Ⅲ族氮化物基稀磁半导体纳米材料的制备与高压物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
III族氮化物基纳米稀磁半导体的制备及其物性研究是目前凝聚态物理与纳米材料研究领域热点课题。该论文采用直流电弧等离子体方法对Mg、Co掺杂AlN和Mn掺杂GaN基纳米稀磁半导体的制备和高压相变进行了系统的研究,取得了如下创新性研究成果:
     1.制备出多种不同形貌的Co掺杂AlN纳米结构,对其结构、形貌及物性进行了研究,发现它们都具有室温铁磁性,并对生长机制和磁性来源进行了合理解释。
     2.制备出多种不同形貌的Mg掺杂AlN纳米结构,对其结构、形貌及物性进行了研究,发现它们都具有室温铁磁性,并对生长机制和磁性来源进行了合理解释。
     3.制备出Mn掺杂GaN纳米颗粒与纳米花瓣结构,对样品的结构、形貌及磁性进行了研究。发现它们都具有室温铁磁性,并对生长机制和磁性来源进行了合理解释。
     4.采用原位高压同步辐射技术,分别对AlN:Mg和AlN:Co纳米线的高压相变进行了研究,发现掺杂离子半径的大小对其相变压力有明显影响。
The aluminum nitride is a III-nitride semiconductor material with the most wideband gap width (6.2eV), the emission wavelength with the band can be into the deepultraviolet band,which can lead to potential applications in the emerging field ofultraviolet and deep ultraviolet electronics. AIN can be used as the substrate materialsfor other luminous body due to the width of band gap, has a widespread use in thefield of advanced ceramics, composite materials, electronic materials. AIN has verybroad potential application in aspects as communication technology, so is the mainraw material for the development of short wavelength optoelectronic devices and hightemperature, microwave electronic devices.
     GaN is wide bandgap semiconductor, the direct band gap of3.4eV at roomtemperature, has a potential application in the field of blue light electronicsapplications. GaN is a good material with luminescence performance due to its goodthermal performance, small dielectric coefficient, high in saturated electron driftvelocity, which is an ideal material for light emitting device. It plays a key role inapplication in the preparation of high power and high temperature integrated circuits.And it has very important potential application in the preparation of photoelectron,CCD and high speed microwave communication devices used in extreme conditions.
     The aluminum nitride and gallium nitride is important semiconductor in the thirdgeneration of semiconductor materials. At present, III-nitride based diluted magneticsemiconductors (DMSs) have been predicted with high Curie temperature, so thesynthesis of III-nitride based DMSs and the study of property is a frontier and hotissue in today’s international nano materials research field. When the cation portion ofsemiconductor is replaced partly and disorderly by some doping metal ions, making ithave the properties of semiconductor and ferromagnetic at same time, is considered tobe of great application prospect in the new functional materials. Thus, the researchand exploration for this type of dilute magnetic semiconductor doping characteristic and the performance, and discussing the origin of magnetism and testifying the resultof theory can open up a new path for development and production of new functionalnano DMSs devices.
     The nanomaterials has different properties with bulk materials, a great deal ofattention has been devoted to the research of nanomaterial and the change of physicalproperties under the high pressure. A larger number of literature investigationsindicate that there is a small amount of reports about the exploration of high pressuretechnology in nanomaterial under extreme conditions, and there is a few studies aboutthe property of III-nitride based DMSs under high pressure.
     Based on the above understanding, the different morphology Mg, Co dopedaluminum nitride dilute magnetic semiconductors have been synthetized by the dc arcplasma method, and studied and analysed the structure, morphology, and property. Inaddition, we study the high pressure physical properties of the Co doped AlNnanowires with the diameter of70nm using in situ synchrotron radiation X-raydiffraction technique in diamond anvil cell.
     The main results are as follows:
     1. The AlN: Co nanomaterials with different morphology were synthesized, suchas nanowires, comb structure, dendritical structure; Al (purity99.99%),Co (purity99.99%),and N2(purity99.99%) were used as sources. Phase,structural and chemicalcomposition analyses of the AlN: Co were carried out using X-ray diffraction (XRD),scanning electron microscopy(SEM), transmission electron microcopy (TEM), andenergy dispersive spectroscopy (EDS). The size of samples are relate to the inputcurrent and the reaction time. The small size of sample is produced under the smallinput current and short reaction time, conversely to increase. The magnetic propertywas carried out using vibrating sample magnetometer (VSM), it proves that thesesamples are ferromagnetic at room temperature.
     An arc discharge plasma setup is improved by adding a Mo on cathode tungstenpole piece. It is succeed in the six heavy structure of AlN: Co on the basal AlCo blockand on the Mo slice. Phase,structural and chemical composition analyses of thisstructure has been studied. There is a small area of the airflow circulation space in the reaction chamber, we can get the different morphology sample at the same time. Themagnetic property was carried out using vibrating sample magnetometer (VSM), itproves that these samples are ferromagnetic at room temperature. The intensity ofmagnetism is larger than pure AlN: Co nanostructure due to the presence of Coimpurity.
