远缘物种基因组DNA导入水稻的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为揭示转移远缘物种基因组DNA创新植物种质的规律,在分别导入属于第2、第3和第4资源库远缘物种基因组DNA获得变异系的基础上,对变异系和它们的受体水稻的表型性状进行了比较研究,采用AFLP及SSR等分子标记技术对转移远缘物种基因组DNA创制的变异系与其供受体的遗传多态性进行了定性、定量研究,在RAPD分析基础上对只在变异系和供体存在的特异DNA片段进行了核苷酸序列的比较研究。
     将小粒野生稻(O.minuta)、稗草(Echinochloa crusgalli)及钝顶螺旋藻(Spirulina platensis)等远缘物种的基因组DNA分别导入保持系V20B、恢复系先恢207、蜀恢527及盐恢559等3系杂交水稻亲本,D_1均获得变异株;从它们的后代分别选育出新的保持系野威B、恢复系RB207及恢复系株系RS527、RS559等。在植株形态、产量、品质、抗性或(和)耐逆性等性状上,野威B、RB207、RS527、RS559与各自受体相比,有较大改良。将高粱基因组DNA导入保持系IR58025B,在第1代(D_1)获得的1变异株香粱5,从D_2起在形态上一直不出现分离现象。
     AFLP分析表明:导入野生稻或稗草DNA获得的变异系,与各自受体均存在4.4%的遗传多态性,并含有供体特异分子标记。另外,AFLP分析发现突变存在“热点”现象。
     SSR分析表明:变异系野威B、香粱5均与受体存在遗传多态性,并含有供体特异的分子标记带型;而香粱5的5个第2代单株的SSR扩增产物间没有遗传多态性,并与第10代的一致,从分子水平证明,在外源DNA导入过程确实存在变异株一经获得即不分离的现象。
     RAPD分析及DNA序列分析表明:变异系野威B与受体V20B存在遗传多态性;变异系和供体具有而受体中没有的1对RAPD特异带DNA片段(~VOPG-11_(975)与~DOPG-11_(975))均含有975个碱基对,彼此间的相似性高达97%;在水稻基因组数据库中没有发现与它们同源的DNA序列。
     变异系与供受体的表型及DNA多态性比较研究结果说明,导入远缘物种基因组DNA可创造优异水稻新种质。DNA多态性研究结果进一步证明了远缘物种DNA可向栽培稻的转移;同时发现,是远缘物种基因组和受体基因组2者的编码序列间、非编码序列间的互作,使受体发生变异:通过不同分子标记技术对不同变异系和各自受体的研究还发现,变异系与受体基因组DNA间存在5%左右的多态性。后者可能揭示了远缘物种基因组DNA引起受体变异的量的一般规律。
This study aims at learning the principle of creating new germplasm in plant breeding by using the approach of transformation of the genomic DNA of distant resources.
    Useful germplasm for hybrid rice breeding has been developed from variants derived from transformation of genomic DNAs of distant species: new CMS line Yewei A and its maintainer line Yewei B, developed'from variant of V20B (rice maintainer line) through transformation of genomic DNAs of 0. minuta; variant also selected from another maintainer line, IR58205B, after introducing the genomic DNA of sorghum, and no morphological segregation has been found among different offspring plants derived from the variant from the D2 on; new restorer line RB207 developed from variant of R207 (rice restorer line) through transformation of the genomic DNA of Echinochloa crusgalli; and new restorer line RS527 , RS559 developed from variant of R527, R559 separately through transformation of genomic DNA of Spirulina platensis. Great improvements in traits of yield, grain quality and resistance to diseases can be found in variant lines compared with their receptors.
    After research of polymorphism of DNA between variants and its receptors with methods of SSR, AFLP, RAPD, and DNA sequence, a few facts have been revealed for the first time:
    The results of AFLP analysis show much polymorphism of DNA between variants and its receptors, and indicate special DNA segments from Echinochloa crusgalli and 0. minuta may be integrated into the genome of rice, and also indicate some loci in the receptor genome are tend to be mutable.
