含氮、氧配体配位聚合物的合成、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于配位聚合物所具有的结构多样性和独特的物理化学性能,以及在催化、吸附、分离、分子识别等方面潜在的应用,使得对配位聚合物的超分子组装、结构及性质的研究成为当前“晶体工程”研究的主要内容。如何控制晶体内分子的排列以获得理想的功能材料,最有效的途径之一是以金属离子和有机配体为构筑单元来组装新颖的配位聚合物。本论文的主要目的在于研究水热合成方法组装配位聚合物的规律、配位聚合物的结构和相关性能。利用含氮、氧配体在水热合成条件下与金属离子反应,合成了18种新颖结构的配位聚合物单晶体,并通过元素分析、红外光谱、X-射线单晶衍射、差热—热重分析对其进行了结构表征和相关性质研究,同时,就Co(Ⅱ)配位聚合物在苯酚氧化羰基化合成碳酸二苯酯中的应用进行了探讨。
     研究了含3-(3-吡啶基)丙烯酸配体配位聚合物的构筑。在水热合成条件下,利用3-(3-吡啶基)丙烯酸与过渡金属离子或稀土离子反应,合成了6种新颖结构的配位聚合物:[Co(pda)_2(H_2O)_2]_n(1)、[Ni(pda)_2(H_2O)_2]_n(2)、[La(C_8H_6NO_2)_3]_n(3)、[Nd(C_8H_6NO_2)_3(H_2O)]_n(4)、[Cd(C_8H_6NO_2)_2]_n(5)、{[Co_3(tma)(pda)_2(H_2O)_3]·H_2O}_n(6)。结果表明:(a)配位聚合物(1)和(2)具有异质同晶结构,配位聚合物(6)具有的结构更为新颖,在同一个结构单元中Co(Ⅱ)具有两种配位模式,而且表现出反铁磁性能。(b)对于3-(3-吡啶基)丙烯酸这样的酸性弱、难溶性的配体,水热合成的条件要求的比较高,特别是反应体系的pH值,反应温度、晶化时间以及降温速率都对晶体结构产生影响。
     研究了以3-(3-吡啶基)丙烯酸和SCN~-为混配体的配位聚合物的构筑。在水热合成条件下,合成了2种新颖结构的配位聚合物:[Co(pda)(SCN)(H_2O)]_n(7)和[Cd_2(SCN)_2(pda)_2(H_2O)_3]_n·nH_2O(8)。结果表明:(a)对于3-(3-吡啶基)丙烯酸和SCN~-混合配体,水热合成的条件较为复杂,体系pH值、反应物的加料顺序直接影响混配体配位聚合物的结构,理想的混配体配位聚合物晶体,是诸多反应因素共同协调作用的结果。(b)水热合成条件下,对于软硬酸不同的Co~(2+)、Cd~(2+)金属离子,SCN~-配位模式不同,不同的反应温度下SCN~-配位的模式不同,对于处于软硬酸之间的金属离子,SCN~-
    
    含氮、氧配体配位聚合物的合成、表征及应用
    是以双齿配体参与成键的。配位聚合物(8)即为少见的S和N原子同时配位的结构,
    而且具有较好的荧光特性。
     研究了含氧的二梭酸配体(2,6一蔡二梭酸、1,4一对苯二乙酸、反丁烯二酸、己二
    酸)与含氮的配体(4,4’一联毗陡、1,10一邻菲咯琳、咪哇)混配体配位聚合物的构筑。在
    水热合成条件下合成了7种新颖结构的配位聚合物:[Co3(2,6一nda)3(4,4’一bpy)1.5]n(9)、
    [Co(C,2H604)(1,10一Phen)]n(10)、[NdZ(C6Hs04)3(HZO)2]n·n(4,4’一bPy)(11)、[EuZ(C6HsO4)3
    (HZO)2]n·n(4,4’一bpy)(12)、〔Co(Cl。HsO4)(4,4’一bpy)ln.lll硬20(13)、[NiZ(Cl。HsO4):(phe的2
    (HZO)2]n(14)、〔Cd(CZHZO4)(hn)3]n·Zn HZO(15)。结果表明:(a)2,6一蔡二梭酸、一,4一对
    苯二乙酸、己二酸、反丁烯二酸配体在溶解与不溶解状态下作为反应前体对最终结
    构会产生一定的影响,先脱去质子氢,再与第二个配体及金属离子混合,有利于配
    位聚合物晶体的形成。(b)水热合成条件下,4,4’一联毗淀、1,10一邻菲咯琳、咪哇的
    浓度过高,易生成配位饱和的络合离子而难于形成梭酸桥联的配位聚合物。在弱酸
    性条件下,质子化4,4’一联毗咤阳离子在聚合物形成过程中由于兼有疏水/亲水作
    用,表现出结构导向模板功能。(c)对于含氧的二梭酸配体与含氮的配体的混合配
    体,反应体系pH值需保持在中性和弱碱性,反应的温度不低于160℃,而且,晶化
    的时间不低于%h。(d)水热合成条件下,易于形成紧密结构,使得网络互穿,而稀
    土离子形成的配位聚合物具有较高的热稳定性。
     研究了4一氰基毗咤和4,4’一联毗淀为混配体的配位聚合物的构筑。在水热合成条
    件下合成了3种新颖结构的配位聚合物:[Co(C6场NOZ)2(HZO)4]n(16)、[Ni(C6场
    NOZ)2(HZo)41n(17)、【La(CSH4NCoo)3(玩o)2]n(18)。结果表明:对于4一氰基毗淀配体,
    在水热合成条件下,水解后的毗睫梭酸与金属离子形成配位聚合物的反应是逐步进
    行的,在非水热合成条件下不能得到同样的配位聚合物晶体。水解后形成的毗咤梭
    酸与金属离子是以N一M配位键形成无限的一维链,而通过各种氢键,将一维的无限
    链连接成三维的网络结构。
     考察了Co(ll)配位聚合物为助催化剂的苯酚氧化拨基化合成碳酸二苯醋反应性
    能。为进一步研究配位聚合物在苯酚氧化拨基化合成碳酸二苯醋中的作用提供了基
    础。