     2. The AlN: Mg nanomaterials with different morphology were synthesized, suchas nanowires, dendritical structure, etc.; Al (purity99.99%),Mg (purity99.99%),andN2(purity99.99%) were used as sources. Phase,structural and chemical compositionanalyses of the AlN: Mg were carried out using X-ray diffraction (XRD), scanningelectron microscopy(SEM), transmission electron microcopy (TEM), and energydispersive spectroscopy (EDS). The size of samples are relate to the input current andthe reaction time. The small size of sample is produced under the small input currentand short reaction time, conversely to increase. The magnetic property was carried outusing vibrating sample magnetometer (VSM), it proves that these samples areferromagnetic at room temperature.
     3. The GaN:Mn nanomaterials with different morphology were synthesized, suchas nanowires, comb structure, dendritical structure; Mn (purity99.99%),GaO (purity99.99%),and the mixture of N2and NH3(purity99.99%) were used as sources.Phase,structural and chemical composition analyses of the GaN:Mn were carried outusing X-ray diffraction (XRD), scanning electron microscopy(SEM). The size ofsamples are relate to the input current and the reaction time. The small size of sampleis produced under the small input current and short reaction time, conversely toincrease. The magnetic property was carried out using vibrating sample magnetometer(VSM), it proves that these samples are ferromagnetic at room temperature.
     4. High-pressure behaviors of AlN:Mg and AlN:Co nanowires have beeninvestigated by in situ angle dispersive synchrotron X-ray diffraction up to41.5and38.2GPa, respectively. Their corresponding pressure-induced wurtzite-to-rocksaltphase transitions start at17.7and15.0GPa and complete at33.2and31.0GPa,respectively. The phase-transition routes are not affected by the doped ions, while the phase transition pressures are lower than those of pure AlN nanowires. The distincthigh-pressure behaviors are ascribed to the doped ions, which reduce the formationenergy of cation vacancies and induce Al vacancy defects together with substitutiondefects, resulting in lattice distortion, and affecting structural stability and phasetransition pressure. The doping causes the reduction of phase transition pressure andphase transition barriers, and accelerates the phase transition. The bulk modulus ofwurtzite phases were determined to be B0=252.6±6.6GPa and B0=245.0±7.8GPa forAlN:Mg and AlN:Co nanowires, respectively. The phase transition pressure and bulkmodulus of the doped nanowires decreases in contrast to pure AlN nanowires, and thedecrease degree of the doped Co nanowires is larger than that of the doped Mg.Because Co2+(rCo=0.745)>Mg2+(rMg=0.72), doped Co ions give rise to largerinfluence on the stability of lattice structure and cause the larger lattice distortion thanthat of doped Mg ions, resulting in the phase transition pressure of AlN:Co nanowiresbeing lower than that of AlN: Mg nanowires. Under high pressure, stress focuses ondefects of crystal; larger local stress impels the beginning of phase transition andreduces the phase transition pressure. Mg or Co ions residing at the Al ions sites mightreduce the phase transition barriers; fill a post with preferred nucleation sites andaccelerate the completion of the phase transition. Our experimental results prove thatchange the stability of the samples and phase transition pressure, leading to a moretheoretical and experimental work.
引文
[1] R.P. Feynman, Eng. Sci.23,22(1960); reprinted in J. Micromech. Systems1,60(1992)
    [2] Gleiter H, in Deformation of Polyctystals; Mechanism and Microstructures, eds,Hansen et al., Roskilde: Riso Mat. Lab,.1981,15
    [3] Binnig G, Rohrer H, Scanning tunneling microscopy. Helv. Phys. Acta.55;726~735
    [4]朱静等,纳米材料和器件,清华大学出版社,(2003)
    [5]张立德,牟季美,纳米材料学,辽宁科学出版社(1994)
    [6] M. Akiyama, C. Xu, N. Y. Liu, J. Lumi.2002,97(1),13
    [7] W. P. Halperin, Rev of Modern Phys1986,58,532
    [8]张旗,陈焕春,杨绪杰,陆路德,汪信,导弹与航天运载技术2000,3,56
    [9] S. Y. Chou, P. R. Krauss, W. Zhang, J. Vac.Sci. Technol,1997, B15,2897.
    [10]张立德,蔡伟平,牟季美,自然科学进展,1999,9(2),103.
    [11] W. P. Cai, L. D. Zhang, J. Phys. Condens Matter,1996,8,591.
    [12] R. Leon, et al, Science,1995,267,1966.
    [13] V. L. Colvin, A. P. Alivisatos, Nature,1994,370,354.
    [14] M. Mark, et al, Catal. Today,1991,8,467.
