用户名: 密码: 验证码:
多孔太阳墙系统传热与流动的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔太阳墙系统是一种新型的太阳能采暖技术,它能够做到高效采暖、有效通风。多孔太阳墙系统由集热系统和气体输送系统两部分组成,本文讨论的集热系统包括多孔墙体和热气流流道两部分,气流输送系统采用地板下送风方式。
     本文首先介绍了多孔太阳墙系统的原理、特点及国内外应用实例,接下来对多孔太阳墙集热系统及地板送风系统分别进行数值模拟及分析研究,多孔墙体采用局部非热力学平衡的双方程多孔介质模型,流道及房间考虑自然对流影响。
     对集热系统内传热与流动情况进行了数值模拟,分析了进口速度分布对集热性能的影响,多孔渗透率和流道宽度对进口速度分布的影响,进出口压差、固相有效导热系数、气体与固体骨架间体积对流换热系数对多孔墙体内温度分布的影响,最后分析了多孔墙渗透率、流道宽度、进出口压差、固相有效导热系数、气体与固体骨架间体积对流换热系数对出口空气平均温度、质量流量及吸热率的影响,并从场协同原理角度分析多孔太阳墙集热系统的传热强化。结果表明,适当的渗透率和进出口压差取值,在一定范围内增大流道宽度,提高固相有效导热系数和气固间体积对流换热系数,都有利于提高集热性能。
     对地板送风系统内传热与流动进行了数值模拟,得到室内温度分布及流场分布,分析了地板送风口尺寸、进气参数及架空地板设计对送风口风量分布的影响。结果表明:地板上采用非均等尺寸即离入口近的送风口采用大尺寸,离入口远的采用小尺寸,增高地板下空间,架空地板采用斜坡式都有利于使送风口风量分布均匀。
     本文通过对集热系统和地板送风系统的数值模拟及分析研究,对多孔太阳墙系统内传热与流动过程有较直观的认识,并为系统参数的选取提供了参考。
Solar-wall is a novel solar heating technology which has proven to be effective both in heating and ventilation. It consists of a heat collector system which includes a porous wall and a passage between the porous wall and the existing wall and an air distribution system which adopts under floor air distribution in this thesis.
     The principle, characteristic and examples of solar-wall are introduced at first. Then, the heat collector system and under floor air distribution system are numerically studied. The non-equilibrium porous media model has been used to describe the porous wall and buoyancy-driven flows in the passage and apartment are taken into account.
     The flow fields and heat transfer characteristics in the heat collector system are numerically simulated. The effect of inlet velocity distribution on the performance of collector system and the effect of permeability and width of passage on inlet velocity distribution are analyzed. Then the effect of pressure difference between inlet and outlet, efficient conductivity of matrix and heat coefficient between flow and matrix on the temperature distribution in the porous wall is analyzed. At last, the effect of these parameters on the mean air temperature of outlet, mass flow rate, heat absorption of air is analyzed. Also, the heat transfer enhancement of heat collector system is studied according to field synergy principle. The outcome indicates appropriate permeability and widths, improving efficient conductivity and heat coefficient may improve the performance of heat collector system.
     The flow fields and heat transfer characteristics in the under floor air distribution system are numerically simulated. The temperature and velocity distribution are available by finite volume method. The effect of sizes of floor diffuser, inlet air parameter and design of under floor on the air flow distribution is analyzed. The outcome indicates increasing the height of raised floor, adopting slope floor design and non-uniform floor diffuser may improve the equality of air flow in every floor diffuser.
     Through the simulation and analysis of the heat collector system and under floor air distribution system, the flow fields and heat transfer characteristics of solar-wall are more intuitionistic and reference is provided to the parameter selection.
