用户名: 密码: 验证码:
基于相应面近似的反舰导弹并行子空间优化设计技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多学科设计优化是一种新兴的设计优化方法,主要用于解决大规模复杂工程系统的设计问题。由于其优越的计算性能,在国外航空航天设计领域已经占据相当重要的地位。并行子空间优化方法就是一种多学科优化方法,它适用于多学科分析环境,尤其适用于大型分布式分析问题。当应用于多学科设计环境时,并行子空间优化方法相对传统优化方法有几大优点:减少了学科间信息传递的数量;免去了大的迭代循环;允许在不同学科分析模块中应用不同子空间优化器;可以在不同设备上并行运行;结构框架适用于传统学科组织形式;允许各学科专家最大限度地参与学科分析和设计。本文对并行子空间优化方法进行了深入地讨论,并且对其在反舰导弹设计优化中的应用进行了有益的尝试。
     本文的主要工作包括:
     1.阐述了并行子空间优化方法的发展,深入探讨基于响应面的并行子空间优化方法,给出其框架及数学表达,利用数学算例验证方法的可行性。
     2.建立气动、弹道及发动机模块化分析模型,并在其基础上初步选定反舰导弹的设计参数。
     3.建立反舰导弹并行子空间优化设计框架,结合各学科分析模型,实现反舰导弹的优化设计计算。
Multidisciplinary Design Optimization (MDO) is a design architecture developed since the last two decades, which is mainly focused on solving the design problems of large-scale complicated engineering systems. Because of its excellent computation characteristics, MDO has played an important role in the field of aeronautic & astronautic engineering design. Concurrent Subspace Optimization (CSSO), as a typical MDO method, is well suited to multidisciplinary design environment, especially large-scale distributed analysis problem. When used in multidisciplinary environment, CSSO has several advantages over standard optimization method: reduction of the information transfer; elimination of large iteration loop; allowance of the use of corresponding subspace optimizers in different disciplinary analysis; a parallel optimization architecture which is readily operable on a suite of heterogeneous equipments; more natural fit to the current organization structure found in most institutes of aerospace and aeronautic design; participation of the disciplinary experts to best deal with specific disciplinary models. This paper is mainly focused on CSSO method. And its application to the design optimization of antiship missile is realized satisfactorily.
    The major work in this paper includes:
    a) The development and mathematical framework of a based on Response Surface Method (RSM) CSSO are introduced and its feasibility is argued by two problems.
    b) Analysis models of aerodynamics, trajectory and propulsion system are established. Based on these models, the initial values for the design variables are chosen.
    c) The concurrent subspace optimization framework for antiship missile is set up. Based on this framework together with those disciplinary analysis models, the concurrent subspace optimization of antiship missile is finally realized.
引文
[1] Sobieszczanski-Sobieski, J., Haftka, T., Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments, AIAA 96-0711, Nevada; AIAA, 1996
    [2] Hajela, P., Bloebaum, C.L., Sobieski, J., Application of Global Sensitivity Equations in Multidisciplinary Aircraft Synthesis, Journal of Aircraft, Vol.27, No.12, Dec. 1992, pp.1002-1010.
    [3] Renaud, J.E., Gabriele, G.A., Improved Coordination in Nonhierarchic System Optimization, AIAA Journal, Vol. 31, No. 12, Dec. 1993, pp.2367-2373.
    [4] Sellar, R.S., Batill, S.M., Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design, AIAA 96-0714, AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, January 1996.
    [5] Kroo, I., Altus, S., Braun, R., Gage, P., Multidisciplinary Optimization Methods for Aircraft Preliminary Design, AIAA 94-4325, Fifth AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, September 7-9, 1994, Panama City, Florida.
    [6] Braun, R.D., Gage, P.J., Implementation and Performance Issues in Collaborative Optimization, AIAA 96-4017.
    [7] Braun, R.D., Kroo, I.M., Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment, Multidisciplinary Design Optimization State of the Art, 7.25, 1996.
    [8] Braun, R.D, Kroo, I.M., Use of the Collaborative Optimization Architecture for Launch Vehicle Design, AIAA 96-4018.
