凝胶因子MPBG自组装及其在相变材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文建立了一种预测有机凝胶形成的简单模型,阐明了溶剂粘度、分子体积对MPBG(甲基-4,6-O-对氯苯亚甲基-α-D-吡喃葡萄糖苷,一个新型凝胶因子)自组装结构和凝胶性质的重要影响。将MPBG、膨胀石墨(EG)、1,3:2,4-二(3,4-二甲基亚苄基)-D-山梨醇(DMDBS)与三硬脂酸甘油酯(GT)结合,构建了一种新型复合定形储热相变材料(PCM2)。通过DSC、TG-DTA、FT-IR、SEM、TEM、XRD检测,研究了PCM2的储热性能和微观结构,揭示了凝胶因子对PCM2的定形机制。
     凝胶化检测研究揭示,Teas图可以用来预测有机凝胶的形成。使用4个未检测溶剂和8个文献报道的凝胶因子,验证了该方法。溶剂作用研究表明,在一元醇和芳香烃溶剂中,MPBG聚集体的形貌和影响凝胶性质的关键因素明显不同。SEM和XRD研究结果表明,在一元醇类溶剂中,MPBG分子自组装是溶剂粘度控制的扩散限制过程。进一步研究发现,尽管极性溶解度参数(δ_a)对凝胶因子聚集体形貌、凝胶相转变温度(T_(gel))和凝胶数(N_(gel))产生影响,但溶剂粘度是影响这些性质的关键因素。对于芳烃溶剂而言,δ_a是决定T_(gel)和N_(gel)的关键因素,但溶剂分子体积对它们也产生重要影响。
     在新型复合定形相变材料PCM2中,GT(86.6wt%)、EG(4.6wt%)分别用作储热和导热材料,作为支撑材料的凝胶因子(MPBG和DMDBS)起到定形作用。DSC结果显示,PCM2的熔点、熔化潜热分别为49℃和97J/g;凝固点、凝固潜热是46℃和69J/g。TG-DTA和FT-IR检测发现,在工作温度范围内,PCM2具有极佳的热稳定性和化学相容性(组份间)。SEM、TEM和FT-IR研究揭示,在PCM2中,凝胶因子MPBG和DMDBS自组装形成三维(3D)纤维网络,具有片层网络结构的EG被包埋于3D纤维网络之中。通过毛细管作用,3D网络束缚GT于其网孔之中,从而形成定形储热相变材料。XRD和FTIR研究表明,PCM2中的添加剂(EG、MPBG和DMDBS)并未影响GT的晶体结构,凝胶因子和EG的3D网络结构限制了GT分子热运动,从而导致PCM2相变焓的损失。
This paper proposes a simple method for estimating organogel formation, andhighlights the important role played by solvent viscosity (η) and molecular size (V) ininfluencing the gel properties and the aggregate structures of methyl4,6-O-(p-chlorobenzylidene)-α-D-glucopyranoside (MPBG, a novel gelator) indifferent solvents. Furthermore, a novel form-stable composite phase change material(PCM2) was prepared by incorporating MPBG,1,3:2,4-di-(3,4-dimethyl) benzylidenesorbitol (DMDBS, a gelator) and expanded graphite (EG) into glyceryl tristearate (GT)matrix, and its thermal and structural characteristics were analyzed by DSC, TG-DTA,FT-IR, SEM, TEM and XRD. The form-stability mechanism of PCM2was alsorevealed.
     The research of gelation tests shows that Teas plot derived from solubilityparameters can be used to estimate the behaviour of a known gelator in untestedsolvents. The method has successfully been tested on the eight gelators reported inliteratures and the untested solvents in the gelation test of MPBG. The research ofsolvent role reveals that the aggregate morphologies of MPBG and the main factorsdetermining the gel properties are obviously different in the monohydric alcohols andthe aromatic hydrocarbons. According to SEM images and X-ray diffraction patterns,in monohydric alcohols with high viscosity value, the self-assembly of MPBG is adiffusion-limited aggregation process resulting from solvent viscosity. Furthermore, itis found that solvent viscosity, compared with the secondary role of polar solubilityparameter (δ_a), plays a key role in determining the morphologies of aggregates, thesol-gel phase-transition temperature (T_(gel)) and the gelation number(N_(gel)). In contrast,for the aromatic hydrocarbon gels, solvent molecular size is very important indetermining T_(gel)and N_(gel)although δ_ais the key factor.