    The results of SSR analysis show much polymorphism of repetitive DNA sequence between variants and its receptors, indicating some special simple repeat DNA segments from distant relatives integrated into the genome of rice probably, and prove variants from DNA transformation can be stable in the second generation.
    
    
    RAPD and DNA sequence analysis reveals DNA polymorphism exists between Yewei B and 0. minuta, and find a pair of DNA fragments in Yewei B and 0. minuta (not in the receptor V20B), VOPG-11975 and DOPG-11975, both with 975 base pairs (bp), are homologous, while no significant homologous DNA sequence with v0PG-11975 or DOPG-11975 has been found in all data libraries of rice genome.
    All results indicate that transformation of genomic DNAs of distant species is an effective method for creating new rice germplasm. The results of SSR, AFLP, RAPD and DNA sequences analysis of variant lines, receptors and donors of exogenous DNA indicate that special DNA fragments of distant relatives can be integrated into the rice genome; and demonstrate it is the interaction of repetitive DNA sequences and genes between receptor and donor together that decides the mutation in traits of receptor in genomic DNA introduction; and hint about 5% polymorphism of DNA between variant lines and its receptors may be a general rule in genomic DNA transformation.
引文
1.袁隆平, 杂交水稻超高产育种,杂交水稻,1997,12(6):1—6.
    2. H.I.Oka. Genetic diversity of wild and cultivated rice. G.S.Khush et al, Rice biotechnology, 1995:55—81.
    3.钟代彬,罗利军,应存山, 野生稻有利基因转移研究进展, 中国水稻科学,2000,14(2):103—106
    4. DS.Brar, GS.Khush, Alien introgression in rice, Plant mblecular biology, 1997, 35:35—47
    5. HH Yan, GQ Yiu, ZK Chen, et al., A genome-specific repetitive DNA sequence from Oryza eichingeri: characterization, location, and introgression to O. sativa, Theor Appl Genet, 2002, 104:177-183
    6. PJ Reimers, AA Bordeos, A Calvero, et al., Resistance to rice blast in a line derived from Oryza minuta. IRRN, 1994, 19(2): 9-10.
    7. B Bijoya, PS Aniruddha, SG Hari, Transfer of wild abortive cytoplasmic male sterility through protoplast fusion in rice, Molecular Breeding, 1999, 5:319—327
    8. B Liu, XW Li, ZL Liu. Production of a highly asymmetric somatic hybrid between rice and Zizania latifolia (Griseb): Evidence for inter-genomic exchange, Theor. Appl. Genet, 1999, 98 (6-7): 1099-1103
    9. CQ Sun, X.K.Wang, A Yoshimura, K Doi, Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.), Theor Appl Genet, 2002, 104:1335-1345
    10. NB Jelodar, NW Blackhall, TPV Hartman, DS Brar, G Khush, MR Davey, EC Cocking, GB Power, Intergeneneric somatic hybrids of rice (Oryza sativa L. (+) Porteresia coarctata (Roxb.) Tateoka), Theor. Appl. Genet, 1999, 99(3-4): 570-577.
    11. H Kisaka, M Kisaka, A Kanno, et al. Intergeneneric somatic hybridization of rice (Oryza sativa L.) and barley (Hordeum vulgare L.) by protoplast fusion. Plant cell report, 1998,17(5): 362-367.
    12.辛化伟,孙敬三,颜秋生,张雪琴, 水稻与大黍不对称体细胞杂交再生植株, 植物学报,1997,39(8):717—724
    13. Datta K, Koukolikova NZ, Baisakh N, Oliva N, Datta SK. Agrobacterium mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theoretical and Applied Genetics. 2000, 100: 832-839.