The research on supramolecular self-assemblies, structures and properties of coordination polymers has become an important current topic in crystal engineering because of their structural diversities, unique physicochemical properties, and potential applications in catalysis, adsorption, separation, molecule identification, etc. The most effective route to control the array of molecule in a crystalline so as to get a perfect functional material is to build multiple-dimensional coordination polymer using a metal cation and an organic ligand as a building unit. The aim of this paper is to study the rule of the self-assembly of coordination polymers synthesized hydrothermally, and the structure and the related performances of the coordination polymers. Eighteen coordination polymers with novel structures have been synthesized by hydrothermal synthesis using the ligands containing N and O atoms, and their structures and the related performances have been investigated. They were characterized by means of elementa
    l analysis, IR, X-ray single crystal diffraction and TG-DTA, and their related properties were studied. The application of Co( II) coordination polymer has been attempted in the reaction of synthesis of diphenyl carbonate by oxidative carbonylation of phenol.
    The coordination polymers with ligand of 3-(3-pyridyl) acrylate acid were prepared. Under the conditions of hydrothermal synthesis, six coordination polymers with novel structures, [Co(pda)2(H2O)2]n(l), [Ni(pda)2(H2O)2]n(2), [La(C8H6NO2)3]n(3), [Nd(C8 H6NO2)3(H2O)]n(4), [Cd (C8H6NO2)2]n(5), and {[Co3(tma)(pda)2(H2O)3]-H2O}n(6), were synthesized by the reaction of 3-(3-pyridyl) acrylate acid and transition metal cations or rare-earth cations. The results are as follows, (a) The coordination polymers (1) and (2)
    
    
    
    possess the structure of heterogeneity same crystal, while the structure of coordination polymer (6) is much novel: there are two modes of coordination of Co( II) in the same constitutional unit, In addition, coordination polymer (6) shows anti-ferromagnetic performance, (b) Because of weak acidity and difficult dissolution ability of 3-(3-pyridyl) acrylate acid, the conditions of hydrothermal synthesis are severe. Especially, pH value of the reaction system, reaction temperature, crystallization time and temperature-descent rate affect the crystal structure.
