histone acetyltransferase p300/CBP.
     3. Intrathecal p300 siRNA can attenuate the neuropathic pain in CCI rats and lower the expression of p300、Ac-H3、c-Jun in spinal cord, further validating the effect of histone acetyltransferase p300 in neuropathic pain.
     4. p300/CBP could participate in the modulation of neuropathic pain by the role of histone acetyltransferase.
引文
[1]Merskey H, Bogduk N. Classification of chronic pain. Seattle: IASP Press,1994.
    [2]Cruccu G, Anand P, Attal N, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol,2004,11:153-162.
    [3]Ganju P, Hall J. Potential applications of siRNA for pain therapy. Expert Opin Biol Ther,2004,4(4):531-542.
    [4]Xiao HS, Huang QH, Zhang FX, et al. Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA,2002,99(12):8360-8365.
    [5]Costigan M, Befort K, Karchewski L, et al. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci,2002,3:16.
    [6]Zhang X, Xiao HS. Gene array analysis to determine the components of neuropathic pain signaling. Curr Opin Mol Ther,2005,7(6):532-537.
    [7]Wu CT, Moms JR. Genes, genetics and epigenetics: a correspondence. Science, 2001,293:1103-1105.
    [8]Mehler MF, Mattick JS. Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev, 2007,87:799-823.
    [9]Feng J, Fouse S, Fan G Epigenetic regulation of neural gene expression and neuronal function. Pediatr Res,2007,61:58R-63R.
    [10]Allfrey VG, Faulkner RM, Mirsky AE. Acetylation + methylation of histones + their possible role in regulation of RNA synthesis. Proc Natl Acad Sci USA, 1964,51(5):786-794.
    [11]Hebbes TR, Thorne AW, Cranerobinson C. A direct link between core histone acetylation and transcriptionally active chromatin. Embo Journal,1988,7(5): 1395-1402.
    [12]Turner BM, Birley AJ, Lavender J. Histone-H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell,1992,69(2):375-384.
    [13]Chan HM, La Thangue NB. p300/CBP proteins:HATs for transcriptional bridges and scaffolds. Journal of cell science,2001,114(13):2363-2373.
    [14]Blobel GA. CREB-binding protein and p300: Molecular integrators of hematopoietic transcription. Blood,2000,95(3):745-755.
    [15]Misiti S, Schomburg L, Yen PM, et al. Expression and hormonal regulation of co-activator and corepressor genes. Endocrinology,1998,139(5):2493-2500.
    [16]Ogawa H, Nishi M, Kawata M. Localization of nuclear coactivators p300 and steroid receptor coactivator 1 in the rat hippocampus. Brain Res,2001,890(2): 197-202.
    [17]Stromberg H, Svensson SPS, Hermanson O. Distribution of CREB-binding protein immunoreactivity in the adult rat brain. Brain research,1999,818(2): 510-514.
    [18]谭小玲,高钰琪,刘福玉,等.转录共激活子p300分布及其表达的组织差异性.第三军医大学学报,2005,27(22):2201-2204.
    [19]Mark F, Mehler MD. Epigenetics and the Nervous System. Neurological progress,2008,64:602-617.
    [20]何伶俐,曹红,贺端端,等.姜黄素对大鼠神经病理性痛的影响.中华麻醉学杂志,2008,28(9):790-793.
    [21]刘甬民,姚尚龙,宋文阁,等.慢性神经病理性疼痛大鼠模型背根神经节c-jun表达及意义.山东医药,2005,45(29):11.
    [22]徐红萌,姜慧卿.附子对神经病理性疼痛大鼠的镇痛作用.中华麻醉学杂志,2005,5(5):381-384.
    [23]Kim Y, Moon D. Effect of ginkgo biloba extract on mechanical and cold allodynia in rat model of neuropathic pain. Abstracts of 12th world congress on pain.2008.
    [24]潘韫丹.核因子-κB对神经病理性疼痛及其脊髓免疫炎症因子表达的调节:[博士学位论文].长沙:中南大学,2009.
    [25]Fox A, Kesingland A, Gentry C, et al. The role of central and peripheral Cannabinoid 1 receptors in the antihyperalgesic activity of cannabinoids in a model neuropathic pain. Pain,2001,92:91-100.