    14. Datta.K, Velazhahan.R, Oliva.N, et al, Over-expression of the cloned rice thaumatin-like protein (PR-5) gene in transgenic rice plants enhances environmental friendly resistance to Rhizoctonia solani causing sheath blight disease. Theoretical and applied genetics, 1999, 98 (617): 1138—1145
    15. Duraialagaraja Sudhakar, Xiangdong Fu, Eva stoger, et al. Expression and immunolocalisation of the snowdrop lectin, GNA in transgenic rice plants. Transgenic researc.h, 1998, 7:371—378
    16. Ghareyazie.B, Alinia.F, Mengutto.C.A, et al. Enhanced resistance to two stem borers in an aromatic rice containing a synthetic cryIA (b) gene. Molecular breeding, 1997, 3 (5): 401—414
    17. Gosal SS, Gill R, Sind hu AS, et al. Transgenic basmati rice carrying genes for borer and bacterial leaf blight resistance. International rice research conference (abstracts). IRRI. 2000:60
    18. Joachim Wunn, Andreas Kloti, Peter K.Burkhardt, et al. Transgenic indica rice breeding line IR58 expressing a
    
    synthetic crylA(b) gene from Bacillus thuringiensis provides effective insect pest control. Biotechnology, 1996, (14): 171—176
    19. K.V.Rao, keerti S. Rathore, Thomas K.Hodges, et al, Expression of snowdrop lectin (GNA) in transgenic rice plants confers resistance to rice brown planthopper. The plant journal, 1998, 15 (4): 469—477
    20. Kouassi.N, Brugidou.C, Chen.C, et al. Transgenic rice plants expressing rice yellow mottle virus coat protein gene. International rice research Notes, 1997, 22 (1): 14—15
    21. MaobooI.S.B, Husnain.T, Riazvddin.S, et al. Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M7 using the novel -endotoxin cry2A Bacillus thuringiensis gene. Molecular breeding, 1998, 4 (6): 501—507
    22. Maurice S.B.Ku, Sake Avarice, Mira Nomura et al. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plant. Nature Biotechnology, 1999, 17:76—80.
    23. Nishizawa. Y, Nishio.Z, Nakazono. K, et al. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theoretical and applied genetics. 1999, 99 (3/4): 383—390
    24. Peter K. Burkhardt, Peter Beyer, Joachim wunn, et al. Transgenic rice (Oryza sativa) endosperm expressing daffodil (Narcissus pseudonarcissus) phytoene synthase accuvnulates phytoene, a key intermediate of provitamin A biosynthesis. The plant journal, 1997, 11 (5): 1071—1078
    25. Pinto.Y.M, Kok.R.A, Baulcombe. D.C. Resistance to rice yellow mottle virus (RYMV) in cultivated Africa rice varieties containing RYMV transgenes. Nature biotechnology, 1999, 17 (7): 702—707
    26. Pritilata Nayak, Denanrata Nasv, Sampa Das, et al. Transgenic elite indica rice plants expressing CryIAc α-endotoxin of bacillus thuringiensis are resistant against yellow stem borer (Scipophaga inscertulas). Proc. Natl. Acad. Sci. USA, 1997, 94:2111—2116
    27. Sakamoto.A, Alia, Murata.N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant molecular biology, 1998, 38 (6): 1011—1019
    28. Shiping Zhang, Wen-yuan song, Lili Chen et al. Transgenic elite lndica rice varieties, resistant to Xanthornonas oryzaepv. Oryzae. Molecular Breeding, 1998, (4): 551—558
    29. Sindhu.A.S, Zheng Zhenwei, Murai.N. The pea seed storage protein legumin was synthesized, processed, and accumulated stably in transgenic rice endosperm. Plant science (Limerick), 1997, 130 (2): 189—196
    30. Tada.Y. Modification of rice grain components by recombinant DNA technology. Gamma field symosia, 1996, NO.35: 5—19
    31. Tanake. Y, Hibino.T, Hayashi. Y, et al. Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant science (Limerick), 1999, 148 (2): 131—138
    32. Tang.K, Ye.M, Shen.D, et al. Co-integration, expression and inheritance of insect and disease resistance genes in transgenic rice. Eighteenth international congress of genetics (Abstracts). 1998:129
    33. Tu.J, Ona.I, Zhang.Q, et al. Yransgenic rice variety IR72 with Xa21 is resistant to bacterial blight. Theoretical and Applied Genetics, 1998, 97 (1/2) 31—36
    34. Vain.E Worland. B, Clarke, M.C, et al. Expression of an engineered cysteine proteinase inhibitor (oryzastatin-I△D 86) for nematode resistance in transgenic rice. Theoretical and applied genetics, 1998, 96 (2): 266—271
