大型发电机内冷水微碱性循环处理技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文简单介绍了我国典型大型发电机内冷水系统的基本结构,阐述当前我国大型发电机内冷水系统的运行现状及存在问题,介绍了几种常用的内冷水水质调节方式,分析了这些调节方式的特点及局限性,列举出几种有关发电机内冷水的水质要求和控制指标。结合发电机铜线棒的材质性能和内冷水的水质特性,通过对铜腐蚀机理的理论分析,讨论了大型发电机铜线棒的腐蚀控制原理。通过不同水质条件下铜试片的静态腐蚀试验,即铜腐蚀指示片在不同的pH值、不同的pH值调节液、初始铜离子不同浓度、是否除氧、是否脱除二氧化碳等条件下的腐蚀速率进行测试,分析讨论了不同水质条件对铜腐蚀的影响。
     根据大型发电机铜线棒的腐蚀控制原理,借鉴国内外大型发电机内冷水系统设计运行经验,开发了发电机内冷水微碱性循环处理技术。发电机内冷水微碱性循环水处理技术原理就是采用离子交换方式对部分内冷水进行连续处理,以调节发电机内冷水水质,使水质达到高pH值、低电导率、低含铜量、杂质含量少的要求。它同传统内冷水处理方式的区别在于:不添加任何药剂,通过离子交换处理使得内冷水中含有微量的NaOH,水质的高pH值使铜处于自钝化状态,减少铜线棒腐蚀。
     为将微碱性循环处理技术进行工业应用,根据微碱性循环处理原理设计了现场动态模拟试验装置,在江西九江发电厂两台125MW机组和两台200MW机组内冷水旁路上进行了动态模拟试验。通过模拟试验确定了微碱性循环处理的最佳离子交换树脂的选型配比,并进行了最佳运行周期试验。根据微碱性循环处理动态模拟试验结果,结合江西新余发电有限责任公司2号200MW发电机内冷水系统实际情况,提出了工业应用性试验方案,对该系统进行微碱性循环处理改造,工业试验取得了圆满成功。经过不断的改进与完善,截至目前为止,发电机内冷水微碱性循环处理技术已在7台300MW发电机、4台200MW发电机和1台125MW发电机上得到推广应用。
The paper introduced the typical structure of internal cooling water system of large generators, illuminated the running actuallity and problems of these cooling water system. Some methods to inprove the quality of the cooling water are introduced, the speciality and technical limitations of these means are discussed, some kinds of requirements of internal cooling water quality were enuminated too. According to the material of large generator's stator bar and the speciality of internal cooling water, we analysised the mechanism of corrosion of copper, discussed the principle to alleviate the erosion of large generator's stator copper bar. According to the results of some static corrosion experiments of copper in different kinds of water, the corrosion information of copper under different situations was understood.
    According to the principle to alleviate the erosion of large generator's stator copper bar, referenced the design principle of the internal cooling water system of generators manufactured by different corporations in the world, we developed the technology of low-alklinous recycling treatment of internal cooling water for large generator. A little of cooling water is purified through an special equipment, the quality of the whole water in the system is improved through the method, it can meet the require of some regulations, such as higher value of pH, lower conductivity, few of impurity, this is the principle of the technology of low-alklinous recycling treatment. The key difference between the technology with other methods is without adding any chemical reagent, without supplying or changing water, and very little NaOH contained in the water by ion-exchange, its quality is much better than the requirement in DL801-2002, Under these water quality conditions, copper is in the state of self- passivity. Thus, t
    he copper bar is protected well.
    In order to put the technology into practice, we designed a local dynamic simulative tester, and processed the dynamic simulative experiments through the bypass of the internal cooling water system in 125MW and 200MW generators, the types of ion-exchange resin were selected through these experiments. Associated with the actuality of the internal cooling water system of Xinyu power plant unit 2 generator, we reconstructed the system and made test in the 200MW generator, the result of this test is very satisfied. With continuous perfection of the technology, the technology of low-alklinous recycling treatment of internal cooling water for large generator has been successfully applied in seven 300MW, four 200MW and one 125MW generators.