    [26]Sharma S, Chopra K, Kulkarni SK. Effect of insulin and its combination with resveratrol or curcumin in attenuation of diabetic neuropathic pain: Participation of nitric oxide and TNF-alpha. Phytother Res,2007,3(21):278-283.
    [27]李旭,何伶俐,曹红.姜黄素对神经病理性痛大鼠脊髓背角c-fos表达的影响.浙江中医药大学学报.2008,32(1):41-43.
    [28]毛鹏,薛富善.神经痛的机制和治疗进展.实用疼痛学杂志,2006,2(2):120-123.
    [29]Dorn G, Patel S, Wotherspoon Q, et al. siRNA relieves chronic neuropathic pain. Nucleic Acids Research,2004,32(5):e49.
    [30]Wu CT, Moms JR. Genes, genetics and epigenetics:a correspondence. Science, 2001,293:1103-1105.
    [31]Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. Journal of biological chemistry,276(17):13505-13508.
    [32]Renthal D, Terzi EN, Olson EJ, et al. Histone deacetylase 5 controls analgesic responsiveness to tricylic antidepressants in a mouse model of neuropathic pain. Soc Neurosci Abstr,2008.Kelly WK, Richon VM, O'Connor O, et al. Phase I clinical trial of histone deacetylase inhibitor: suberoylanilide hydroxamic acid administered intravenously. Clinical cancer research,2003,9:3578-3588.
    [34]Shi Y, Venkataraman SL, Dodson GE, et al. Direct regulation of CREB transcriptional activity by ATM in response to genotoxic stress. Proc Natl Acad Sci USA,2004,101:5898-5903.
    [35]Saha RN. Pahan K. HATs and HDACs in neurodegeneration: a tale of disconcerted acetylation homeostasis. Cell Death Differ.2006,13(4):539-550.
    [36]Shikama N, Ivon J, La Thangue N. The p300/CBP family:integrating signals with transcription factors and chromatin. Trends Cell Biol,1997,7,230-236.
    [37]Bennet GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain,1988,33(1):87-107.
    [38]胡三觉.疼痛的实验动物模型.江澄川,赵志奇,蒋豪主编:疼痛的基础与临床.第一版.上海:复旦大学出版社,2001,1-7.
    [39]Hargreaves K, Dubner R, Brown F, et al. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain,1988,32(1): 77.
    [40]Obata K, Yamanaka H, Kobayashi K, et al. Role of mitogen-activated protein kinase activation in injured and intact primary afferent neurons for mechanical and heat hypersensitivity after spinal nerve ligation. J Neurosci,2004,25(45): 10201.
    [41]Liu X, Wang L, Zhao K, et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature,2008,451:846-850.
    [42]Gu W, Roeder RG Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell,1997,90(4):595-606.
    [43]Swaminathan V, Reddy BA, Ruthrotha Selvi B, et al. Small molecule modulators in epigenetics:implications in gene expression and therapeutics. Subcell. Biochem.2007,41,397-428.
    [44]Zhou XY, Shibusawa N, Naik K, et al. Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein. Nat. Med. 2004,10,633-637.
    [45]Varier RA, Kundu T K. Chromatin modifications (acetylation/deacetylation/ methylation) as new targets for HIV therapy. Curr.Pharm. Des,2006,12, 1975-1993.
    [46]O'Bryant EL, Jordan CL. Expression of nuclear receptor coactivators in androgen-responsive and unresponsive motoneurons. Hormones and Behavior, 2005,47(1):29-38
    [47]Mehler ME Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progress in Neurobiology,2008,86(4):305-341.
    [48]Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron,2004,42:961-972.
    [49]Alarcon JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice:a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron,2004,42:947-959.
    [50]Ogryzko W, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell,1996,87(5),953-959.
    [51]Kurdistani, S.K. et al. Mapping global histone acetylation patterns to gene expression. Cell,2004,117,721-733.
    [52]Nakajima T, Uchida C, Anderson SF, et al. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev,1997,11:738-747.
    [53]Zhu Y, Saunders MA, Yeh H, et al. Dynamic regulation of cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer-binding proteins. J Biol Chem,2002,277(9):6923-6928.