    35. X.D.Ye. S.Al-Babili, A.Kloti, et, al. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287:303-305.
    36. Yan.Y.T, Wang.J.F, Qiu.B.S, et al. Resistance to rice stripe virus conferred by expression of coat protein in transgenic indica rice plants regenerated from bombarded suspension culture. Virologica sinica, 1997. 12 (3):
    
    260—269
    37. Yokoi.S, Higashi.S.I, kishitani.S, et al. Introductions of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Molecular breeding, 1998, 4 (3): 269—275
    38. Zhu Baocheng, Su Jin, Chang Menchi, et al. Overexpression of a △′ -pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water-and salt-stress in transgenic rice. Plant science, 1998, 139 (1): 41—48
    39.翟文学,李晓兵,田文忠等, 由农杆菌介导将白叶枯病抗性基因Xa21转入我国的5个水稻品种, 中国科学(辑),2000,30(2):200—206
    40.曹孟良,周智,张启发.P_(SAG12)-IPT转基因植物的延缓叶片衰老研究,见:中国农学会等编.21世纪水稻遗传育种展望——水稻遗传育种国际学术讨论会文集, 北京:中国农业科技出版社,1999, 117—232.
    41.黄大年,李敬阳,章善庆等.用除草剂基因快速检测和提高杂交稻纯度的新技术.科学通报,1998,44(1):67—70.
    42.刘巧泉,王宗阳,陈秀花等.反义waxy基因转化水稻降低胚乳直链淀粉含量的研究.见:中国农学会等编.21世纪水稻遗传育种展望.北京:中国农业科技出版社,1999,206—213
    43.付永彩,刘新仿,曹守云等.水稻中抑制衰老的嵌合基因的基因枪转化和表达分析.农业生物技术学报,1999,7(1):17—22
    44.朱常香,胡全安,温孚江.用两个抗虫基因分别转化水稻及抗虫株系的获得.农业生物技术学报,1999,7(3):259—266
    45.王忠华,舒庆尧,崔海瑞等.Bt转基因水稻“克螟稻”杂交后代二化螟抗性研究初报.作物学报,2000,26(3):310—314
    46.华志华,汪晓玲,薛锐等.Cecropin B转基因水稻及其后代抗白叶枯病研究初报.中国水稻科学,1999,13(2):114—116
    47.杨世湖,Rush M.C. 微弹转化和抗除草剂转基因水稻.见:中国农学会等编.21世纪水稻遗传育种展望——水稻遗传育种国际学术讨论会文集.北京:中国农业科技出版社,1999.224—227
    48.王慧中,黄大年,鲁瑞芳等.转mtlD/gutD双价基因水稻的耐盐性.科学通报,2000,45(7):724—728
    49.赵彬,马伯军,薛庆中.Bar基因及转Bar基因水稻的研究与应用.杂交水稻,1999,14(2):1—2
    50.黎垣庆,刘刚,严文贵等.转Bar基因水稻除草剂抗性遗传研究及其应用.杂交水稻,2000,15(1):40—43
    51.薛石玉,刘建慧,吴跃.水稻转Bar基因恢复系选育初报.杂交水稻,1999,14(3):11—12
    52. J.R.Harlan, J.M.J.de Wet. Towards a rational classification of cultivated plants. Taxon, 1971, 20:509-517
    53. Ahn S, Anderson JA, Sorrells ME, Tanksley SD. Homoeologous relations of rice, wheat and maize chromosomes. Mol. Gen. Genet. 1993, 241:483-490