    [15]解挺,焦明华等,材料科学与工程学报,24(2),312-314(2006)
    [16]梁长浩,[D].中国科学院固体物理研究所博士学位论文,(2001)
    [17] Y. Xia, P. et al. Adv. Mater,15,353-389(2003)
    [18] Z. L. Wang. J. Phys. Chen. B,104,1153-1175(2000)
    [19] A. M. Morales, C. M. Liber. Science,279,208-211(1998)
    [20] S. Liu, H. Lu, X. Qian, et al., Solid State Chemistry,172(2),480(2003)
    [21] T. M. Whitney, J. S. Jiang, P. C. Searson, et al. Science,261,1316(1993)
    [22] Y. Yin, Y. Lu, B. Gates, Y. J. Xia, Am. Chem. Soc.,123(36),8718-8729(2001)
    [23]郜涛,[D].中国科学院固体物理研究所博士学位论文(2003)
    [24] S. O. Obare, N. R. Jana, C. J. Murphy, Nano. Lett.,1(11),601(2001)
    [25] H. Q. Wu, X. W. Wei, M. W. Shao, et al.,J. Crystal Growth,265(1-2),184(2004)
    [26] Sir Nevill Francis Mott,(Taylor&Francis, New York,1990).
    [27] Jacek K. Furdyna and Jacek Kossut,(Academic Press, New York,1988).
    [28] Tomasz Dietl,(North-Holland, New York,1994).
    [29] J. K. Furdyna, Journal of Applied Physics64, R29(1988).
    [30] A. Haury, A. Wasiela, A. Arnoult, J. Cibert, S. Tatarenko, T. Dietl, and Y. Merled'Aubigné, Physical Review Letters79,511–514(1997).
    [31] H. Munekata, H. Ohno, S. von Molnar, Armin Segmüller, L. L. Chang, and L.Esaki, Physical Review Letters63,1849-1852(1989).
    [32] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye,Applied Physics Letters69,363(1996).
    [33] K. Y. Wang, R. P. Campion, K. W. Edmonds, M. Sawicki, T. Dietl, C. T.Foxon,and B. L. Gallagher, ICPS-27Conference2005. Flagstaff, Arizona (USA).
    [34] K. C. Ku, S. J. Potashnik, R. F. Wang. S. H. Chun, P. Schiffer, N. Samarth, M. J.Seong, A. Mascarenhas, E. Johnston-Halperin, R. C. Myers, A. C. Gossard, andD.D. Awschalom, Applied Physics Letters82,2302(2003).
    [35] A. M. Nazmul, T. Amemiya, Y. Shuto, S. Sugahara, and M. Tanaka, PhysicalReview Letters95,017201(2005)
    [36] X. Chen, M. Na, M. Cheon, S. Wang, H. Luo, B. D. McCombe, X. Liu, Y. Sasaki,T. Wojtowicz, J. K. Furdyna, S. J. Potashnik, and P. Schiffer, Applied PhysicsLetters81,511(2002).
    [37] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed, C. A.Parker, J. C. Roberts, and S. M. Bedair, Applied Physics Letters79,3473(2001).
    [38] T. Dietl, H. Ohno, F. Matsukura, Science,2000,287,,1019-1022.
    [39] W. B. Mi, H. L. Bai, H. Liu, J. Appl. Phys,2007,101,023904.
    [40] J. K. Furdyna,J. Appl. Phys.1988,64, R29.
    [41]刘宜华,张连生.稀释磁性半导体[J].物理学进展,1994,14,82.
    [42] Lee H J, Jeong S Y, Cho C R,Park C H. Applied physics letters,2002.81: p.4020.
    [43] Fukumura T, Jin Z, Kawasaki M, Shono T, Hasegawa T, Koshihara S,KoinumaH. Applied Physics Letters,2001.78(7): p.958-960.
    [44] Yoon S W, Cho S B, We S C, Yoon S, Suh B J, Song H K,Shin Y J. Journal ofapplied physics,2003.93: p.7879.
    [45]邓志杰,郑安生,半导体材料.2004,北京:化学工业出版社.
    [46] Shinde V R, Gujar T P, Lokhande C D, Mane R S,Han S H. Materials chemistryand physics,2006.96(2-3): p.326-330.
    [47] Ueda K, Tabata H,Kawai T. Applied Physics Letters,2001.79: p.988.
    [48] Saeki H, Tabata H,Kawai T. Solid state communications,2001.120(11): p.439-443.
    [49] Ando K, Saito H, Jin Z, Fukumura T, Kawasaki M, Matsumoto Y,Koinuma H.Applied Physics Letters,2001.78(18): p.2700-2702.
    [50] Chang Y Q, Wang D B, Luo X H, Xu X Y, Chen X H, Li L, Chen C P, Wang R M,Xu J,Yu D P. Applied physics letters,2003.83: p.4020.
    [51] Saito H, Zayets V, Yamagata S,Ando K. Physical Review B,2002.66(8): p.081201.
    [52] Oka Y, Kayanuma K, Shirotori S, Murayama A, Souma I,Chen Z. Journal ofluminescence,2002.100(1-4): p.175-190.
    [53] M.A. Ruderman,C. Kittel,Phys. Rev.1954,96,99.
    [54] T.Kasuya,Prog Theor. Phys.(Kyoto),1956,16,45
    [55] K. Yosida,Phys.Rev.1957,106,893.
    [56] T. C. Kreutz, G. Zanelatto, E. G. Gwinn, Appl. Phys Lett.2002,81,4766.