     In PCM2, GT (86.6wt%) is used as the phase change material for thermalenergy storage, and EG (4.6wt%) acted as the thermal conductivity filler. In order toprevent the leakage of GT, gelators (MPBG and DMDBS), as the supporting material,were added in the composite. The DSC results show that PCM2solidifies at46℃with a latent heat of69J/g and melts at49℃with a latent heat of97J/g when themass percentage of GT in the composite is86.6%. The TG-DTA and FT-IR resultssuggest that PCM2, in operating temperature range, exhibits good thermal stability and chemical compatibility(between the components of the composite). According toSEM/TEM images and FT-IR spectroscopies, The MPBG and DMDBS molecules, inPCM2, self-assemble into nanofibers that form three-dimensional (3D) networksembedding EG with a3D lamellar network structure. By capillary and surface tensionforces, GT is retained in the pores of the3D networks, so leakage of the melted GTfrom PCM2is prevented. X-ray diffraction patterns and FT-IR data reveal thatadditives (MPBG, DMDBS and EG)in PCM2do not affect the crystal structure ofglyceryl tristearate, and the3D networks of gelators and EG confine the molecule heatmovement of GT in PCM2, which leads to the decrease in the latent heat of theform-stable composite phase change material.
引文
[1] F Song, LM Zhang, JF Shi, et al. Using hydrophilic polysaccharide to modifysupramolecular hydrogel from a low-molecular-mass gelator. Materials Scienceand Engineering C,2010,30:804-811
    [2] JW Liu, Y Yang, CF Chen, et al. Novel Anion-Tuning Supramolecular Gels withDual-Channel Response: Reversible Sol-Gel Transition and Color Changes.Langmuir,2010,26(11):9040-9044
    [3] M Seo, JH Kim, J Kim, et al. Self-Association of Bis-Dendritic Organogelators:The Effect of Dendritic Architecture on Multivalent Cooperative Interactions.Chem. Eur. J.,2010,16:2427-2441
    [4] JKH Hui, Z Yu, T Mirfakhrai, et al. Supramolecular Assembly ofCarbohydrate-Functionalized Salphen-Metal Complexes. Chem. Eur. J.,2009,15:13456-13465
    [5] Xiang Y. Liu. Gelation with small molecules: from formation mechanism tonanostructure architecture. Top. Curr. Chem.,2005,256:1-37
    [6] DK Smith. Lost in translation? Chirality effects in the self-assembly ofnanostructured gel-phase materials. Chem. Soc. Rev.,2009,38:684-694
    [7] T Ishi-i, S Shinkai. Dye-Based Organogels: Stimuli-Responsive Soft MaterialsBased on One-Dimensional Self-Assembling Aromatic Dyes. Top. Curr. Chem.,2005,258:119-160
    [8] SH Seo, JH Park, JY Chang. Organogels Based on1H-ImidazolecarboxamideAmphiphiles. Langmuir,2009,25(15):8439–8441
    [9] J Koivukorpi, E Kolehmainen. Novel deoxycholic acidalkylamide-phenylurea-derived organogelators. Tetrahedron Letters,2010,51:1199–1201
    [10] J Yang, MB Dewal, D Sobransingh, et al. Examination of the Structural FeaturesThat Favor the Columnar Self-Assembly of Bis-urea Macrocycles. J. Org. Chem.,2009,74:102–110
    [11] J Cui, A Liu, Y Guan, et al. Tuning the Helicity of Self-Assembled Structure of aSugar-Based Organogelator by the Proper Choice of Cooling Rate. Langmuir,2010,26(5):3615–3622
    [12] S Abraham, RK Vijayaraghavan, S Das. Tuning Microstructures in Organogels:Gelation and Spectroscopic Properties of Mono-and Bis-cholesterol-LinkedDiphenylbutadiene Derivatives. Langmuir,2009,25(15):8507–8513