    [54]Segelmark M, Barrett C, Pendergraft W, et al. Expression of p300-truncated fragments results in the modulation of apoptosis in rat mesangial cells. Kidney International,2000,57:1873-1881.
    [55]Bannister AJ, Kouzarides T. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J,1995,14(19):4758-4762.
    [56]Lee JS, See RH, Deng TL, et al. Adenovirus E1A Downregulates cJun- and JunB-Mediated Transcription by Targeting Their Coactivator p300. Mol Cell Biol,1996,16(8):4312-4326.
    [57]Faniello MC, Chirico G, Quaresima B, et al. An alternative model of H ferritin promoter transactivation by c-Jun. Biochem J,2002,363:53-58.
    [58]Mandolesi G, Gargano S, Pennuto M, et al. NGF-dependent and tissue-specific transcription of vgf is regulated by a CREB-p300 and bHLH factor interaction. Febs Letters,2002,1-2(510):50-56.
    [59]Quivy V, Van Lint C. Regulation at multiple levels of NF-KB-mediated transactivation by protein acetylation. Biochemical Pharmacology,2004,68(6): 1221-1229.
    [60]Nadiminty N, Lou W, Lee SO, et al. Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc Natl Acad Sci,2006,103(19): 7264-7269.
    [61]Arias J, Alberts AS, Brindle P, et al. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature,1994,370:226-229.
    [62]赵欣,徐建国.神经病理性疼痛病因及其机制研究进展.临床麻醉学杂志,2004,20(5):315-317.
    [63]Smith TE, Chong MS. Neuropathic pain. Hosp Med,2000,61(11):760-766.
    [64]Sharma S, Kulkarni SK, Agrewala JN, et al. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol, 2006,3(536):256-261.
    [65]Mittal N, Joshi R, Hota D, et al. Evaluation of Antihyperalgesic Effect of Curcumin on Formalin-Induced Orofacial Pain in Rat. Phytother Res,2009, 23(4):507-512.
    [66]Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem,2004,499(279):51163-51171.
    [67]Yaksh TL, Rudy TA. Chronic catheterization of the spinal subarachnoid space. Physiol Behav,1976,17(6):1031-1036.
    [68]Ponn YY, Chang AY, Ko SF, et al. An improved procedure for catheterization of the thoracic spinal subarchnoid space in the rat. Anesth Analg,2005,101(1): 155-160.
    [69]Arner S, Meyerson BA. Lack of analgesic effect of opiods on neuropathic and idiopathic forms of pain. Pain,1998,33:11-23.
    [70]崔晶,翟光喜,娄红祥.姜黄素的研究进展.中南药学,2005,4(3):108-111.
    [71]Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophy. J Clin Invest,2008,118(3):879-893.
    [72]Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci,2004, 74(8):969-985.
    [73]Egan ME, Pearson M, Weiner SA, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects.Science,2004,5670(304):600-602.
    [74]Gong J, Zhu J, Goodman OB, et al. Activation of p300 histone acetyltransferase activity and acetylation of the androgen receptor by bombesin in prostate cancer cells. Oncogene,2006,14(25):2011-2021.
    [75]潘静,丁健青,陈生弟.姜黄素对帕金森病小鼠模型黑质多巴胺能神经元损伤的保护作用.中国现代神经疾病杂志,2007,7(5):447-452.
    [76]徐国钧,徐珞珊.常用中药材品种整理和质量研究.福州:福建科学技术出版社,1994.369-385.
    [77]Cheng AL, Hsu CH, Lin JK, et al. Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or premalignant lesions. Anticancer Res,2001,21(4B):2895-2900.
    [78]Yeon KY, Kim SA, Kim YH, et al. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1.J Dent Res,2010,89(2):170-174.
    [79]Marcu MG, Jung YJ, Lee S, et al. Curcumin is an inhibitor of p300 histone acetylatransferase. Med Chem,2006,2(2):169-174.
    [80]Pan MH, Huang TM, Lin JK. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos,1999,4(27):486-494.
    [81]Perez-Severiano F, Bermudez-Ocana DY, Lopez-Sanchez P, et al. Spinal nerve ligation reduces nitric oxide synthase activity and expression: Effect of resveratrol. Pharmacol Biochem Behav,2008,4(90):742-747.