    [57] J. Heikenfeld, M. Garter, D. S. Lee, R. Birkhahn, A. J. Steckl. Appl. Phys. Lett.1999,75,1189.
    [58] L. M. Snadratskii, P. Bruno, Phys.Rev.B2002,66,134435.
    [59] T. Dietl,A. Haury,Y. Meri, Phys. Rev. B.,1997,55, R3347.
    [60] H, Akai. Phys. Rev. Lett,1998,81,3002.
    [61] C. Zener, Phys Rev,1951,82,403.
    [62] P. W. Anderson, Phys. Rev,1950,79,705.
    [63] P. W. Anderson, Phys.Rev.,1950,79,350.
    [64] J. M. D. Coey, M. Venkatesan, C. B. Fitzgerald, Nat Mater,2005,4,173.
    [65] S. D. Sarma, E. H. Hwang, A. Kaminski, Phys. Rev. B,2003,67,155201.
    [66] M. Randeria,J. P. Sethna,R. G. Palmer,Phys. Rev. Lett.1985,54,1321.
    [67] S.Iijima, Nature.1991,354,56.
    [68] A. P. Alivisatos, Science.1996,271,933.
    [69] Y. Cui, C. M. Lieber, Science.2001,291,851.
    [70] Y.Cui, Q.Wei, H. Park, et al. Science.2001,293,1289.
    [71] M. S.Gudiksen, L. J.Lauhon, J.Wang, et al. Nature.2002,415,617.
    [72] X. F. Duan, Y.Huang, R. Agarwal, et al. Nature.2003,421,241.
    [73] N. C. Wu, M. S. Tsai, M. C. Wang, H. S. Liu. J. Crystal Growth,2000,208,189.
    [74]关波,傅正义,王玉成,王为民,张金咏,林华幌,直流电弧等离子体制备氮化铝纳米粒子,中国有色金属学报,2004,14,206.
    [75]宋扬,汪长安,黄勇,稀有金属材料与工程,2005,1,147.
    [76]尚书勇,梅丽,李兰英,印用祥,戴晓雁,广东化工,2004,3,5.
    [77]尚书勇,梅丽,李兰英,印用祥,戴晓雁,化工新型材料,2004,7,8.
    [78]李晓云,丘泰,沈春英,硅酸盐学报,2004,11,1422。
    [79]秦明礼,曲选辉,林健凉,肖平安,祝宝军,粉末冶金材料科学与工程,2002,1,50.
    [80]秦明礼,曲选辉,罗铁钢,肖平安汤春峰,段柏华,稀有金属材料与工程,2005,34,713.
    [81]李凯,李振刚,于美燕,董守义,王琪珑,赫霄鹏,崔得良,化学学报,2004,12,1144.
    [82] S. C. Shi, C. F. Chen, S. Chattopadhyay, Z. H. Lan, K. H. Chen, L. C. Chen, Adv.Funct Mater,2005,15,781.
    [83] J. Zhen, Y. Yang, B. Tu, X. B. Song, X. G. Li, ACS Nano.2008,2,134.
    [84] F. Zhang, Q. Wu, P. Xiao, Y. W. Ma, Y. M. Hu, X. Z. Wand, C. Y. Wangm Z. Hu, J.Phys. Chem. C2008,112,11331.
    [85] W. C. Johnson,J. B. Parsons,M. C. Crew, J. Phys. Chem.1932,36,2651.
    [86] W. W. Lei, D. Liu, CrystEngComm,2010,12,511–516
    [87] T. Ogino, M. Aoki, Jpn J Appl Phys,1980,19,2395.
    [88] J. Neugebauer, C. G. Van De Walle, Appl Phys Lett,1996,69,503.
    [89] Y. Xie,Y. T. Qian,W. Z. Wang, Y. Zhang,Y. H. Zhang,seienee,1996,272,1926.
    [90] A. Petersson,A. Gustafsson,L. Samueson,Y. Tanaka,Appl. Phys. Lett.,1999,74,3513.
    [91] W. Q. Han,S. S. Fan,Q. Li,Y. D. Hu,Seienee,1997,277,1287.
    [92] G. S. Cheng,L. D. Zhang,Y. Zhu,G. T. Fei,L. Li,C. M. Mo,Y. Q. Mao,Appl. Phys. Lett.1999,75,2455.
    [93] X. F. Duan,C. M. Lieber, J.Am.Chem.Soe.,2000,122,188.
    [94] C. C. Chen,C. C.Yeh, Adv. Mater.,2000,12,738.
    [95] H. Y. Peng,X. T. Zhou,N. Wang,Y. F. Zheng,L. S. Liao,W. S. Shi,C. S. Lee,S. T. Lee,Chem,Phys. Lett.,2000,327,263.
    [96] J. Q. Hu, Y. S. Bando, J. h. Zhan, F. F. Xu, T. Sekiguchi, D. Golberg, Adv. Mater.2004,16,1465.
    [97] Q. F. Meng, C. B. Jiang, S. X. Mao, J. Crys. Grow.2007,308,166.