    [13] N Sreenivasachary, JM Lehn. Gelation-driven component selection in thegeneration of constitutional dynamic hydrogels based on guanine-quartetformation. PNAS,2005,102(17):5938-5943
    [14] T Patra, A Pal, J Dey. A Smart Supramolecular Hydrogel of Nα-(4-n-Alkyloxybenzoyl)-L-histidine Exhibiting pH-Modulated Properties.Langmuir,2010,26(11):7761-7767
    [15] YC Lin, RG Weiss. Liquid-crystalline solvents as mechanistic probes.24. Anovel gelator of organic liquids and the properties of its gels. Macromolecules,1987,20(2):414–417
    [16] I Furman, RG Weiss. Factors influencing the formation of thermally reversiblegels comprised of cholesteryl4-(2-anthryloxy) butanoate in hexadecane,1-octanol, or their mixtures. Langmuir,1993,9(8):2084-2088
    [17] YC Lin, B Kachar, RG Weiss. Liquid-crystalline solvents as mechanistic probes.Part37. Novel family of gelators of organic fluids and the structure of their gels.J. Am. Chem. Soc.,1989,111(15):5542-5551
    [18] L Lu, TM Cocker, RE Bachman, et al. Gelation of Organic Liquids by Some5α-Cholestan-3β-yl N-(2-Aryl) carbamates and3β-Cholesteryl4-(2-Anthrylamino) butanoates. How Important Are H-Bonding Interactions inthe Gel and Neat Assemblies of Aza Aromatic-Linker-Steroid Gelators. Langmuir,2000,16(1):20-34
    [19] E Ostuni, P Kamaras, RG Weiss. Novel X-ray Method for In Situ Determinationof Gelator Strand Structure: Polymorphism of CholesterylAnthraquinone-2-carboxylate. Angew.Chem.Int.Ed.,1996,35(12):1324-1326
    [20] R Mukkamala, RG Weiss. Anthraquinone–steroid based gelators of alcohols andalkanes. J. Chem. Soc., Chem. Commun.,1995,375-376
    [21] R Mukkamala, RG Weiss. Physical Gelation of Organic Fluids byAnthraquinone Steroid-Based Molecules. Structural Features Influencing theProperties of Gels. Langmuir,1996,12(6):1474-1482
    [22] P Terech, I Furman, RG Weiss. Structures of Organogels Based upon Cholesteryl4-(2-Anthryloxy) butanoate, a Highly Efficient Luminescing Gelator: Neutronand X-ray Small-Angle Scattering Investigations. J. Phys. Chem.,1995,99(23):9558–9566
    [23] P Terech, E Ostuni, RG Weiss. Structural Study of CholesterylAnthraquinone-2-carboxylate (CAQ) Physical Organogels by Neutron and X-raySmall Angle Scattering. J. Phys. Chem.,1996,100(9):3759–3766
    [24] K Murata, M Aoki, T Nishi, et al. New cholesterol-based gelators with light-andmetal-responsive functions. J. Chem. Soc., Chem. Commun.,1991,1715-1718
    [25] K Murata, M Aoki, T Suzuki, et al. Thermal and Light Control of the Sol-GelPhase Transition in Cholesterol-Based Organic Gels. Novel Helical AggregationModes As Detected by Circular Dichroism and Electron MicroscopicObservation. J. Am. Chem. Soc.,1994,116(15):6664–6676
    [26] K Sakurai, Y Ono, JH Jung, et al. Synchrotron small angle X-ray scattering fromorganogels. Part1. Changes in molecular assemblies of cholesterol gelatorsduring gel–sol transition. J. Chem. Soc., Perkin Trans.2,2001,108-112
    [27] E Snip, S Shinkai, DN Reinhoudt. Organogels of a nucleobase-bearing gelatorand the remarkable effects of nucleoside derivatives and a porphyrin derivativeon the gel stability. Tetrahedron Lett.,2001,42(11):2153-2156