    The coordination polymers with mixed ligands of 3-(3-pyridyl) acrylate acid and SCN" were prepared. Two coordination polymers with novel structure, [Co(pda) (SCN)(H2O)]n (7) and [Cd2(SCN)2(pda)2(H2O)3]n-nH2O(8), were synthesized. The results are as follows, (a) As for the mixed ligands of 3-(3-pyridyl) acrylate acid and SCN", the conditions of hydrothermal synthesis are more complicated. The structure of the coordination polymers with mixed ligands is influenced directly by pH value and the feeding order of the reactants. A perfect crystal of a coordination polymer with mixed ligands is controlled by the concerted actions of many reaction factors, (b) Under the conditions of hydrothermal synthesis, as for Co2+ and Cd2+ cations with different hard or soft acidity, the coordination modes of SCN" are different. In addition, the coordination modes are also different at different temperatures. SCN" links the metal cations whose acidities are between soft acid and hard acid in the form of bi-dentate ligands. The coordination polymer (8) with a rare structure coordinated by both N atom and S atom possess a better fluorescence performance.
    The coordination polymers with the mixture of dicarboxylic acid ligands (2,6-naphthalic acid, 1,4-phenylenediacetic acid, 1,4-fumaric acid, and adipate) and the ligands containing N atoms (4,4'-bpy, 1,10-phen and imidazole) were prepared. Seven coordination polymers with novel structures, [Co3(2,6-nda)3(4,4'-bpy)1.5]n(9), [Co(C12 H6O4)(1,10-phen)]n(10), [Nd2(C6H8O4)3(H2O)2]n-n(4,4'-bpy)(11), [Eu2(C6H8O4)3H2 O]2)n-n(4,4'-bpy)(12), [Co(C1oH804)(4,4'-bpy)]n nH2O(13), [Ni2(C10H8O4)2(l,10-phen)2 (H2O)2]n(14), and [Cd(C2H2O4)(Im)3]n-2nH2O(15), were synthesized under hy
引文
[1] Soldatov D V, Ripmeester J A. Inclusion in microporousβ-bis(1, 1, 1-trifluoro-5, 5-dimethyl-5-
    
    methoxyacetylacetonato) copper(Ⅱ), an Organic zeolite mimic. Chem Mater, 2000, 12: 1827
    [2] (a) Stumpf O H, Ouahab L, Pei Y, et al. A molecular-based magnet with a fully interlocked three-dimensional structure. Science, 1993, 261: 447
    (b) Stumpf H O, Ouahab L, Pei Y, et al. Chemistry and physics of a molecular based magnet containing three spin carriers, with a fully interlocked structure. J Am Chem Soc, 1994, 116: 3866
    [3] Robson R, Abrahams B F, Batten S R, et al. Supramolecular architecture. ACS Washington DC, 1992, 78
    [4] Inoue K, Hayamizu T, Iwamura H, et al. Assemblage and alignment of the spins of the organic trinitroxide radical with a quarted ground state by means of complexation with magnetic metal ions. J Am Chem Soc, 1996, 118: 1803
    [5] Barton T J, Bull L M, Klemperer W G, et al. Tailored porous materials. Chem Mater, 1999, 11: 2633
    [6] Schmida G M J. Photodimerization in the solid state. Pure Appl Chem, 1971, 27: 647
    [7] Desiraju G R. Crystal structures of polynuclear aromatic hydrocarbons, classification, rationalization and prediction from molecular structure. Acta Cryst, B45: 473
    [8] Etter M C. Encoding and decoding hydrogen-bond paterns of organic compounds. Acc Chem Res, 1990, 23: 120
    [9] Zaworotko S B, Holman K T, Sangster J O S, et al. Supramolecular chemistry of[{M(CO) _3(μ-OH) }]: a moclular approach to crystal engineering of superdiamondoid networks. J Chem Soc Dalton Trans, 1995: 2233