    [82]Bermudez-Ocana DY, Ambriz-Tututi M, Perez-Severiano F, et al. Pharmacological evidence for the participation of NO-cyclic GMP-PKG-K+ channel pathway in the antiallodynic action of resveratrol. Pharmacol Biochem Behav,2006,84(3):535-542.
    [83]巍峰,韦庆益,房建国,等.以白藜芦醇和姜黄素为先导化合物的抗氧化和抗癌活性研究:结构和活性关系.中国西安:第六届全国自由基生物学与自由基医学学术会议和海峡两岸自由基生物学与自由基医学学术会议论文集,2004.
    [84]Suuronen T, Huuskonen J, Nuutinen T, et al. Characterization of the pro-inflammatory signaling induced by protein acetylation in microglia. Neurochemistry international,2006,49(6):610-618.
    [85]方武,李文威,高淑华,等.姜黄素对膀胱癌细胞的p300表达的影响.肿瘤防治研究,2007,34(2):132-134.
    [86]胡光胜,石巍,廖爱军.姜黄素对胃癌细胞P300、P53、c-myc及乙酰化组蛋白H3和H4表达的影响.南华大学学报·医学版,2005,33(4):457-460.
    [87]Li HL, Liu C, de Couto G, et al. Curcumin prevents and reverses murine cardiac hypertrophyJ Clin Invest,2008,118(3):879-893.
    [88]Cui L, Miao J, Cui L. Cytotoxic effect of curcumin on malaria parasite Plasmodium falciparum: inhibition of histone acetylation and generation of reactive oxygen species. Antimicrob Agents Chemother,2007,51(2):488-494.
    [89]Kang SK, Cha SH, Jeon HG Curcumin-induced histone hypoacetylation enhances caspase-3-dependent glioma cell death and neurogenesis of neural progenitor cells. Stem Cells Dev,2006,15(2):165-174.
    [90]王妍,胡俊斌,陈燕,等.姜黄素诱导Raji、HL-60和K562组蛋白乙酰化的研究.中国药理学通报,2006,22(2):164-167
    [91]Rukklmami R, Sri Balasubashini M, Vishwanathan P, et al. Comparative effects of curcumin and photo-irradiated curcumin on alcohol-and polyunsaturated fatty acid-induced hyperlipidemia. Pharmscol Res,2002,46(3):257-264.
    [92]McCaffrey AP, Meuse L, Pham T-TT, et al. Gene expression: RNA interference in adult mice. Nature,2002,418:38-39.
    [93]Song E, Lee S-K, Wang J, et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat Med,2003,9(3):347-351.
    [94]Sorensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol,2003,327(4):761-766.
    [95]Zender L, Hutker S, Liedtke C, et al. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc NatI Acad Sci USA,2003,100(13):7797-7802.
    [96]Kobayashi N, Matsui Y, Kawase A, et al. Vector-based in vivo RNA interference: dose- and time-dependent suppression of transgene expression. J Pharmaco Exp Ther,2004,308(2):688-693.
    [97]Trulzsch B, Wood M. Application of nucleic acid technology in the CNS. J Neurochem,2004,88:257-265.
    [98]Makimura H, Mizuno TM, Mastaitis JW, et al. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci,2002,3:18-23.
    [99]Baker-Herman TL, Fuller DD, Bavis RW, et al. BDNF is necessary and sufficient for spinal respiratory plasticity following intermittent hypoxia. Nat Neurosci,2003,7(1):48-55.
    [100]Thakker DR, Natt F, Husken D, et al. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain by using nonviral RNA interference. Proc Natl Acad Sci,2004,101(49):17270-17275.
    [101]Bertrand JR, Pottier M, Vekris A, et al. Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem. Biophys. Res. Commun,2002,296:1000-1004.
    [102]Fire A, Xu AQ, Montgomery MK, et al. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811
    [103]Moffat J, Sabatini DM. Building mammalian signalling pathways with RNAi screens. Nat Rev Mol Cell Biol,2006,7:177-187
    [104]Lipardi C, Wei Q, Paterson BM. RNAi as random degradative PCR. siRNA primers convert mRNA into dsRNA that are degraded to generate new siRNAs. Cell,2001,107:297-307.