    [98] F. Xu, Y. X, X. Zhang, S. Y. Zhang, X. M. Liu, W. Xi, X. B. Tian, Adv. Funct.Mater.2004,14,464.
    [99] E. Starikov, P. Shiktorov, and V. Gru inskis, Materials Science Forum,2002,384,205.
    [100] R. M. Frazier, J. Stapleton, G. T. Thaler, C. R. Abernathy, S. J. Pearton, R.Rairigh,J. Kelly, A. F. Hebard, M. L. Nakarmi, K. B. Nam, J. Y. Lin. J. X. Jiang, J. M.Zayada, J. Appl. Phys.2003,94.1952.
    [101] R. M. Frazier, G. T. Thaler, J. Y. Leifer, J. K. Leifer, J. K. Hite, B. P. Gila, C. R.Abernathy, S. J. Pearton, Appl. Phys. Lett.2005,86,052101.
    [102]D.Kumar,J.Antifakoe, M. G. Blamire, Z. H. Barber, Appl. Phys. Lett.2004,84,5004.
    [103] K. Y. Ko, Z. H. Barber, M. G. Blamire, J. Appl. Phys.2006,100,083905.
    [104] J. J. Liu, M. H. Yu, W. L. Zhou, Appl. Phys. Lett.2005,87,172505.
    [105] H. J. Xiang, S. H. Wei, Nano Lett.2008,8,1825.
    [106] H. K. Seong, J. Y. Kim, J. J. Kim, S. C. Lee, S. R. Kim, U. Kim, T. E. Park, H. J.Choi, Nano Lett.2007,7,3366.
    [107] H. K. Seong, Y. Lee, J. Y. Kim, Y. K. Byeun, K. S. Han, J. G. Park, H. J. Choi,Adv. Mater.2006,18,3019.
    [108] Q. Wang, Q. Sun, P. Jena, Y. Kawazoe, Nano Lett.2005,5,1587.
    [109] B. D. Yuhas, D. O. Zitoun, P. J. Pauzauskie, R. R. He, P. D. Yang, Angew. Chem.2006,45,420.
    [110]X. H. Ji, S. P. Lau, S. F. Yu, H. Y. Yang, T. S. Herng, A.Sedhain, J. Y. Lin, H. X.Jiangm K. S. Teng, J. S. Chen, Appl. Phys. Lett.2007,90,193118.
    [111]X. H. Ji, S. P. Lau, S. F. Yu, H. Y. Yang, T. S. Herng, J. S. Chen, Nanotechnology,2007,18,105601.
    [112]R. Q. Wu, G. W. Peng, L. Liu, Y. P. Feng, Z. G. Huang, Q. Y. Wu, Appl. Phys. Lett,2006,89,142501.
    [113] Yeung Yu Hui, Jing Ye, Rolf Lortz, Phys. Status Solidi A,2012,1–5
    [114] W. W. Lei, D. Liu, P. W. Zhu, X. H. Chen, APPLIED. PHYSICS. LETTERS.,2009,95,162501
    [115] W. W. Lei, D. Liu, Angew. Chem. Int. Ed.2010,49,173–176
    [116] Y. Zhang, W. Liu, P. Liang, H. B. Niu, Solid. State. Commu.2008,147,254.
    [117] W. Jia, P. D. Han, M. Chi, S. H. Dang, B. S. Xu, X. H. Liu, J. Appl. Phys.2007,101,113918.
    [118] I. S. Elfimov,S. Yunoki, G. A. Sawatzky, Phys. Rev. Lett.,2002,89,21640.
    [119] C. D. Pemmaraju,S. Sanvito,Phys.Rev.Lett.,2005,94,217205.
    [120] H. Munekata,H. ohno,S. von, Phys. Rev. Lett.1989,63,1849.
    [121] A. J. Steckl,J. M. Zavada,MRS Bull.1999,24,33.
    [122] A. J. Steckl,J. C. Heikenfeld,D. S. Lee, IEEE J. Sel. ToP. Quant.2002,8,749.
    [123] S. Morishima, T. Maruyama. Phys. Stat. Sol. A.1999,176,113.
    [124] K. Takahei, A. Taguchi. J. Appl. Phys.1989,66,4941.
    [125] Shul R.J, Vawter G.A, Willison C.G, et al. Solid State Eleetronies,1998,42(12):2259-2267
    [126] Lakshmi E. Thin Solid Films,198,83:L137
    [127] Morimoto Y. J. Eleetroehem. Soe.,1974,121:1383
    [128] Ito K,Amnao H,Hiramatsu K.et al. J. Appl. Phys.,1991,30:1604
    [129] D. Baska,T. Nakanishi,S. Sakai. Solid-State Electronics,2000,444:725-728
    [130] E. Horvath-Bordon, R. Riedel, A. Zerr, Chem. Soc. Rev.,2006,35,987.
    [131] S. Karmakar, Surinder M. Sharma, P. V. Teredesai, and A. K. Sood, Phys. Rev. B2004,69,165414.
    [132] S. H. Tolbert, A. P. Alivisatos, Science,1994,265,373.