    [10] Sharma A C, Borovik A S. Design, synthesis and characterization of templated metal sites in porous organic hosts: application to reversible dioxygen binding. J Am Chem Soc, 2000, 122: 8946
    [11] Desiraju G R. Supramolecular synthons based on strong hydrogen bonds have been well documented. Angew Chem Int Ed Engl, 1995, 107: 2541
    [12] Stang P J, Olenyuk B. Self-assembled, symmetry, and molecular architecture: coordination as the motif in the rational design of supramolecular metalacyclic and polyhedra. Acc Chem Res, 1997, 30: 502
    [13] Hoskins B F, Robson R. Infinate polymeric frameworks consisting of three dimensionally linked rod-like segment. J Am Chem Soc, 1989, 111: 5962
    [14] Battten S R, Robson R. Interpentrating nets: ordered, periodic entanglement. Angew Chem Ed
    
    Engl, 1998, 37: 1460
    [15] Munakata M, Wu Lingping, Kuroda-Sowa T. Crystal engineering of multidimensional copper(Ⅰ) and silver(Ⅰ) coordination supermolecules and polymers with functions. Bull Chem Soc Jpn, 1997, 70: 1727
    [16] Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. J Am Chem Soc, 1990, 112: 1546
    [17] Mac D J C, Whitesides G M. Solid-state structure of hydrogen-boned tapes based on cyclic secondary diamides. Chem Rev, 1994, 94: 2383
    [18] Desiraju G R. Supramolecular synthesis in crystal engineering a new organic synthesis. Angew Chem Int Ed Engl, 1995, 34: 2311
    [19] Janiak C. Functional organic analogues of zeolites based on metal-organic coordination frameworks. Angew Chem Int Ed Engl, 1997, 36: 1431
    [20] Aoyama Y, Endo K, Anzai T, et al. Crystal engineering of stacked aromatic columns three-dimensional control of the alignment of orthogonal aromatic triads and guest quinines via self-assembly of hydrogen-bonded networks. J Am Chem Soc, 1996, 118: 5562
    [21] (a) Fujita M, Kwon Y J, Sasaki O, et al. Interpenestrating molecular ladder and bricks. J Am Chem Soc, 1995, 117: 7287
    (b) Hailian L, Davis C E, Groy T L, et al. Coordination unsaturated metal centers in the extended porous framework of Zn_3(BDC) _3·CH_3OH(BDC=1, 4-benzenedicarboxylate). J Am Chem Soc, 1998, 120: 2186
    (c) Hailian L, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402: 276
    [22] Yaghi O M, Li GM, Li H L. Selective binding and removal of guests in a microporous metal-organicframework, Nature, 1995, 378: 703
    [23] Huang X Y, Li J. The first covalent organic-inorganic networks of hybrid chalcogenides: structures that may lead to a new type of quantum wells. J Am Chem Soc, 2000, 122, 8789
    [24] Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network. Nature, 1995, 374: 792
    [25] (a) Stang P J, Cao D H, Saito S, et al. Self-assembly of cationic, tetranuclear, Pt(Ⅱ) and Pd(Ⅱ)
    
    macrocyclic squares, X-ray crystal structure of[Pt~(2+) (dppp) (4, 4'-bipyridyl) _2-OSO_2CF_3] _4. J Am Chem Soc, 1995, 117: 6273
    (b) Stang P J, Hybrid C K, iodonium-transition metal, cationic tetranuclear macrocyclic squares. J Am ChemSoc, 1995, 117: 1667
    [26] Fujita M, Ogura D, Migazawa M, et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks, Nature, 1995, 378: 469