    [105]Behlke MA. Progress towards in vivo use of siRNAs. Mol Ther,2006,13(4): 644-670.
    [106]Passini MA, Wolfe JH. Widespread gene delivery and structure-specific patterns of expression in the brain after intraventricular injections of neonatal mice with an adeno-associat ed virus vector. J Virol,2001,75:12382-12392.
    [107]Tan PH, Yang LC, Shih CH, et al. Gene knockdown with intrathecal siRNA of NMDA receptor NR2B subunit reduces formalin-induced nociception in the rat. Gene Ther,2005,12(1):59-66.
    [108]Luo MC, Zhang DQ, Ma SW, et al. An efficient intrathecal delivery of small interfering RNA to the spinal cord and peripheral neurons. Mol Pain,2005,1: 29.
    [109]Tumati S, Milnes TL, Yamamura HI, et al. Intrathecal Raf-1-selective siRNA attenuates sustained morphine-mediated thermal hyperalgesia. Eur J Pharmacol, 2008,601(1-3):207-208.
    [110]Christoph T, Grunweller A, Mika J, et al. Silencing of vanilloid receptor TRPV1 by RNAi reduces neuropathic and visceral pain in vivo. Biochem Biophys Res Commun,2006,350(1):238-243.
    [111]Kim WJ, Kim SW. Efficient siRNA Delivery with Non-viral Polymeric Vehicles. Pharm Res.2009,26(3):657-666.
    [112]Corey DR. Chemical modification: the key to clinical application of RNA interference? J Clin Invest,2007,117(12):3615-3622.
    [113]Urban-Klein B, Werth S, Abuharbeid S, et al. RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther,2005,12(5):461-466.
    [114]Felgner PL, Gadek TR, Holm M, et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA,1987, 84(21):7413-7417.
    [115]Vives E, Brodin P, Lebleu B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem,1997,272(25):16010-16017.
    [116]Aigner A. Delivery systems for the direct application of siRNAs to induce RNA interference(RNAi) in vivo. J Biomed Biotechnol,2006,2006(4):71659.
    [117]Allerson CR, Sioufi N, Jarres R, et al. Fully 2'-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem,2005,48(4):901-904.
    [118]Raivich G c-Jun Expression, activation and function in neural cell death, inflammation and repair. J Neurochem,2008,4(107):898-906.
    [119]Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiology and molecular biology reviews,2000,64(2):435-459.
    [1]Waggoner Darrel. Mechanisms of disease: epigenesis. Semin Pediatr Neurol, 2007,14(1):7-14.
    [2]黄百渠,曾庆华,毕晓辉,等.组蛋白和核小体在基因转录中的作用.科学通报,2000,45(19):2033-2040.
    [3]Waddington CH. The strategy of the genes. London: Allen & Unwin,1957.
    [4]Wu CT, Moms JR. Genes, genetics and epigenetics: a correspondence. Science, 2001,293:1103-1105.
    [5]Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiology and molecular biology reviews,2000,64(2):435-459.
    [6]Duman RS, Newton SS. Epigenetic marking and neuronal plasticity. Biological psychiatry.2007,62(1):1-3.
    [7]Luger K, Mader AW, Richmond RK, et al. Crystal structure of the nuclcosome core particle at 2.8 A resolution. Nature,1997,389:251-260.
    [8]Hansen JC, Tse C, Wolffe AP. Structure and function of the core histone N-termini:More than meets the eye. Biochemistry,1998,37:17637-17641.
    [9]Khorasanizadeh S. The nucleosome:from genomic organization to genomic regulation. Cell,2004,116:259-277.
    [10]Strachan, T, Read AP. Human Molecular Genetics. New York, Wiley-Liss, 2003.
    [11]Jiang Y, Bressler J, Beaudet AL. Epigenetics and human disease. Annu Rev Genomics Hum Genet,2004,5:479-510.
    [12]Kurokawa R, Kalafus D, Ogliastro M, el al. Differential use of CREB binding protein-coactivator complexes. Science,1998,279:700-703.
    [13]Eckner R, Ewen ME, Newsome D, et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-KD protein(p300)reveals a protein with properties of a transcriptional adaptor. Genes Dev,1994,8(8): 869-884.