    [28] C Geiger, M Stanescu, LH Chen, et al. Organogels Resulting from CompetingSelf-Assembly Units in the Gelator: Structure, Dynamics, and PhotophysicalBehavior of Gels Formed from Cholesterol Stilbene and Cholesterol SquaraineGelators. Langmuir,1999,15(7):2241–2245
    [29] DC Duncan, DG Whitten.1H NMR Investigation of the Composition, Structure,and Dynamics of Cholesterol Stilbene Tethered Dyad Organogels. Langmuir,2000,16(16):6445-6452
    [30] R Wang, C Geiger, LH Chen, et al. Direct Observation of Sol Gel Conversion:The Role of the Solvent in Organogel Formation. J. Am. Chem. Soc.,2000,122:2399-2400
    [31] HJ Tian, K Inoue, K Yoza, et al. New organic gelalors bearing a porphyrin group:A new strategy to create ordered porphyrin assemblies. Chem Lett.,1998,(9):871-872
    [32] T Ishi-i, JH Jung, S Shinkai. Intermolecular porphyrin–fullerene interactioncanreinforce the organogel structure of a porphyrin-appended cholesterolderivative.J. Mater. Chem.,2000,10:2238-2240
    [33] T Ishi-i, R Iguchi, E Snip, et al.[60]Fullerene Can Reinforce the OrganogelStructure of Porphyrin-Appended Cholesterol Derivatives: Novel Odd EvenEffect of the (CH2)nSpacer on the Organogel Stability. Langmuir,2001,17(19):5825–5833
    [34] A Ajayaghosh, SJ George. First Phenylenevinylene Based Organogels:Self-Assembled Nanostructures via Cooperative Hydrogen Bonding andπ-Stacking. J. Am. Chem. Soc.,2001,123:5148-5149
    [35] SJ George, A Ajayaghosh, P Jonkheijm, et al. Coiled-Coil Gel Nanostructures ofOligo-(p-phenylenevinylene)s: Gelation-Induced Helix Transition in aHigher-Order Supramolecular Self-Assembly of a Rigid p-Conjugated System.Angew. Chem. Int. Ed.,2004,43:3422–3425
    [36] MK Nayak. Functional organogel based on a hydroxyl naphthanilide derivativeand aggregation induced enhanced fluorescence emission. Journal ofPhotochemistry and Photobiology A: Chemistry,2011,217:40–48
    [37] E Gorrea, P Nolis, E Torres, et al. Self-Assembly of Chiraltrans-Cyclobutane-Containing β-Dipeptides into Ordered Aggregates. Chem. Eur.J.,2011,17:4588-4597
    [38] C Kang, Z Bian, Y He, et al. An organogel formed from a cyclic β-aminoalcohol.Chem. Commun.,2011,47:10746-10748
    [39] X Ran, H Wang, P Zhang, et al. Photo-induced fiber–vesicle morphologicalchange in an organogel based on an azophenyl hydrazide derivative. Soft Matter,2011,7:8561-8566
    [40] S Yagai, T Iwashima, K Kishikawa, et al. Photoresponsive Self-Assembly andSelf-Organization of Hydrogen-Bonded Supramolecular Tapes. Chem. Eur. J.,2006,12:3984-3994
    [41] S Yagai, T Nakajima, K Kishikawa, et al. Hierarchical Organization ofPhotoresponsive Hydrogen-Bonded Rosettes. J.Am.Chem.Soc.,2005,127:11134-11139
    [42] H Komatsu, S Matsumoto, S Tamaru, et al. Supramolecular Hydrogel ExhibitingFour Basic Logic Gate Functions To Fine-Tune Substance Release. J.Am.Chem.Soc.,2009,131:5580–5585
    [43] P Duan, L Qin, X Zhu, et al. Hierarchical Self-Assembly of Amphiphilic PeptideDendrons: Evolution of Diverse Chiral Nanostructures Through HydrogelFormation Over a Wide pH Range. Chem.Eur.J.,2011,17:6389-6395
    [44] S Shinkai, K Muratab. Cholesterol-based functional tectons as versatilebuilding-blocks for liquid crystals, organic gels and monolayers. J. Mater. Chem.,1998,8(3):485–495
    [45] X Wang, L Zhou, H Wang, et al. Reversible organogels triggered by dynamic K+binding and release. Journal of Colloid and Interface Science,2011,353:412–419