引文
[1]姚伟龙,邢涛.中国能源状况与发展对策分析.能源研究与信息,2006,22(4):187~193
    [2]杜祥琬.中国能源的问题和可持续发展战略.决策咨询通讯,2007,(1):1~7
    [3]江亿.我国建筑耗能状况及有效的节能途径.暖通空调,2005,35(5):30~40
    [4]王默晗,杨前明,孔祥强等.太阳能供暖在建筑中的应用.中国建设信息供热制冷,2006,(11):33~36
    [5] J. D. Balcomb, J. C. Hedstrom, R. D. McFarland. Simulation analysis of passive solar heated buildings-Preliminary results. Solar Energy, 1977, 19 ( 3 ): 277~282
    [6] D. P. Grimmer, R. D. McFarland, J. D. Balcomb. Initial experimental tests on the use of small passive-solar test-boxes to model the thermal performance of passively solar-heated building designs. Solar Energy, 1979, 22 ( 4 ): 351~354
    [7] D. P. Grimmer. Theoretical considerations in the use of small passive-solar test-boxes to model the thermal performance of passively solar-heated building designs. Solar Energy, 1979, 22 ( 4 ): 343~350
    [8]方贤德.被动式太阳房的通用模拟程序.太阳能学报,1994,15(4):363~367
    [9]黄护林,施明恒,宗祥康等.带有透明峰窝太阳房的模拟计算.太阳能学报,1997,18(4):371~375
    [10]叶宏,葛新石.几种集热-贮热墙式太阳房的动态模拟及热性能比较.太阳能学报,2000,21(4):349~356
    [11]陈威,刘伟.太阳能集热组合墙系统的耦合传热与流动分析.太阳能学报,2005,26(6):882~886
    [12] Y. J. P. Lin, P. F. Linden. A model for an under floor air distribution system. Energy and Buildings, 2005, 37 ( 4 ): 399~409
    [13]刘骏,李强民.地板送风的节能效益.节能,1999,(3):14~16
    [14]刘骏,李强民.旋流风口的特性及在地板送风系统中的应用.建筑热能通风空调,1999,(1):43~46
    [15]马仁民.地板送风技术条件与舒适条件的研究.暖通空调,1995,25(6):45~51
    [16]马仁民,连之伟.地板送风工作区热分布系数计算方法的综合研究.暖通空调,1994,(1):11~13
    [17]孔琼香,俞炳丰,潘振.地板送风静压层气流的数值模拟与送风特性实验.西安交通大学学报,2005,39(5):531~535
    [18]孔琼香,俞炳丰,潘振等.地板送风室内温度不均匀分布特性的实验研究.西安交通大学学报,2006,40(9):1074~1078
    [19]张莉.地板送风系统对流热转移量的数值研究:[硕士学位].西安:西安建筑科技大学图书馆,2003
    [20] Zhang Lin, T. T. Chow, C. F. Tsang et al. CFD study on effect of the air supply location on the performance of the displacement ventilation system. Building and Environment, 2005, 40 ( 8 ): 1051~1067
    [21] Feng-Dong Yuan, Shi-Jun You. CFD simulation and optimization of the ventilation for subway side-platform. Tunnelling and Underground Space Technology, 2007, 22 ( 4 ): 474~482
    [22] Gang Tan, Leon R. Glicksman. Application of integrating multi-zone model with CFD simulation to natural ventilation prediction. Energy and Buildings, 2005, 37 ( 10 ): 1049~1057
    [23] E. Espi, Ph. Berne, P. Duverneuil. Using CFD to understand the air circulation in a ventilated room. Computers & Chemical Engineering, 1998, 22 ( S1 ): S751~S754
    [24]赵琴,王靖. FLUENT在暖通空调领域中的应用.制冷与空调,2003,(1):15~18
    [25]谭洪卫.计算流体动力学在建筑环境工程上的应用.暖通空调,1999,29(4):31~36
    [26]师奇威,贾代勇,杜雁霞. CFD技术及其应用.制冷与空调,2005,5(6):14~17