    [14]Chrivia JC, Kwok RP, Lamb N. Phosphorylated CREB bingds specifically to the nuclear protein CBP. Nature,1993,365:855-859.
    [15]Liu X, Wang L, Zhao K, et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature,2008,451:846-850.
    [16]Arany Z, Sellers WR, Livingston DM, et al. E1Associated p300 and CREB-associated CBP belong to a conserved family of co-activators. Cell,1994,77: 799-800.
    [17]Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. Journal of cell science,2001,114(13):2363-2373.
    [18]Partanen A, Motoyama J, Hui CC. Developmentally regulated expression of the transcriptional cofactors/histone acetyltransferases CBP and p300 during mouse embryogenesis. Int J Dev Biol,1999,43:487-494.
    [19]Thompson PR, Kurooka H, Nakatani Y, et al. Transcriptional coactivator protein p300 - Kinetic characterization of its histone acetyltransferase activity. Journal of biological chemistry,2001,276(36):33721-33729.
    [20]Ogryzko W, Schiltz RL, Russanova V, et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell,1996,87(5),953-959.
    [21]Vo N, Goodman RH. CREB-binding protein and p300 in transcriptional regulation. Journal of biological chemistry,276(17):13505-13508.
    [22]Janknecht R, Hunter T. Transcription control:versatile molecular glue. Curr Biol,1996,6:22-23.
    [23]Bannister AJ, Kouzarides T. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J,1995,14:4758-4762.
    [24]Kamei Y, Xu L, Heinzel T, et al. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell,1996, 85:403-14.
    [25]Chakravarti D, LaMorte VJ, Nelson MC, et al. Role of CBP/P300 in nuclear receptor signalling. Nature,1996,383:99-103.
    [26]Onate SA, Tsai SY, Tsai MJ, et al. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science,1995,270: 1354-1357.
    [27]Shikama N, Lyon J, La Thangue NB. The p300/CBP family: integrating signals with transcription factors and chromatin.Trends Cell Biol,1997,7: 230-236.
    [28]Lee CW, Sorensen TS, Shikama N, et al. Functional interplay between p53 and E2F through co-activator p300. Oncogene,1998,16:2695-2710.
    [29]Westin S, Kurokowa R, Nolte RT, et al. Interactions controlling the assembly of nuclear-receptor heterodimers and co-activators. Nature,1998,305: 199-202.
    [30]Bevilacqua MA, Faniello MC, Russo T, et al. P/CAF/p300 complex binds the promoter for the heavy subunit of ferritin and contributes to its tissue-specific expression.Biochem J,1998,335:521-525.
    [31]Yi M, Tong GX, Mury B, et al. Role of CBP/p300 and SRC-1 in transcriptionalre gulation of t he pulmonary surfactant protein- A (SP-A) gene by thyroid transcription factor-1 (TTF-1). J Biol Chem,2002,277:2997-3005.
    [32]Chen H, Lin RJ, Schiltz RL, et al. Nuclear receptor co-activator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell,1997,90:569-580.
    [33]Munshi N, Merika M, Yie J, et al. Acetylation of HMG I(Y) by CBP turns off IFNb expression by disrupting the enhanceosome. Mol Cell,1998,2:457-467.
    [34]Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev, 1996,6:176-218.
    [35]Kraus WL, Manning ET, Kadonaga JT. Biochemical analysis of distinct activation functions in p300 that enhance transcription initiation with chromatin templates. Mol Cell Biol,19:8123-8135.
    [36]Giordano A, Avantaggiati LM. p300 and CBP:Partners for life and death. J Celluar Physiology,1999,181:218-230.
    [37]Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell,1998,1(5):661-671.
    [38]Duran A, Diaz-Meco MT, Moscat J. Essential role of Re1A Ser311 phosphorylation by zetaPKC in NF-kappa B transcriptional activation. EMBO J,2003,22(15):3910-3918.
    [39]Datta K, Li J, Bhattacharya R, Gasparian L, et al. Protein kinase C zeta
    transactivates hypoxia-inducible factor alpha by promoting its association with p300 in renal cancer. Cancer Res.2004,64(2):456-462.