    [27] (a) Lehn J M. Supra molecular chemistry-scope and perspectives molecules, supermolecules, and molecular devices. Angew Chem Int Ed Engl, 1988, 27: 89
    (b) Lehn J M. Perspectives in supramolecular chemistry from molecular recognition towards molecular information processing and self-organi-zation. Angew Chem Int Ed Engl, 1990, 29: 1304
    [28] Kahn O. Magnetism: a supramolecular function. NATO ASI Kluwer, 1996, 134
    [29] Jung H, Kim S Y, Dongmok W, et al. Shape-induced, hexagonal, open frameworks: rubidium ion complexed curbituril. Angew Chem Int Ed Engl, 1999, 38(5): 641
    [30] Yu K B, Structure of catena-poly{bis(1, 1, 1-trifluoro-2, 4-pentanedionato-K~2O, O') Copper-μ-[(4, 4'-bipyridine)-KN: KN'] }. Acta Crystallogr Sect C, 1991, C47: 2653
    [31] Sharma A C, Borovik A S. Design, synthesis, and characterization of templated metal sites in porous organic hosts: application to reversible dioxygen binding. J Am Chem Soc, 2000, 122: 8946
    [32] Gou S H, You X Z, Xu Z, et al. Strut-ire of catena-poly{bis(1, 1, 1-trifluoro-2, 4-pentane dionato-K~2O, O') Copper-μ-[(4, 4'-bipyridine)-KN: KN'] }-N, N-dimethylformamide. Acta Crystallogr Sect C, 1991, C47: 1303
    [33] Li M X, Xu Z, You X Z, et al. Crystal structure and mass spectra of a copper(Ⅰ) complex with a chain arrangement: [μ-4, 4'-bipy-Cu(TTA) ] _n. Polyhedron, 1993, 12: 921
    [34] Biradha K, Aoyagi M, Fujita M. Coordination polytubes with the affinity for guest inclusion. J Am Chem Soc, 2000, 122: 2397
    [35] Prest P J, Moore J S. A coordination polymer based on a CuI-4, 4'-bipyridine complex. Acta Crystallogr Sect C, 1996, C52: 2176
    [36] Zhu D L, Yu Y P, Gou G C, et al. Immobilized metal complexes in porous organic hosts: development of a material for the selective and reversible binding of nitric oxide. Acta Crystallogr Sect C, 1996, C52: 1963
    [37] Lu J, Crisci G, Niu Tianyuan, et al. A polymeric structure containing Cu_2Cl_2 units bridged by
    
    4, 4'-bipyridine: (PPh_3)_2Cu_2(μ-Cl)_2(μ-4, 4'-bipyridine). Inorg Chem, 1997, 36: 5140
    [38] Hagrman D, Zubieta C, Rose D J, et al. Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: polyxomolyb-date clusters within[{Cu(4, 4'-bpy) }_4Mo_8O_(26) ] and[{Ni(H_2O) _2(4, 4'-bpy) _2 Mo_8O_(26) } and One-dimensional oxide chains in[{Cu(4, 4'-bpy) }_4Mo_(15) O_(47) ] ·8H_2O. Angew Chem Int Ed Engl, 1997, 36: 873
    [39] Carlucci L, Coani G, Proserpio D M, et al. 1-, 2-, and 3-dimensional polymeric frames in the coordination chemistry of AgBF_4 with pyrazine. J Am Chem Soc, 1995, 117: 4562
    [40] Chen W, Matsumoto K. Synthesis and structural characterization of N, N'-dialky limidazo lium tetrachloroplatinate and monoaquatrichloroplatinate salts. Bull Chem Soc Jpn, 2002, 75: 1561
    [41] 洪茂椿.具有纳米孔洞的金属-有机超分子聚合物与功能材料.无机化学学报,2000,16(3) :369
    [42] Fujita M, Kwon Y J, Washizu S, et al. Preparation, clatbration, ability, and catalysis of a two-dimensional square network material composed of cadmium(Ⅱ) and 4, 4'-bipyridine. J Am Chem Soc, 1994, 116: 1151
    [43] Kondo M, Okubo T, Asami A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [{Cu_2(pzdc) _2(L) }_n] (pzdc=pyrazine-2, 3-dicarboxylate; L=a pillar ligand). Angew Chem Int Ed Engl, 1999, 38: 140