    [133] Ohno H. Science1998,281:951-956
    [134] T. Yao, W. S. Yan, Z. H. Sun, Z. Y. Pan, Y. Xie, Y. Jiang, J. Ye, F. C. Hu, S. Q. We,J. Phys. Chem. C,2009,113,14114.
    [135]南條敏夫等著,乔兴武译.直流电弧炉的电弧现象.北京:冶金工业出版社1998
    [136] K. C. Hsu, K. Etemadi, and E. Pfender, J. Appl. Phys.54,1293,1983.
    [137] P. Z. Si, E.Bruck, Z. D. Zhang, O. Tegus, W. S. Zhang, K. H. J. Buschow, J. C. P.Klaasse, Materials Research Bulletin,2005,40,29.
    [138] Z. Q. Wei, P. X. Yan, W. J. Feng, J. F. Dai, Q. Wang, T. D. Xia, MaterialsCharacterization,2006,57,176.
    [139] M. H. Lin, Ceramics International,2005,31,1109.
    [140] Y. M. Guo, N. Murata, K. Ono, and T. Okazaki, Journal of NanoparticleResearch,2005,7,101.
    [141] Y. M. Guo, T. Okazaki, Japanese Journal of Applied Physics,2004,43,720.
    [142] W. Q. Han, P. Redlich, F. Ernst, and M. Ruhle, Appl. Phys. Lett,2000,76,652.
    [143] X. P. Zou, D. S. Tang, Z. Q. Liu, W. Y. Zhou, G. Wang, Y. B. Li, S. S. Xie,Journal of Crystal Growth,2001,223,125.
    [144] A. V. Palnichenko, A. N. Rossolenko, V. N. Kopylov, I. I. Zverkova, A. S. Aronin,Chemical Physics Letters,2005,410,436.
    [145]类伟巍,吉林大学博士毕业论文,2009,
    [146] H. Ohno, Nat. Mater.,2010,9,952.
    [147] A. VanEsch, L. Van Bockstal, J. De Boeck, G.Verbanck, A. S. van Steenbergen, P.J. Wellmann, B. Grietens, R. Bogaerts, F. Herlach and G. Borghs, Phys. Rev. B:Condens. Matter Mater. Phys.,1997,56,13103.
    [148] A. H.MacDonald, P. Schiffer and N. Samarth, Nat. Mater.,2005,4,195.
    [149] M. A.Mayerm, P. R. Stone, N.Miller, H. M. Smith, O. D. Dubon, E. E. Haller,K.M. Yu, W. Walukiewicz, X. Liu and J. K. Furdyna, Phys. Rev. B: Condens.Matter Mater. Phys.,2010,81,045205.
    [150] Q. Liu, C. X. Liu, C. Xu, X. L.Qi and S. C. Zhang, Phys. Rev. Lett.,2009,102,156603.
    [151] S. Y. Wu,H.X. Liu, L.Gu,R.K. Singh, L. Budd,M. Schilfgaarde, M. R.MaCartney, D. J. Smith and N. Newman, Appl. Phys. Lett.,2003,82,3047.
    [152] R. Frazier, G. Thaler, M. Overberg, B. Gila, C. R. Abernathy and S. J. Pearton,Appl. Phys. Lett.,2003,83,1758.
    [153] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, R. M. Frazier, J. Y. Liefer, G. T.Thaler, C. R. Abernathy, S. J. Pearton and J. M. Zavada, Appl. Phys. Lett.,2004,85,4067.
    [154] J. Zhang, X. Z. Li, B. Xu and D. J. Sellmyer, Appl. Phys. Lett.,2005,86,212504.
    [155] T. Jungwirth, J. Sinova, J. Masek, J. Kucera and A. H. MacDonald, Rev. Mod.Phys.,2006,78,809.
    [156] F. Matsukura, H. Ohno, A. Shen and Y. Sugawara, Phys. Rev. B: Condens.Matter Mater. Phys.,1998,57, R2037.
    [157] K. Sato and H. Katayama-Yoshida, Semicond. Sci. Technol.,2002,17,367.
    [158] W.W. Lei,D. Liu, X.Chen, P.W. Zhu, Q. L. Cui andG. T. Zou, J. Phys. Chem. C,2010,114,15574.
    [159] K. Osuch, E. B. Lombardi and L. Adamowicz, Phys. Rev. B: Condens. MatterMater. Phys.,2005,71,165212.
    [160] Z. Z. Zhu, J. C. Zheng and G. Y. Guo, Chem. Phys. Lett.,2009,472,99.
    [161] X. M. Cai and L. Yuan, Mater. Sci. Forum,2011,663–65(1),195.
    [162] Z. K. Tang, L. L. Wang, L. M. Tang, X. F. Li,W. Z. Xiao, L. Xu and L. H. Zhao,Phys. Status Solidi B,2012,249,185.
    [163] Y. Y. Hui, J. Ye, R. Lkortz, K. S. Teng and S. P. Lau, Phys. Status Solidi A,2012,209,1988.