    [46] S Zhang, S Yang, J Lan, et al. Helical nonracemic tubular coordination polymergelators from simple achiral molecules. Chem. Commun.,2008,6170–6172
    [47] MOM Piepenbrock, GO Lloyd, N Clarke, et al. Metal-and Anion-BindingSupramolecular Gels. Chemical Reviews,2010,110(4):1960-2004
    [48] JW Liu, JT Ma, CF Chen. Structure-property relationship of a class of efficientorganogelators and their multistimuli responsiveness. Tetrahedron,2011,67:85-91
    [49] YG Li, TY Wang, MH Liu. Ultrasound induced formation of organogel from aglutamic dendron. Tetrahedron,2007,63:7468–7473
    [50] DF Xu, XL Liu, R Lu, et al. New dendritic gelator bearing carbazole in eachbranching unit: selected response to fluoride ion in gel phase. Org. Biomol.Chem.,2011,9:1523–1528
    [51] XY Hou, D Gao, JL Yan, et al. Novel Dimeric Cholesteryl Derivatives and TheirSmart Thixotropic Gels. Langmuir,2011,27:12156–12163
    [52] S Samai, J Dey, K Biradha. Amino acid based low-molecular-weighttris(bis-amido) organogelators. Soft Matter,2011,7:2121–2126
    [53] D Capitani, E Rossi, AL Segre. Lecithin Microemulsion Gels: An NMR Study.Langmuir,1993,9(3):685-689
    [54] D Rizkov, J Gun, O Lev, et al. Donor-Acceptor-Promoted Gelation ofPolyaromatic Compounds. Langmuir,2005,21(26):12130-12138
    [55] N Amanokura, K Yoza, H Shinmori, et al. New sugar-based gelators bearing ap-nitrophenyl chromophore: remarkably large influence of a sugar structure onthe gelation ability. J.Chem.Soc., Perkin Trans.2,1998,2585–2591
    [56] T Shimizu, M Masuda. Stereochemical Effect of Even-Odd Connecting Links onSupramolecular Assemblies Made of1-Glucosamide Bolaamphiphiles. J. Am.Chem. Soc.,1997,119(12):2812-2818
    [57] R Iwaura, K Yoshida, M Masuda, et al. Spontaneous Fiber Formation andHydrogelation of Nucleotide Bolaamphiphiles. Chem.Mater.,2002,14(7):3047-3053
    [58] T Imae, N Hayashi, T Matsumoto, et al. Structures of Fibrous SupramolecularAssemblies Constructed by Amino Acid Surfactants: Investigation by AFM,SANS, and SAXS. Journal of Colloid and Interface Science,2000,225,285–290
    [59] J Song, Q Cheng, S Kopta, et al. Modulating Artificial Membrane Morphology:pH-Induced Chromatic Transition and Nanostructural Transformation of aBolaamphiphilic Conjugated Polymer from Blue Helical Ribbons to RedNanofibers. J. Am. Chem. Soc.,2001,123(14):3205-3213
    [60] M Kolbel, FM Menger. Hierarchical structure of a self-assembled xerogel. Chem.Commun.,2001,275–276
    [61] H Berlepsch, C Bottcher, A Ouart, et al. Surfactant-Induced Changes ofMorphology of J-Aggregates: Superhelix-to-Tubule Transformation. Langmuir,2000,16(14):5908-5916
    [62] JH Fuhrhop, P Schnieder, J Rosenberg, et al. The Chiral Bilayer Effect StabilizesMicellar Fibers. J.Am.Chem.Soc.,1987,109(11):3387-3390
    [63] C Boettcher, B Schade, JH Fuhrhop. Comparative Cryo-Electron Microscopy ofNoncovalent N-Dodecanoyl-(D-and L-) serine Assemblies in Vitreous Tolueneand Water. Langmuir,2001,17(3):873-877
    [64] DJ Pochan, L Pakstis, B Ozbas. SANS and Cryo-TEM Study of Self-AssembledDiblock Copolypeptide Hydrogels with Rich Nano-through MicroscaleMorphology. Macromolecules,2002,35(14):5358-5360
    [65] H Fukuda, A Goto, T Imae. Structure Determination of Helical Fibers byNumerical Simulation for Small-Angle Neutron Scattering. Langmuir,2002,18(19):7107-7114