    [9] Sobieski, I., Kroo, I.M., Aircraft Design Using Collaborative Optimization, AIAA 96-0715.
    [10] J.Sobieszanski-Sobieski. Optimization by Decomposition: A Step From Hierarchic to Non-Hierarchic Systems. NASA Conference Publication 3031, Part 1, Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, Hampton, Virginia, September 1988.
    [11] Yu, X.Q., Stelmack, M., Batill, S.M., An Application of the Concurrent Subspace Design (CSD) to the Preliminary Design of a Low-Reynolds Number UAV, AIAA 98-4917.
    
    
    [12] AIAA White Paper, Current State Of the Art; Multidisciplinary Design Optimization[R], Washington; AIAA Technical Commttee for MDO, 1991.
    [13] 余雄庆,丁运亮,多学科设计优化算法及其在飞行器设计中应用,航空学报,Vol.21,2000年第1期
    [14 Braun, R.D., Kroo, I.M., Gage, P.J., Post-Optimality Analysis in Aircraft Design, AIAA 93-3932, AIAA Aircraft, Design, Systems, and Operations Meeting, Monterey, CA, August 11-13, 1993.
    [14] Braun, R.D., Powell, R.W., Lepsch, R.A., Stanley, D.O., Kroo, I.M., Comparison of Two Multidisciplinary Optimization Strategies for Launch Vehicle Design, Journal of Spacecraft & Rockets, Vol.32, No.3, pp. 404-410, May-June 1995.
    [15] Balling, R.J., Sobieszczanski-Sobieski, J., An Algorithm for solving the System-level Problem in Multilevel Optimization, AIAA 94-4333
    [16] Sobieszczanski-Sobieski, J., Two Alternative Ways for Solving the Coordination Problem in Multilevel Optimization, Structural Optimization, Vol.6, pp.205-215
    [17] 席少霖,非线性最优化方法,高等教育出版社,1992.6
    [18] Song Hanbing, Gu Liangxian, Gong Chunlin, A Potential Method in the Design of Reusable Launch Vehicle, Proceedings, the 6th APC-MCSTA, September 18-21, 2001, Beijing
    [19] 谷良贤,宋寒冰,龚春林,协作优化算法及其在飞行器设计中的应用,弹箭与制导学报,已录用
    [20] 郭建,多学科优化设计优化技术研究,硕士学位论文,2001.3
    [21] 龙乐豪,总体设计,液体弹道导弹与运载火箭系列丛书,宇航出版社,1989.11
    [22] 甘楚雄,刘冀湘,弹道导弹与运载火箭总体设计,国防工业出版社,1996.1
    [23] 航天空气动力学,导弹与航天丛书,宇航出版社,1994.11
    [24] 航天器进入与返回技术(上下册),导弹与航天丛书,宇航出版社,1991.9
    [25] 陈再新,刘福长,鲍国华,空气动力学,航空工业出版社,1993.8
    [26] 白文林,温炳恒,有翼导弹总体设计原理,西北工业大学出版社,1991.10
    [27] 徐敏,严恒元,飞行器空气动力工程计算方法,西北工业大学出版社,1998.4
    [28] 徐敏,陈志敏,高超音速飞行器空气动力工程估算方法,西北工业大学出版社,1999.1
    [29] 航天系统工程,航天工业部《世界导弹与航天》编辑部,1987.11
    [30] 有翼飞行器气动力计算手册,西北工业大学航天工程学院档案室内部材料
    [31] 吕学富,飞行器飞行力学,西北工业大学出版社,1995.6
    [32] 陆毓峰编译,弹道导弹弹道学,西北工业大学,1987.9
    [33] 张庆伟,面向21世纪的中国航天运载技术,中国航天,2001年第1期
    
    
    [34] 基于响应面近似的并行子空间优化算法,西北工业大学学报,2003.2
    [35] 阳建新,整体式冲压飞航导弹总体—一体化设计方法研究,硕士学位论文,1992.2
    [36] 西北工业大学数理统计编写组,数理统计,西北二正业大学出版社,1998.12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700