    54. G.Moore, K.M.Devos, Z.Wang, et al, Grasses, line up and form a circle. Current Biology, 1995, 5(7): 737-739.
    55. Gale M D, Devos K M, Comparative genetics in the grasses, Proc Natl Acad Sci USA. 1998, 95: 1971-1974.
    56. Yuan Q, Quackenbush J, Sultana R, Pertea M, Salzberg SL, Buell CR. Rice bioinformatics: analysis of rice sequence data and leveraging the data to other plant species. Plant Physiol. 2001, 125:1166-1174
    57. Liu H, Sachidanandam R, Stein L. Comparative genomics between rice and Arabidopsis show scant collinearity in gene order. Genome Res. 2001, 11:2020-2026
    58.周光宇,陈善葆,黄骏麒主编.农业分子育种研究进展.北京:中国农业科技出版社,1993
    59.龚蓁蓁,沈慰芳,周光字.受粉后外源DNA导入植物技术——DNA通过花粉管通道进入胚囊.中国科学(B辑),1988,6:611—614
    60.赵炳然,黄见良,刘春林等.茎注射外源DNA体内运输及雌不育变异株的研究.湖南农业大学学报,1998,24(6):436—441
    
    
    61.刘春林、阮颖、董延瑜.DNA浸泡水稻种子的分子和亚显微水平研究.中国水稻科学,1999,13(1):54—56
    62.王联芳,傅荣昭,赵世绪.水稻成熟种子萌发过程中胚细胞壁通道的形成(简报).北京农业大学学报,1995.21(1):17—18
    63.郑国锠,聂秀菀,杨庆兰等.细胞融合的光学与电子显微镜观察及其与变异和进化的关系的探讨.植物学报,1975,17(1):60—68
    64.吴伯骥,陈毅平,崔亚亚等.人工促使细胞间细胞质和染色质穿壁转移实现外源遗传物质导入途径的研究.中国科学(B辑),1991(2):146—150
    65. Carman J G, Charles F crane, Oscar Riera Lizavazu. Comparative histology of cell walls during meiotic and apomictic megasporogenesis in two hexaploid australian Elymas species. Crop sei, 1991(3): 1527—1532
    66.赵炳然.直接导入外源DNA利用植物远缘杂种优势若干基本问题的认识.杂交水稻,1998,13(6):1—4
    67.周光宇.也谈玉米稻.遗传与育种,1977,(5):24—25
    68.周光宇.从生物化学的角度探讨远缘杂交的理论.中国农业科学,1978,(2):16—20
    69.周光宇,龚蓁蓁,王自芬.远缘杂交的分子基础——DNA片段杂交假说的一个论证.遗传学报,1979,6(4):405—413
    70.孙敬三,陈纯贤,路铁刚.禾本科植物染色体消除型远缘杂交的研究进展.植物学通报,1998,1:1—7
    71.刘国庆,颜辉煌,罗耀武等.栽培稻与紧穗野生稻间整倍体后代的RFLP分析.中国水稻科学,1999,13(3):129—133
    72.段晓岚,陈善葆.外源DNA导入水稻引起性状变异.中国农业科学,1985,3:6—9
    73.陈启锋,陈璋,林学健等.论DNA直接导入植物——一项育种新途径的建立与评述.福建农学院学报(自然科学版),1993,22(1):1—11
    74.尹承佾,于元杰主编.麦棉分子育种研究.成都:四川科学技术出版社,1994
    75.洪亚辉,董延瑜,易自力等.植物外源DNA直接导入技术.湖南科学技术出版社,2000
    76.阎新甫,刘文轩,王西成等.大麦DNA导入小麦产生抗白粉病变异的遗传研究.遗传,1994,16(1):26—30
    77.朱新产,廖祥儒,付增光,导入大赖草DNA小麦后代的变异性状分析.西北农业大学学报,2000,28(1):6—9
    78.王晓娟,李兴林,倪建福等.高粱DNA导入小麦后代的和面仪曲线变化.中国农业科学,2000,33(1):53—56