    [44] Lu J Y, Runnels K A, Norman C. A new metal-organic polymer with large grid acentric structure created by unbalanced inclusion species and its electrospun nanofibers. Inorg Chem, 2001, 40: 4516
    [45] Li J M, Zeng H Q, Chen J H, et al. Crystal structure of a flexible self-assembled two-dimensional aquare network complex[Cu_2(C_3H_2O_4) _2(H_2O) _2(4, 4'-bpy) ] ·H_2O. J Chem Soc Chem Commun, 1997: 1213
    [46] Santora B P, Larsen A O, Gagné M R. Toward the molecular imprinting of titanium Lewis acids: demonstration of diels-alder catalysis. Organometallics, 1998, 17: 3138
    [47] Min D W, Yoon S S, Lee C W, et al. A zinc(Ⅱ)-carboxylate coordination polymer constructed from zinc nitrate and 2, 6-naphthaledicarboxylate. Bull Korea Chem Sec, 2001, 22(5): 531
    [48] Batten S R, Hoskins B F, Robson R J. Two interpenetrating 3D networks which generate specious sealed-off compartments enclosing of the order of 2D solvent molecules in the structures of Zn(CN) (NO_3) (tpt) _(2/3) ·solv(tpt=2, 4, 6-tri(4-pyridyl)-1, 3, 5-triazeine, solv=~3/4C_2H_2Cl_4·3/4CH_3OH or
    
    ~3/2CHCl_3·I/3CH_3OH). J Am Chem Soc, 1995, 117: 5385
    [49] Yaghi O M, Li H. Frameworks for extended solids: geometrical design principles. J Am Chem Soc, 1996, 118: 295
    [50] Goodgame D D L, Grachvogel D A, Williams D J. Lanthanide metal complexes of N, N'-ethylenebis(. pyridin-2-one); from chelates to metallacyclic frameworks. Angew Chem Int Ed Engl, 1999, 38: 153
    [51] Gui S S Y, Lo S M F, Charment J P H, et al. Hydrothermal synthesis and structures of two tetramethylammonium iron molybdates(TMA) _2FeMo_6O_(20) and[TMA] _2[Fe(H_2O) _6] Mo_8O_(26). J Solid State Chem, 1999, 143: 77
    [52] Kondo M, Yoshitomi T, Seki K, et al. Three-dimensional framework with channeling cavities for small molecules: {[M_2(4, 4'-bpy) _3(NO_3) _4] ·χH_2O}_n. Angew Chem Int Ed Engl, 1997, 36: 1725
    [53] Fujita M, Yu S Y, Kusukawa T, et al. Self-assembly of nanometer-sized macrotricyclic complexes from ten small component molecules. Angew Chem hat Ed Engl, 1998, 37: 2082
    [54] Abrahams B F, Jackson P A, Robson R. A robuts(10, 3)-a network containing chiral micropores in the Ag~1 coordination polymer of a bideging ligand that provides three bidenatate metal-binding sites. Angew Chem Int Ed Engl, 1998, 37: 2656
    [55] Takeda N, Umemoto K, Yamaguchi K, et al. Ananometer-sized hexahedral coordination capsule assembled from 24 components. Nature, 1999: 794
    [56] Yu X Y, Maekawa M, Morita T, et al. Solvent-dependent formation of di-and trinuclear rhodium and iridium complexes bridged by N, N'-donor ligands. Bull Chem Soc Jpn, 2002, 75: 267
    [57] Noro S I, Kitagawa S, Yamashita M, et al. New microporous coordination polymer affording guest-coordination sites at channel walls. Chem Commun, 2002, 222
    [58] Pan L, Woodlick E B, Wang X T. A novel porous three-dimensional coordination polymer. Inorg Chem, 2000, 39: 4174
    [59] Sheldrick W S, Wachhold M. Solventothermal synthesis of solid-state chalcogenido-metalates. Angew Chem hat Ed Engl, 1997, 36: 206
    [60] Li G, Li L, Feng S, et al. An effective synthetic route for a novel electrolyte: nanocrystalline solid of(CeO_2) _(1-χ) (BiO_(1. 5) _χ. Adv Mater, 1990, 11(2): 146