    [40]Sang N, Stiehl DP, Bohensky J, et at. MAPK signaling up-regulates the activity of hypoxia-inducible factors by its effects on p300. J Biol Chem,2003, 278(16):14013-14019.
    [41]Chawla S, Hardingham GE, Quinn DR, et al. CBP:a signal -regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science,1998,281:1505-1509.
    [42]Hottiger MO, Felzien LK, Nabel GJ. Modulation of cytokine-induced HIV gene expression by competitive binding of transcription factors to the coactivator p300. EMBO J,1998,17:3124-3134.
    [43]Chan HM, La Thange NB. p300/CBP proteins:HATs for transcriptional bridges and scaffolds. Journal of cell science,2001,114(13):2363-2373.
    [44]Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discovery today,2009,14(19-20):942-948.
    [45]Gayther SA, Batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet,24(3):300-303.
    [46]Ionov Y, Matsui SI, Cowell JK. A role for p300/CREB binding protein genes in promoting cancer progression in colon cancer cell lines with microsatellite instability. Proc Natl Acad Sci USA,2004,101:1273-1278.
    [47]Bandyopadhyay D, Okan NA, Bales E, et al. Down-regulation of p300/CBP histone acetyltransferase activates a senescence checkpoint in human melanocytes. Cancer Res,2002,62(21):6231-6239.
    [48]Iyer NG, Xian J, Chin SF, et al. p300 is required for orderly G1/S transition in human cancer cells. Oncogene,2007,26(1):21-29.
    [49]Murata T, Kurokawa R, Krones A, et al. Defect of histone acetyltransferase activity of the nuclear transcriptional coactivator CBP in Rubenstein-Taybi syndrome. Hum Mol Genet,2001,10:1071-1076.
    [50]Yang XJ. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucl Acids Res,2004,32:959-976.
    [51]Yao TP, Oh SP, Fuchs M, et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell,1998,93(3):361-372.
    [52]Kung AL, Rebel VI, Bronson RT, et al. Gene dose-dependent control of
    hematopoiesis and hematologic tumor suppression by CBP. Genes Dev,2000, 14:272-277.
    [53]Roth JF, Shikama N, Henzen C, et al. Differential role of p300 and CBP acetyltransferase during myogenesis:p300 acts upstream of MyoD and Myf5. EMBO J,2003,22:5186-5196.
    [54]Chen Q, Liang D, Fromm LD, et al. Inhibition of lens fiber cell morphogenesis by expression of a mutant SV40 large T antigen that binds CREB-binding protein/p300 but not pRb. J Biol Chem,2004,279(17):17667-17673.
    [55]Shikama N, Lutz W, Kretzschmar R, et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J, 2003,22:5175-5185.
    [56]Shikama N, Lutz W, Kretzschmar R, et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J, 2003,22(19):5175-5185.
    [57]Frey N, Olson EN. Cardiac hypertrophy: thegood, the bad, and the ugly. Annu Rev Physiol,2003,65:45-79.
    [58]Dorn GW, Robbins J, Sugden PH. Phenotyping hypertrophy:eschew obfuscation. Circ Res,2003,92(11):1171-1175.
    [59]The transcriptional co-activators CBP and p300 are activated via phenylephrine through the p42/p44 MAPK cascade. J Biol Chem,2002:277(4):2517-2524.
    [60]Feingold K, Kim MS, Shigenaga J, et al. Altered expression of nuclear hormone receptors and coactivators in mouse heart during the acute-phase response. Am J Physiol Endocrinol Metab,2004,286:E201-E207.
    [61]Miyamoto S, Kawamum T, Morimmo T, et al. Histone acetyltrasferase activity of p300 is required for the promotion of left ventricular remoldeling after myocardial infarction in adult mice in vivo. Circulation,2006,113(5): 679-690.
    [62]Kalkhoven E. CBP and p300: HATs for different occasions. Biochemical pharmacology,2004,68(6):1145-1155.
    [63]Li F, Macfarlan T, Pittman RN, et al. Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem,2002, 277(47):45004-45012.
    [64]Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol Histopathol,2002,17(2):657-668
    [65]Rouaux C, Jokic N, Mbebi C, et al. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J,2003,22: 6537-6549.
    [66]Stefan JS, Kazantsev A, Spasic-Boskovic 0, et al. The Huntington's disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc Natl Acad Sci. USA,2000,97:6763-6768.