    79.缪军,赵民安,李维琪.大赖草基因组DNA转化小麦的分子证据.遗传学报,2000,27(7):621—627
    80.吴小月.多种外源DNA对陆地棉引变效果的研究.湖南农业科学,1984,(4)4—7
    81.雷勃钧,卢翠华,钱华等.导入外源DNA获得大豆早熟新品种.作物学报,1996,22(2):173—177
    82.麻浩,邹冬生,田森林.玉米DNA导入大豆的研究初报.湖南农业大学学报,1996,22(1):13—16
    83.肖光辉,吴德喜,刘建雄等.外源DNA导入创造抗枯萎病西瓜种质资源.湖南农业大学学报,1999,25(6):453—457
    84.张福泉,蒋建雄,李宗道等.棉花DNA导入苎麻引起变异的研究.中国农业科学,2000,33(1):104—106
    85.祁永红.大豆DNA直接导入玉米自交系的研究.玉米科学,2000,8(1):34—36
    86.陈启锋,朱秀英,陈璋等.生物工程应用于作物育种的试验研究(第1报).福建农学院学报,1987,16(3):175—182
    87.季慧强,陈启锋.生物工程应用于作物育种的试验研究(第3报).福建农学院学报,1988,17(4):285—290
    88.朱秀英,陈璋,卢勤等.生物工程应用于作物育种的试验研究(第4报).福建农学院学报,1989,18(1):1—6
    89.万文举,彭克勤,邹冬生.遗传工程水稻研究(一).湖南农业科学,1993,1:12—13
    
    
    90.张福泉,万文举,董延瑜等.胚培法导入外源DNA的试验初报.湖南农业科学,1991,3:20—22
    91.刘怀年,刘熔山,陶家凤等.外源DNA导入水稻的方法及性状变异研究.四川农业大学学报,1995,13(4):465—468
    92.黄兴奇,宋令荣,陈利等.水稻孕穗期茎注射法导入外源DNA引起的性状变异,见周光字等主编.农业分子育种研究进展.北京:中国农业科技出版社,1993.53—59
    93.宋令荣,黄兴奇,陈利等.外源DNA导入水稻西南175引起的性状变异.西南农业学报,1993,6(2):21—25
    94.刘熔山,牛应泽,杨世民等.减压渗透法将外源DNA导入水稻种胚研究.四川农业大学学报,1995,13(4):469—474
    95.洪亚辉,董延瑜,赵燕等.密穗高粱基因组DNA导入水稻的研究.湖南农业大学学报.1999,25(2):87—91
    96.洪亚辉,萧浪涛,董延瑜.玉米DNA导入水稻选育高蛋白品系.湖南农业大学学报,2000,26(1):28—30
    97.丁芳林,刘曙光,肖君泽.玉米DNA导入水稻的研究.湖南农业科学,1999,2:25—27
    98.李明生.杨兆凤,王贵才.稗草DNA导入水稻所产生的遗传变异效应.见:何中虎主编,第三届全国青年作物遗传育种学术会论文集,北京:中国农业科技出版社,1994,482
    99.郭光荣,詹庆才,曾曙珍等.~(60)Co-r辐射和外源基因组DNA导入相结合用于水稻育种的研究,I.对水稻遗传变异的影响.湖南农业科学,1999,4:14—15
    100.郭光荣,程乐根,郑森.~(60)Co-r辐射和外源基因组DNA导入相结合用于水稻育种的研究.Ⅲ遗传变异系在水稻杂种优势利用中的表现.湖南农业科学,2000,1:7—8
    101.向跃武,张志雄,张安中等.水稻辐射与外源DNA转导关系初探.西南农业大学学报,1998,20(2):132—135
    102.陈春洪,王志坚,孙玲等.用花粉管通道将外源DNA导入水稻的研究.广东农业科学,1998,(4):2—3
    103.詹庆才,刘志刚,李淘涛等.外源DNA直接导入水稻的研究.第3届全国植物分子育种学术讨论会论文摘要汇编.1994:16
    104.周建林,李阳生,李达模.稗草DNA导入水稻产生的变异体的耐铁毒特性和RAPD分析.作物学报,2001,27(4):529-532
    105.蒋孝成.导入小麦DNA的水稻变异抗逆生理研究.生命科学研究,2000,4(1):54—59
    106.刘胜利,王文静,孔新.大豆DNA导入改良水稻恢复系R73的初步研究.杂交水稻,1999,14(增刊):14—15
    107.伏军,徐庆国等著.水稻育种新技术研究与进展.长沙:湖南科学技术出版社,1995
    108.陈信波,廖爱君,罗泽民等.外源DNA导入水稻引起的种子组分变异.湖南农业大学学报,1997,23(1):19—22
    109.周开达.传统技术与生物技术相结合是发展水稻育种的必由之路.见:白新盛等主编.生物技术在水稻育种中的应用研究.北京:中国农业科技出版社,1999, 3—7
    110.赵炳然,肖放华,阳和华等.杂交水稻持久性抗瘟性分子育种研究取得阶段性突破.杂交水稻,1997,12(3): 33.