    [164] R. Q.Wu, G.W. Peng, L. Liu, Y. P. Feng, Z. G. Huang and Q. Y. Wu, Appl. Phys.Lett.,2006,89,142501.
    [165] H. J. Choi, H. K. Seong and U. Kim, Nano,2008,3,1.
    [166] V. Y. Davydov, N. S. Averkiev, I. N. Goncharuk, D. K. Nelson, I. P. Nikitina, A.S. Polkovnikov, A. N. Smirnov, M. A. Jacobson and O. K. Semchinova, J. Appl.Phys.,1997,82,5097.
    [167] W.W. Lei,D. Liu, L.H. Shen, J. Zhang, P. W. Zhu, Q. L. Cui and G. T. Zou, J.Cryst. Growth,2007,306,413.
    [168] Y. Ohno, D.K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D.D.Awschalom, Nature402,790(1999).
    [169] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, and K.Ohtani, Nature408,944(2000).
    [170] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Moln′ar,M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Science294,1488(2001).
    [171] J. Xu, J. Li, R. Zhang, X.Q. Xiu, D.Q. Lu, H.Q. Yu, S.L. Gu, B. Shen, Y. Shi,Y.D. Ye, and Y.D. Zheng, Opt. Mater.23,163(2003).
    [172] A. Neya, R. Rajarama, E. Arenholzc, J.S. Harris Jr. M. Samanta, R.F.C. Farrowa,and S.S.P. Parkina, J. Magn. Magn. Mater.300,7(2006).
    [173] S.C. Jain, M.Willander,J. Narayan, and R. van Overstraeten, J. Appl. Phys.87,965(2000).
    [174] T. Graf, S. T. B. Goennenwein, and M. S. Brandt, Phys. Status Solidi B239,277(2003).
    [175] A. Wolos, M. Piersa, G. Strzeleka, K. Korona, A. Hruban, and M. Kaminska,Phys. Status Solidi C6,2769(2009).
    [176] M. Zajac, J. Gosk, M. Kaminska, A. Twardowski, T. Szyszko, and S. Podsiadlo,Appl. Phys. Lett.79,2432(2001).
    [177] S. Granville, B. J. Ruck, F. Budde, H. J. Trodahl, and G. V. M. Williams, Phys.Rev. B81,184425(2010).
    [178] A. Bonanni, M. Sawicki, T. Devillers, W. Stefanowicz, B. Faina, T. Li, T.E.Winkler, D. Sztenkiel, A. Navarro-Quezada, M. Rovezzi, R. Jakie a, A. Grois,M. Wegscheider, W. Jantsch, J. Suffczyn′ski, F. D’Acapito, A. Meingast, G.Kothleitner, and T. Dietl, Phys. Rev. B84,035206(2011)
    [179] M. Zajac, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska,A.Wysmo ek, K.Korona, M. Kami′nska, and A. Twardowski, J. Alloys Compd.456,324(2008).
    [180] M. C. Jeong, M. H. Ham, J. M. Myoung, and S. Kyu Noh, Appl. Surf. Sci.222,322(2004).
    [181] X.M. Cai, A.B. Djurisi, M.H. Xie, H. Liu, X.X. Zhang, J.J. Zhuc, and H. Yang,Mater. Sci. Eng. B117,292(2005)
    [182] G. Kunert, S. Dobkowska, Tian Li, H. Reuther, C. Kruse, S. Figge, R. Jakiela, A.Bonanni, J. Grenzer, W. Stefanowicz, J. von Borany, M. Sawicki, T. Dietl, and D.Hommel, Appl. Phys. Lett.101,022413(2012).
    [183] J. H. Lee, I. H. Choi, S. W. Shin, S. G. Lee, J. Lee, and C. Whang, Appl. Phys.Lett.90,032504(2007).
    [184] P. Sharma, A. Gupta, K. V. Rao, F.J.Owens, R. Sharmaa, R. Ahuja, J. M. O.Guillen, Nat. Mater.2(2003)673-677.
    [185] H. Munekat, H. Ohno, S. von Molnar, A. Segmüller, L. L. Chang, and L. Esaki,Phys. Rev. Lett.63(1989)1849.
    [186] K. A. Gschneidner, Metallurgy at High Pressures and High Temperatures Gordonand Breach Science Publishers,New York, Chapter1964,4,144.
    [187]A. Jayaraman Rev. Mod. Phys.1983,55,65.
    [188] U. Mazur, Langmuir.6(1990)1331.
    [189] C I Wu, E Kahn, E S Hellman and D N Buchanan Appl. Phys. Lett.73(1998)1346.
    [190] S P Grabowski, M Schneider, H Nienhaus, W Monch, R Dimitrov, O Ambacherand M Stutzmann Appl. Phys. Lett.78(2001)2503.
    [191] M Akiyama, N Ueno, K Nonaka and H. Tateyama Appl. Phys. Lett.82(2003)1977.
    [192] Y Taniyasu, M Kasu, and T Makimoto Appl. Phys. Lett.84(2004)2115.
    [193] M. A. Meyer, A. Mishra and D. Benson, J. Prog. Mater. Sci.51(2006)427.