    [66] P Terech, I Furman, RG Weiss, et al. Gels from small molecules in organicsolvents: structural features of a family of steroid and anthryl-basedorganogelators. Faraday Discuss,1995,101:345-358
    [67] P Terech, JJ Allegraud, CM Garner. Thermoreversible gelation of organic liquidsby arylcyclohexanol derivatives: a structural study. Langmuir,1998,14:3991-3998
    [68] K Sakurai, Y Ono, HJ Jung, et al. Synchrotron small angle X-ray scattering fromorganogels. Part1. Changes in molecular assemblies of cholesterol gelatorsduring gel-sol transition. J. Chem. Soc. Perkin Trans,2001,2:112-118
    [69] BA Simmons, CE Taylor, FA Landis, et al. Microstructure Determination of AOT+Phenol Organogels Utilizing Small-Angle X-ray Scattering and Atomic ForceMicroscopy. J.Am.Chem.Soc.,2001,123(10):2414–2421
    [70] K Sakurai, Y Jeong, K Koumoto, et al. Supramolecular Structure of aSugar-Appended Organogelator Explored with Synchrotron X-ray Small-AngleScattering. Langmuir,2003,19(20):8211-8217
    [71] DJ Abdallah, SA Sirchio, RG Weiss. Hexatriacontane Organogels. The FirstDetermination of the Conformation and Molecular Packing of aLow-Molecular-Mass Organogelator in Its Gelled State. Langmuir,2000,16(20):7558-7561
    [72] D Berthier, T Buffeteau, JM Leger, et al. From Chiral Counterions to TwistedMembranes. J.Am.Chem.Soc.,2002,124(45):13486-13494
    [73] M Llusar, C Sanchez. Inorganic and Hybrid Nanofibrous Materials Templatedwith Organogelators. Chem. Mater.,2008,20(3):782–820
    [74] YG Yang, M Suzuki, H Fukui, et al. Preparation of Helical Mesoporous Silicaand Hybrid Silica Nanofibers Using Hydrogelator. Chem. Mater.,2006,18(5):1324-1329
    [75] F Rodriguez-Llansola, B Escuder, JF Miravet. Switchable Perfomance of anL-Proline-Derived Basic Catalyst Controlled by Supramolecular Gelation. J. Am.Chem. Soc.,2009,131(32):11478–11484
    [76] I Sato, K Kadowaki, H Urabe, et al. Highly enantioselective synthesis of organiccompound using right-and left-handed helical silica. Tetrahedron Letters,2003,44:721–724
    [77] JH Jung, Y Ono, K Hanabusa, et al. Creation of Both Right-Handed andLeft-Handed Silica Structures by Sol-Gel Transcription of Organogel FibersComprised of Chiral Diaminocyclohexane Derivatives. J. Am. Chem. Soc.,2000,122(20):5008-5009
    [78] LQ Chen, JC Wu, LH Yuwen, et al. Inclusion of Tetracycline Hydrochloridewithin Supramolecular Gels and Its Controlled Release to Bovine SerumAlbumin. Langmuir,2009,25(15):8434–8438
    [79] A Sharma, VV Tyagi, CR Chen, et al. Review on thermal energy storage withphase change materials and applications. Renewable and Sustainable EnergyReviews,2009,13:318–345
    [80] E Talmatsky, A Kribus. PCM storage for solar DHW: An unfulfilled promise?.Solar Energy,2008,82:861–869
    [81] A Alrashdana, AT Mayyas, S Al-Hallaj. Thermo-mechanical behaviors of theexpanded graphite-phase change material matrix used for thermal management ofLi-ion battery packs. Journal of Materials Processing Technology,2010,210:174–179
    [82] A Abhat. Low temperature latent heat thermal energy storage: heat storagematerials. Solar Energy,1983,30(4):313–32.
    [83] GA Lane. Macro-encapsulation of PCM. Report no. ORO/5117-8. Midland,Michigan: Dow Chemical Company;1978. p.152.