    111.赵炳然,贾建航,阳和华等.水稻孕穗期茎注射野生稻DNA变异株系的RAPD分析.作物学报,2000,26(4):424—430
    112. Langtao Xiao, Yahui Hong, Keqin Peng, et al. Introducing pytolacca acinosi Roxb DNA into rice using the pollen tube pathway technique, Eighteenth international congress of Genetics (Abstracts), 1998:8p165
    113.刘振兰,董玉柱,刘宝.菰物种专化DNA序列的克隆及其在检测菰DNA导入水稻中的应用.植物学报,2000,42(3):324—326
    114.向平安,洪亚辉,董延瑜.高粱DNA导入水稻的RAPD分子验证.湖南农业大学学报,1999,25(2):80—91
    115.翁坚,沈慰芳,周光宇等.外源DNA导入棉花的分子验证.生物化学与生物物理学报,1984,16(3):325—327
    116. De La Pena, Lorz H, Schell J. Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature. 1987,325:274—276
    
    
    117.谢道昕,范云六,倪丕冲.苏云金芽孢杆菌(Bacillus thuringiensis)杀虫基因导入中国栽培水稻品种中花11号获得转基因植株.中国科学(B辑),1991,8:830—834
    118.谢道昕,范云六,倪万潮等.苏云金杆菌杀虫晶体蛋白基因导入棉花获得转基因植株.中国科学,1991(4):367—373
    119.严成其,王光清,葛扣麟等.外源DNA通过花粉管通道法导入水稻的研究.中国农业科学,1997,30(1):94
    120.曾君祉,王东江,吴有强等.用花粉管途径获得小麦转基因植株.中国科学,1993,23(3):256—262
    121.牟红梅,刘树梭,周文娟等.慈菇蛋白酶抑制剂通过花粉管途径对小麦的导入及转基因植株分析.遗传学报,1999,26(6):634—642
    122. Williams JGK, Kubelik AR, Lirak KL, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res, 1990, 18:6531-6535
    123. Zabeau M. Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Application. Publication No.0534858AL, 1993
    124. Vos P, Hogers R, Bleeker M, Reijans M, Lee T, van de Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23:4407-4414
    125. C.Q.Sun, X.K.Wang, A.Yoshimura, K.Doi Genetic differentiation for nuclear, mitochondrial and chloroplast genomes in common wild rice (Oryza rufipogon Griff.) and cultivated rice (Oryza sativa L.). Theor Appl Genet. 2002, 104:1335-1345
    126. G.Barcaccia, F.Veronesi, M.Falcinelli. Mapping of AFLP and RAPD markers linked to apomeiosis in Medicago falcata and to parthenogenesis in Poa pratensis. Apomixis Newsletter, 1998, 10:2-7
    127. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, Yamamoto K, Nagamura Y, Kurata N, Khush GS, Sasaki T. A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics. 1998, 148:479-494
    128. Hittalmani S. Foolad MR, Mew T, et al. Development of a PCR-based marker to identify rice blast resistance gene, Pi-2 (t), in a segregating population. Theor Appl Genet, 1995, 91:9-14
    129. Huang N, Angeles E R, Domingo J et al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Thero. Appl. Genet, 1997, 98:313-320
    130. Huang. N, A Parco, T mew et al. RFLP mapping of isozymes. RAPD and QTLs for grain shape, brown planthopper resistance in a doubled haploid rice population. Molecular Breeding, 1997,3:105-113
    131. Madan mohan, Suresh Nair, A.Bhagwat, et al. Genome mapping, mulecular markers and marker-assisted selection in crop plants. Molecular breeding, 1997, 3:87-103
    132. Maheswaran M, Subudhi P K, Nandi S. et al., Polymorphism, distribution and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet. 1997, 94:39-45
    133. Nairs, Kumar A, Srivastava MN, et al. PCR-based DNA markers linked to a gall midge resistance gene, Gm 4t, has potential for marker aided selection in rice. Theor Appl Genet, 1996, 92:660-665
    134. Naqvi NI, Bonman JM, Mackill DJ, et al. Identification of RAPD markers linked to a major blast resistance gene in rice. Mol Breed 1995, 1: 341-348