    [61] Feng S, Greenblatt M. Galvanic cell type humidity sensor with protonic nasicon-based material operative at high temperature. Chem Mater, 1992, 4(6): 1257
    
    
    [62] Mao Y, Li G, Xu W, et al, Hydrothermal synthesis and characterization of nanaocrystalline pyrochlore oxides M_2Sn_2O_7. J Mater Chem, 2000, 10(2): 279
    [63] Feng S, Wang D, Yu R. Hydrothermal synthesis route to a giant magnetoresistance material La_(0. 5) Ba_(0. 5) MnO_3, Proceedings of the international symposium on solvo-hydrothermal processes. Org Comm Solv Tech. RES Takamatsu Japan, 1997: 56
    [64] Zhao C, Feng S, Xu G, et al. Hydrothermal synthesis and lanthanide doping of comlplex fluorides BeBaF_4, LiYF_4 and KYF_4 under mild conditions. Chem Commun, 1997: 945
    [65] Cheetham A K, Ferey G, Loiseau T. Open-framework inorganic materials. Angew Chem Int Ed Engl, 1999, 38: 3268
    [66] 徐如人.无机合成化学.高等教育出版社,1991,217
    [67] Goodgame D M L, Menzer S, Ross AT, et al. Use of heterometal combinations to construct very large ring frameworks; synthesis and structural characterization of the 36-membered ring compound[{NiNd(4-picolylpyrrolidin-2-one) _4(NSC) _2(NO_3) }_n]. Chem Commun, 1994: 2605
    [68] Keller S W, Lopez S. A two-dimensional geomimetic coordination polymer containing pentagonal cavities. J Am Chem Soc, 1999, 121: 6306
    [69] 化工百科全书编委会编.化工百科全书.化学工业出版社,1997,860
    [70] Hallgren J E, Lucas G M, Matthews R O. The palldium-catalyzed synthesis of diphenyl carbonate from phenol, carbon monoxide, and oxygen. J Organomet Chem, 1981, 204: 135
    [71] Goyal M, Nagahata R, Sugiyama J, et al. Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd-Cu based redox catalyst system. J Mol Catal A Chem, 1999, 137: 147
    [72] Fumio O. Process and catalysts for the preparation of aromatic carbonates by oxidative carbonylation of aromatic hydroxy compounds. JP 06211750, 1994
    [73] King S. Method of producing diphenyl carbonate. USP 5663406, 1997
    [74] Fujita T, Yoshihisa K, Takuji N, et al. Preparation of aromatic carbonates. JP 0525095, 1993
    [75] Fukuoka S, Ogawa H, Watanabe T. Preparation of aromatic carbonates by catalytic carbonylation of hydroxy compounds. JP 0116551, 1989
    [76] Takagi M, Miyagi H, Yuji O, et al. Process and catalysts for producing aromatic carbonates from aromatic hydroxy compounds. EP 663388, 1995
    [77] Hirotoshi I, Goyal M, Ueda M, et al. Oxidative carbonylation of phenol to diphenyl carbonate
    
    catalyzed by bis(benzonitrile) dichloropalladium in the presence of polyvinylpyrrolidone. Catalysis Communication, 2002, 2(1): 17
    [78] Takagi M, Miyagi H, Yoneyama T, et al. Palladium-lead catalyzed oxidative carbonylation of phenol. J Mol Catal A: Chem 1998, 129(1): 1
    [79] Song H Y, Pake E D, Lee J S. Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts. J Mol Catal A: Chem 2000, 154(3): 243
    [80] Takagi M, Fujira K. Preparation of aromatic carbonates as materials for polycarbonates. JP 09278716, 1997
    [81] Iwane H. Preparation of aromatic carbonic acid esters as materials for polycarbonates. JP 06271506, 1994
    [82] Takagi M, Miyagi H, Yoneyama T, et al. Method of producing aromatic carbonate US 5726340, 1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700