    [194] Z. W. Wang, X. D. Wen, R. Hoffmann, J. S. Son, R. Li, C. C. Fang, D. M.Smilgies and T. Hyeon, Proc. Natl. Acad. Sci. USA.107(2010)17119-17124.
    [195] Z. W. Wang and Q. X. Guo, J. Phys. Chem. C113(2009)4286-4295.
    [196] T. T. Hu, M. Z. Zhang, S. D. Wang, Q. J. Shi, G. J. Shi, Cryst. Eng. Comm.13(2011)5656-5659.
    [197] A. Datta, S. Gorai, and S. Chaudhuri, J. Nanopart. Res.8(2006)919-926.
    [198] H. Li, B. Song, H. Q. Bao, G. Wang, W. J. Wang, X. L. Chen, J. Magn. Magn.Mater.321,222-225(2009).
    [199] Z.C. Zong, Y.M. Ma, T.T. Hu, G.L. Cui, Q.L. Cui, M.Z. Zhang, and G.T. Zou,Solid State Commun.151(2011)607-609.
    [200] F.V. Mikulec, M. Kuno, M. Bennati, D. Hall, M. Pravia and M.G. Bawendi, J.Am. Chem. Soc.122(2000)2532–2540.
    [201] Y. Zhang, W. Liu, P. Liang, H. B. Niu, Solid. State. Commun.147(2008)254.
    [202] Y. Zhang, W. Liu, H. B. Niu, Phys. Rev. B.77(2008)035201.
    [203] L. Wu, T. J. Hou, Y. Wang, Y. F. Zhao, Z. Y. Guo, Y. Y. Li, and S. T. Lee, J.Alloys Comp.541(2012)250-255.
    [204] Y. Mori, N. Niiya, T. Mizuno, T. Nishii, A. Fujii, Y. Fujii, K. Takarabe, Y. Wang,and J. Z. Jiang, Phys.Stat. Sol.244(2007)234-238.
    [205] Y. Wang, Y. Zhang, W. J. Chang, G. L. Lu, J. Z. Jiang, Y. C. Li, J. Liu, and T. D.Hu, J. Phys. Chem. Solids.66(2005)1775-1778.
    [206] S. B. Qadri, J. Yang, B. R. Ratna, E. F. Skelton, and J. Z. Hu, Appl. Phys. Lett.69(1996)2205.
    [207] S. H. Tolbert, and A. P. Alivisatos, Science265(1994)373.
    [208] W. Jun, J. S. Choi and J. Cheon, Amgew. Chem.-Int. Ed.45(2006)3414.
    [209] Z. L. Wang, Annu. ReV. Phys. Chem.55(2004)159.
    [210] Y. Xia, AdV. Mater.15(2003)353.
    [211] L. H. Shen, X. F. Li, Y. M. Ma, K. F. Yang, Appl. Phys. Lett.89(2006)141903.
    [212] W. W. Lei, D. Liu, J. Zhang, Q. L. Cui, G. T. Zou, J. Phys.: Conf. Ser.121(2008)162006-162012.
    [213] Z. W. Wang, K. Tait, Y. S. Zhao, D. Schiferl, C. S. Zha, H. Uchida, and R. T.Downs, J. Phys. Chem. B.108(2004)11506.
    [214] M. Ueno, A. Onodera, O. Shimomura, and K. Takemura, Phys. Rev. B.45(1992)10123.
    [215] S. Uehara, T. Masamoto, A. Onodera, M. Ueno, O. Shimomura, J. Phys. Chem.Solids.58(1997)2093-2099.
    [216] X. Y. Li, Y. L. Wang, W. F. Liu, G. S. Jiang and C. F. Zhu, Materials Letters.85(2012)25-28.
    [217] J. Z. Jiang, J. S. Olsen, L. Gerward, and S. Morup, Europhys. Lett.44(1998)620.
    [218] Z. W. Wang, S. K. Saxena, V. Pischedda, H. P. Liermann, and C. S. Zha, Phys.Rev. B.64(2001)012102.
    [219] Z. W. Wang, S. K. Saxena, V. Pischedda, H. P. Liermann, and C. S. Zha, J. Phys.Condens. Matter.13(2001)8317-8323.
    [220] D. Singh, M. Rajagopalan, M. Husain, and A.K. Bandyopadhyay, Solid StateCommun.115(2000)323-328.
    [221] H. Y. Zhu, Y. Z. Ma, H. B. Yang, C. Ji, D. B. Hou and L. Y. Gou, J. Phys. Chem.Solids.71(2010)1183.
    [222] H. Y. Zhu, Y. Z. Ma, H. B. Yang, P. F. Zhu, J. G. Du, C. Ji and D. B. Hou, SolidState Commun.150(2010)1208.
    [223] R. D. Shannon, Acta. Cryst. A.32(1976)751-767.
    [234] A. P. Hammersley, S. O.Svensson, M. Hanfland, A. N. Fitch, D. H usermann,High Press. Res.1996,14,235.
    [235] C. J. rawn and J. Chaudhuri, Adv. X-Ray Anal.43(2000)338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700