引文
[1] 涂光瑜.汽轮发电机及电气设备.北京:中国电力出版社,1998,1~36
    [2] 丁舜年.大型发电机发热与冷却.北京:电力工业出版社,1992,1~35
    [3] 张警声.发电机冷却介质.北京:水利电力出版社,1995
    [4] 李伟清 王绍禹.发电机故障检查分析及预防.北京:中国电力出版社,1996
    [5] 冯复生.当前大型电机安全运行应注意得问题.华北电力技术,1998,(1):17~20,(2):10~14
    [6] 冯复生.大型汽轮发电机近年来事故原因及防范对策.电网技术,1999,23(1):74~78
    [7] 宋丽莎 陈寿爱.发电机内冷水处理现状及水质优化的途径.山东电力技术,2000,111(1):55~58
    [8] 李中.大型发电机定子线棒腐蚀堵塞原因分析.华中电力,1999,12(5):17~23
    [9]刘春晓.200MW发电机内冷水水质劣化原因及处理.吉林电力,2002,158(1):49~56
    [10] 张恩奎.双辽发电厂发电机内冷水劣化原因及处理.吉林电力技术,2000,146(1):40~41
    [11] 曾令梅,武继明.选择最佳铜缓蚀剂有效节水.能源研究与应用,2000,(3):12~15
    [12] 徐群杰,等.交流阻抗法对几种铜缓蚀剂比较研究.华东理工大学学报,1998,24(3):324~3278
    [13] A.A. Moccai. Corrosion Inhibitor Evalution for Materials Used in Closed Cooling Water Systems. Materials Performance(USA), 1999,35(9):54~59
    [14] 周国定等.双水内冷发电机空芯铜导线的腐蚀和缓蚀行为研究.材料保护,1994,27(6):3~5
    [15] 周国定.电化学方法应用于电力设备腐蚀与防护的研究.腐蚀与防护,1999,20(5):216~218
    [16] 陈旦,朱克在.发电机内冷水添加BTA和二乙醇胺缓蚀剂的试验研究.福建电力与电工,1994,14(1):39~41
    
    
    [17] 贺春林等.黄铜在BTA中形成的表面膜特性.东北大学学报(自然科学版),1996,17(5):525~528
    [18] 18 T. I. Petrova, N. P. Nosova. Selection of an Aqueous Regime for the Cooling System of an Electrical Generator in a Thermal Power Station. Nauchn. Tr. Mosk. Energ. Inst, 1985, (58):33~38
    [19] A. Frignani, L. Tommesani, et al. Influence of the Alkyl Chain on the Protective Effects of 1,2,3-Benzotriazole towards Copper Corrosion. Corros. Sci., 1999, 41:1205~1215, 1217~1227
    [20] Y. Ling, Y. Guan, K. N. Han. Corrosion Inhibition of Copper with Benzotriazole and Other Organic Surfactants. Corros. Sci., 1995, 51 (5): 367~375
    [21] L. Tommesani, G. Brunoro, et al. On the Protective Action of 1,2,3-Benzotriazole Derivative Films against Copper Corrosion. Corrosion Science(USA),1997,39(7): 1221-1237
    [22] X.J. Gong, L. W. Zhang, et al. A Study on Corrosion Inhibition of BT-1 on Copper in low Conductivity Water. International Academic Publishers(China), 1995,(5):533~535
    [23] V. Brusic, G. S. Frankel, et al. Corrosion Inhibition of Cobalt with a Film of Cu-BTA. Journal ofthe Electrochemical Society of India(India), 1993,140(9):2507~2511
    [24] 喻亚非 孙小中等.发电机内冷水碱化处理.湖北电力.6,2002:45~47
    [25] 唐建忠等.玛纳斯发电厂内冷水铜超标分析研究.新疆电力,1998,59(12):36~40
    [26] 陈社生.发电机铜线棒受内冷水腐蚀的机理及防护.广东电力,2002,15(2):16~26
    [27] 何绍洪.水内冷发电机空芯铜导线腐蚀防护技术研究.四川电力技术,2000,(6):6~8
    [28] 黄秋龙.发电机内冷水系统的化学清洗.化学清洗,1997,13(6):5~28
    [29] 林友义.双水内冷发电机转子空心导线内壁积垢及化学清洗.华东电力,1994,(8):3 8~40
    [30] 国家电力公司.《防止电力生产重大事故二十五项重点要求》
    [31] DL/T801-2002《大型发电机内冷水质及系统技术要求》
    
    
    [32] GB/T 12145-1999《火力发电机组及蒸气动力设备水汽质量》
    [33] GB/T 7064-1996《透平型同步发电机技术要求》
    [34] DL/T 561-1995《火力发电厂水汽化学监督导则
    [35] SD163-1985《火力发电厂水汽质量标准》
    [36] 窦照英.电力工业的腐蚀与防护.北京:化学工业出版社,1995
    [37] 王杏卿.热力设备的腐蚀与防护.水利电力出版社,1994
    [38] 刘春红.大型发电机冷却水质量标准探讨.华东电力,2003,11:68~71
    [39] Minamitani, R. Corrosion Behavior of Copper in Various Cooling Water and Its Life Estimation. Corrosion Engineering, 2001, 50 (5): 231-236
    [40] Sharapov, V.I. Improving the Physical Chemical Methods of Anti-corrosion Treatment of Makeup Water for Heat Supply Stystems. Thermal Engineering, 1989, 36 (6): 320-323
    [41] M. Moliere, Y. Verdier, C. Leymonie. Oxidation of Copper in High Purity Water at 70℃: Application to Electric Generator Operation. Corros. Sci., 1990, 30(2,3): 183~188
    [42] O. Hollander, L. Roels. Recent Technological Advances in Copper Corrosion Prevention. Corrosie (Dutch), 1989, (2): 26~32
    [43] 张利燕,桑俊珍.邯峰发电厂660MW发电机组内冷水系统加药控制技术特点.河北电力技术,2002,21(4):30~33
    [44] 曾德勇.水内冷发电机冷却水系统的碱性运行及影响因素.中国电力,2001,(3)24~27
    [45] 曾德勇.采用钠型混床进行发电机冷却水的碱性调节.华北电力技术,1999,(12)8~11
    [46] 张澄信.离子交换水处理试验研究原理.华中理工大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700