    [67]Taylor JP, Taye AA, Campbell C, et al. Aberrant histone acetylation, altered transcription, and retinal degeneration in a Drosophila model of polyglutamine disease are rescued by CREB-binding protein. Genes Dev,2003,17: 1463-1468.
    [68]Rouaux C, Jokic N, Mbebi C, et al. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J,2003,22: 6537-6549.
    [69]Barrett RM, Wood MA. Beyond transcription factors: the role of chromatin modifying enzymes in regulating transcription required for memory. Learn. Mem,2008,15:460-467.
    [70]Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Progress in Neurobiology,2008, 86(4):305-341.
    [71]Korzus E, Rosenfeld MG, Mayford M. CBP histone acetyltransferase activity is a critical component of memory consolidation. Neuron,2004,42:961-972.
    [72]Alarcon JM, Malleret G, Touzani K, et al. Chromatin acetylation, memory, and LTP are impaired in CBP+/- mice:a model for the cognitive deficit in Rubinstein-Taybi syndrome and its amelioration. Neuron,2004,42:947-959.
    [73]Marks P, Rifkind RA, Richon VM, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer,2001, (3):194-202.
    [74]Cullis PM, Wolfeuden R, Cousens L, et al. Inhibition of histone acetylation by N-[2-(S-coenzyme A)acetyl] spermidine amide, a multisubstrate analog. J Biol Chem,1982,257:12165-12169.
    [75]Hamamori Y, Sartorelli V, Ogryzko V, et al. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell,1999,96(5):405-413.
    [76]Lau OD, Kundu TK, Soccio RE, et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell,2000,5:589-595.
    [77]Stimson L, Rowlands MG, Newbatt YM, et al. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity. Molecular cancer therapeutics,2005,4(10):1521-1532.
    [78]Zhu XS, Ting JP.A 36-amino-acid region of CIITA is an effective inhibitor of CBP:novel mechanism of gamma interferon-mediated suppression of collagen alpha(2)(Ⅰ) and other promoters. Mol Cell Biol,2001,21(20):7078-7088.
    [79]Arif M, Pradhan SK, Thanuia GR, et al. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. Journal of medicinal chemistry, 2009,52(2):267-277.
    [80]Isao K, Masamitsu O, Paulo C, et al. Antitumor agents from the cashew (Anacardium occidentale) apple juice. J. Agric. Food Chem,1993,41(6):1012-1015.
    [81]Balasubramanyam K, Altaf M, Varier RA, et al. Polyisoprenylated benzophenone, garcinol, a natural histone acetyltransferase inhibitor, represses chromatin transcription and alters global gene expression. J Biol Chem,2004, 279(32):33716-33726.
    [82]Mantelingu K, Reddy BAA, Swaminathan V, et al. Specific inhibition of p300-HAT alters global gene expression and represses HIV replication. Chem Biol,2007,14:645-657.
    [83]Balasubramanyam K, Varier RA, Altaf M, et al. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem,2004,499(279): 51163-51171.
    [84]Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest,2008,118:868-878.
    [85]Shikama N, Lutz W, Kretzschmar R, et al. Essential function of p300 acetyltransferase activity in heart, lung and small intestine formation. EMBO J, 2003,22:5175-5185.
    [86]Roth JF, Shikama N, Henzen C, et al. Differential role of p300 and CBP acetyltransferase during myogenesis:p300 acts upstream of MyoD and Myf5. EMBO J,2003,22:5186-5196.
    [87]Kawasaki H, Eckner R, Yao TP, et al. Distinct roles of the co-activators p300 and CBP in retinoicacid-induced F9-cell differentiation. Nature,1998,393: 284-289.
    [88]Elbashir SM, Harborth J, LendeckelW, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature,2001,411: 494-498.
    [89]Lau OD, Kundu TK, Soccio RE, et al. HATs off: selective synthetic inhibitors of the histone acetyltransferases p300 and PCAF. Mol Cell,2000,5:589-595.
    [90]Balasubramanyam K, Swaminathan V, Ranganathan A, Kundu TK. Small molecule modulators of histone acetyltransferase p300. J Biol Chem 2003,278: 19134-19140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700