    [27]裴锋,何启林,贾群.暖通空调CFD技术应用现状及展望.制冷与空调,2003,(3):56~58
    [28]日本太阳能学会.太阳能的基础和应用.(第一版).华中工学院太阳能科研组译.上海:科学技术出版社,1982,1~11
    [29]王崇杰,何文晶,薛一冰.欧美建筑设计中太阳墙的应用.建筑学报,2004,(8):76~78
    [30]王崇杰,何文晶.太阳能采暖新技术—太阳墙在建筑中的应用与研究.重庆建筑大学学报,2004,26(7):38~40
    [31] J. C. Hollick. World's largest and tallest solar recladding. Renewable Energy, 1996, 9 ( 1-4 ): 703~707
    [32]刘伟,范爱武,黄晓明.多孔介质传热传质理论与应用.北京:科学出版社,2006,15~16
    [33]杜建华,王补宣.带内热源多孔介质中的受迫对流换热.工程热物理学报,1999,20(1):69~73
    [34] B. Alazmi, K. Vafai. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. International Journal of Heat and Mass Transfer, 2001, 44 ( 9 ): 1735~1749
    [35] Kye Soon Hwang, Jae Ho Jun, Won Kook Lee. Fixed-bed adsorption for bulk component system—non-equilibrium non-isothermal and non-adiabatic model. Chemical Engineering Science, 1995, 50 ( 5 ): 813~825
    [36]任泽霈.对流换热(第一版).北京:高等教育出版社,1998,200~288
    [37]林瑞泰.多孔介质传热传质引论(第一版).北京:高等教育出版社,1995,212~335
    [38]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998,4~5
    [39]付卉.管内湍流传热数值模拟与场协同机理研究:[硕士学位论文].广州:华南理工大学图书馆,2004
    [40]赵晓曦,邓先和,陈颖等.管壳式换热器壳程传热强化研究.现代化工,2001,21(7):14~17
    [41]徐艳芳,王松平,于大文等.强化对流换热场协同唯象理论.青岛大学学报,2002,15(4):57~61
    [42]吴明,何雅玲,陶文铨等.场协同理论在脉管制冷机研究中的推广.工程热物理学报,2002,23(4):488~490
    [43]申盛,刘伟,陶文铨.多孔介质中自然对流传热的场协同分析.自然科学进展,2003,13(4):439~443
    [44]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社,2004,4~5
    [45]孔琼香,俞炳丰.办公楼地板送风系统应用与研究现状.暖通空调,2004,34(4):26~31
    [46] T. Webster, F. Bauman, J. Reese. Underfloor air distribution: thermal stratification. ASHRAE Journal, 2002, 44 ( 5 ): 28~36
    [47] Miroslaw Zukowski. Modeling and designing heating and ventilation system with underfloor air distribution. Energy and Buildings, 2006, 38 ( 6 ): 600~609
    [48] F. S. Bauman. Underfloor systems: shedding light on common myths. Heating /Piping/Air Conditioning Engineering. 2003, 75 ( 12 ): 26~28, 30, 34~36, 38~39
    [49] Miroslaw Zukowski. Heat transfer and pressure drop characteristics of the underfloor air distribution system. Energy and Buildings, 2005, 37 ( 8 ): 890~896
    [50] F. Bauman, T. Webster. Outlook for Underfloor Air Distribution. ASHRAE Journal, 2001, 43 ( 6 ): 18~27
    [51]张悦.办公空间地板送风系统的应用研究: [硕士论文].上海:同济大学图书馆,2006
    [52]吕品,束永保,许登科.空调房间室内气流组织的数值模拟研究及应用.安徽理工大学学报,2005,25(4):22~26
    [53] J. P. Holman. Heat Transfer(第九版).北京:机械工业出版社,2005
    [54] F. P. Incropera, D. P. DeWitt. Fundamentals of Heat and Mass Transfer (Fourth Edition). New York: Wiley, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700