    [84] GA Lane, HE Rossow. Encapsulation of heat of fusion storage materials. In:Proceedings of the second south eastern conference on application of solar energy,1976,442–55
    [85] M Telkes. Thermal storage for solar heating and cooling. In: Proceedings of theworkshop on solar energy storage sub-systems for heating and cooling ofbuildings. University of Virginia, Charlottesville,1975
    [86] R Biswas. Thermal storage using sodium sulfate decahydrate and water. SolarEnergy,1977,99:99–100
    [87] B Charlsson, H Stymme, G Wattermark. An incongruent heat of fusion systemCaCl2_6H2O made congruent through modification of chemical composition ofthe system. Solar Energy,1979,23:333–50
    [88] V Alexiades, AD Solomon. Mathematical modeling of melting and freezingprocess. Washington, DC: Hemisphere Publishing Corporation,1992
    [89] DV Hale, MJ Hoover, MJ ONeill. Phase change materials hand book. Alabaa:Marshal Space Flight Center,1971
    [90] A Abhat. Development of a modular heat exchanger with an integrated latent heatstorage. Report no. BMFT FBT81-050, Germany Ministry of Science andTechnology Bonn,1981
    [91] A Sari, C Alkan. Preparation and Thermal Energy Storage Properties ofPoly(n-butyl methacrylate)/Fatty Acids Composites as Form-Stable PhaseChange Materials. Polymer Composites,2012,33(1):92-98
    [92] M Li, ZS Wu, MR Chen. Preparation and properties of gypsum-based heatstorage and preservation material. Energy and Buildings,2011,43(9):2314-2319
    [93] M Li, ZS Wu, HT Kao. Study on preparation and thermal properties of binaryfatty acid/diatomite shape-stabilized phase change materials. Solar EnergyMaterials and Solar Cells,2011,95(8):2412-2416
    [94] Y Wang, TD Xia, HX Feng. Stearic acid/polymethylmethacrylate composite asform-stable phase change materials for latent heat thermal energy storage.Renewable Energy,2011,36(6):1814-1820
    [95] JL Li, P Xue, WY Ding. Micro-encapsulated paraffin/high-densitypolyethylene/wood flour composite as form-stable phase change material forthermal energy storage. Solar Energy Materials and Solar Cells,2009,93(10):1761-1767
    [96] DD Mei, B Zhang, RC Liu. Preparation of capric acid/halloysite nanotubecomposite as form-stable phase change material for thermal energy storage. SolarEnergy Materials and Solar Cells,2011,95(10):2772-2777
    [97] DD Mei, B Zhang, RC Liu. Preparation of stearic acid/halloysite nanotubecomposite as form-stable PCM for thermal energy storage. International Journalof Energy Research,2011,35(9):828-834
    [98] XX Zhang, PF Deng, RX Feng, et al. Novel gelatinous shape-stabilized phasechange materials with high heat storage density. Solar Energy Materials andSolar Cells,2011,95(4):1213–1218
    [99] A Sari, A Bicer, A Karaipekli, et al. Synthesis, thermal energy storage propertiesand thermal reliability of some fatty acid esters with glycerol as novelsolid–liquid phase change materials. Solar Energy Materials&Solar Cells,2010,94:1711–1715
    [100] A Karaipekli, A Sar. Preparation, thermal properties and thermal reliabilityof eutectic mixtures of fatty acids/expanded vermiculite as novel form-stablecomposites for energy storage. Journal of Industrial and Engineering Chemistry,2010,16:767–773
    [101] H Li, GY Fang, X Liu. Synthesis of shape-stabilized paraffin/silicon dioxidecomposites as phase change material for thermal energy storage. J Mater Sci,2010,45:1672–1676
    [102] AA Ayd n, H Okutan. High-chain fatty acid esters of myristyl alcohol withodd carbon number: Novel organic phase change materials for thermal energystorage-2. Solar Energy Materials&Solar Cells,2011,95:2417–2423
    [103] CZ Chen, LG Wang, Y Huang. Electrospun phase change fibers based onpolyethylene glycol/cellulose acetate blends. Applied Energy,2011,88:3133–3139
    [104] YB Cai, HZ Ke, D Ju, et al. Effects of nano-SiO2on morphology, thermalenergy storage, thermal stability, and combustion properties of electrospun lauricacid/PET ultrafine composite fibers as form-stable phase change materials.Applied Energy,2011,88:2106–2112