    135. Tanksley SD, Young ND, Paterson AH, MW Bonierbale. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology. 1989, 7(3): 257-264
    136. Wissuwa. M, Ae.N. Molecular markers associated with phosphorus uptake and internal phosphorus-use efficiency in rice. In: Gissel-Nielsen. G, Jensen.A. Dordrecht. Plant nutrition-molecular biology and genetics. Netherlands: Khlwer academic publishers. 1999. 433-439
    
    
    137. Yoshimura S, Yoshimura A, Iwata N, et al. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol Breeding, 1995, (1): 375-387
    138.林鸿宣,柳原城司,庄杰云等.应用分子标记检测水稻耐盐性的QTL.中国水稻科学,1998,12(2):72—78
    139.严长杰,李欣,程视宽等.利用分子标记定位水稻芽期耐冷性基因.中国水稻科学,1999,13(3):134—138
    140.徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1991
    141. Borines LM, Vera Cruz CM, Redona ED, et al. Marker-aided pyramiding of bacterial blight resistance genes in maintainer lines for hybrid rice production. International rice research conference (Abstracts). IRRI. 2000:162
    142. Dong NV, Subudhi PK, Luong PN, Quang VD, Zheng HG, Wang B,Nguyen HT, Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet, 2000,100:727-734
    143. Huang N, Angeles ER, Domingo, et.al. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor Appl Genet, 1997, 95(3): 313-320
    144. Lang NT, Sabudhi PK, VirmaniSS, et al. Development of PCR-based markers for thermosensitive genetic male sterility gene tms 3 (t) in rice (Oryza sativa L.). Hereditas, 1999, 131 (2): 121-127
    145. Li CY, Zheng HG, Weng ML, Jia JH, Mou TH, Nguyen H, Wang B. AFLP analysis of photoperiod sensitive genic male sterile (PGMS) rice mutant lines. J. Biotech. Sinica. 2000, 16:91-95
    146. Sheng Chert, Xing hua Lin, Caiguo Xu, et al. Marker-assisted selection to improve bacterial blight resistance of MingHui 63, an elite restorer of hybrid rice. Eighteenth international congress of genetics (Abstracts), 1998:158
    147. Tan XL, vanavichit A, Amornsilpa S, et al. Mapping of rice Rf gene by bulked line analysis. DAN Res, 1998, 5(1): 15-18
    148. Wang B, Xu WW, Wang JZ, Wu W, Zheng HG, Yang ZY, Huang N, Ray JD, Nguyen HT, Tagging and mapping the thermo-sensitive genic male-sterile gene in rice with molecular markers. Theor Appl Genet, 1995, 91:1111-1114
    149. Xiao J H, Grandillo S, Alan S N et al. Genes from wild rice improve yield. Nature,1996, 384:223-224
    150. Yanagihara S, Mccouch SR, Ishikawa K, et al. Molecular analysis of the inheritance of the S-5 locus, conferring wide compatibility in indica/japomica hybrids of rice. Theor. Appl. Genet, 1995, 90:182-188
    151. Zhang QF, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB, Using bulked extreme and recessive class to map genes for photoperiod-sterility in rice. Proc. Natl. Acad. Sci. 1994, 91: 8675-8679.
    152.李平,周开达,陈英等.利用分子标记定位水稻野败型核质互作雄性不育恢复基因.遗传学报,1996,23(5):357—362
    153.李仕贵,周开达,朱立煌.水稻温敏显性核不育基因的遗传分析和分子标记定位.科学通报,1999,44(9):955-958
    154.郑康乐,沈波,钱惠荣等.应用RFLP标记研究水稻的广亲和基因.中国水稻科学,1992,6(4):145—150
    155.庄楚雄,张桂权,梅曼彤等.栽培稻F_1花粉不育基因座S-a的分子定位.遗传学报,1999,26(3):213—218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700