    [105] S Karaman, A Karaipekli, A Sar, et al. Polyethylene glycol(PEG)/diatomitecomposite as a novel form-stable phase change material for thermal energystorage. Solar Energy Materials&Solar Cells,2011,95:1647–1653
    [106] W Edwards, CA Lagadec, DK Smith. Solvent-gelator interactions-usingempirical solvent parameters to better understand the self-assembly of gel-phasematerials. Soft Matter,2011,7,110–117
    [107] M Bielejewski, A apiński, R Luboradzki, et al. Solvent Effect on1,2-O-(1-Ethylpropylidene)-α-D-glucofuranose Organogel Properties. Langmuir,2009,25:8274–8279
    [108] PL Zhu, XH Yan, Y Su, et al. Solvent-Induced Structural Transition ofSelf-Assembled Dipeptide: From Organogels to Microcrystals. Chem.Eur.J.,2010,16:3176–3183
    [109] V aplar, L Frkanec, N Vuji i, et al. Positionally Isomeric Organic Gelators:Structure–Gelation Study, Racemic versus Enantiomeric Gelators, and SolvationEffects. Chem. Eur. J.,2010,16:3066-3082
    [110] JX Cui, J Zheng, WQ Qiao, et al. Solvent-tuned multiple self-assembly of anew sugar-appended gelator. Journal of Colloid and Interface Science,2008,326:267-274
    [111] M Bielejewski, A apiński, R Luboradzki, et al. Influence of solvent on thethermal stability and organization of self-assembling fibrillar networks inmethyl-4,6-O-(p-nitrobenzylidene)-a-D-glucopyranoside gels. Tetrahedron,2011,67:7222-7230
    [112] J Puigmartí-Luis, áP del Pino, V Laukhin, et al. Solvent effect on themorphology and function of novel gel-derived molecular materials. J.Mater.Chem.,2010,20:466-474
    [113] YQ Huang, FL Liao, WR Zheng, et al. Temperature and Solvent-DependentMorphological Sol Gel Transformation: An in Situ microscopic observation.Langmuir,2010,26:3106-3114
    [114] X Ran, P Zhang, SN Qu, et al. Solvent-Induced Helix Superstructure inAchiral Dumbbell-Shaped Hydrazine Derivatives. Langmuir,2011,27:3945-3951
    [115] J Tritt-Goc, M Bielejewski, R Luboradzki, et al. Thermal Properties of theGel Made by Low Molecular Weight Gelator1,2-O-(1-ethylpropylidene)-α-D-glucofuranose with Toluene and Molecular Dynamics of Solvent. Langmuir,2008,24:534-540
    [116] PC Xue, R Lu, XC Yang, et al. Self-Assembly of a Chiral Lipid GelatorControlled by Solvent and Speed of Gelation. Chem.Eur.J.,2009,15:9824-9835
    [117] Y Tokunaga, DM Rudkevich, J Santamaría, et al. Solvent Controls Synthesisand Properties of Supramolecular Structures. Chem. Eur. J.,1998,4:1449-1457
    [118] A Pal and J Dey. Water-Induced Physical Gelation of Organic Solvents byN-(n-Alkylcarbamoyl)-L-alanine Amphiphiles. Langmuir,2011,27:3401-3408
    [119] M Bielejewski and J Tritt-Goc. Evidence of Solvent-Gelator Interaction inSugar-Based Organogel Studied by Field-Cycling NMR Relaxometry. Langmuir,2010,26,17459-17464
    [120] YP Wu, S Wu, G Zou, et al. Solvent effects on structure, photoresponse andspeed of gelation of a dicholesterol-linked azobenzene organogel. Soft Matter,2011,7:9177-9183
    [121] P Jonkheijm, P van der Schoot, APHJ Schenning, et al. Probing theSolvent-Assisted Nucleation Pathway in Chemical Self-Assembly. Science,2006,313:80-83
    [122] J Makarevi, M Joki, B Peri, et al. Bis (Amino Acid) Oxalyl Amides asAmbidextrous Gelators of Water and Organic Solvents: Supramolecular Gelswith Temperature Dependent Assembly/Dissolution Equilibrium. Chemistry-AEuropean Journal,2001,7(15):3328–3341
    [123] AR Hirst, DK Smith. Solvent Effects on Supramolecular Gel-Phase Materials:Two-Component Dendritic Gel. Langmuir,2004,20:10851-10857
    [124] GY Zhu and JS Dordick. Solvent Effect on Organogel Formation by LowMolecular Weight Molecules. Chem. Mater.,2006,18:5988-5995
    [125] K Hanabusa, M Matsumoto, M Kimura, et al. Low Molecular WeightGelators for Organic Fluids: Gelation Using a Family of Cyclo(dipeptide)s. J.Colloid Interface Sci.,2000,224:231–244
    [126] O Gronwald and S Shinkai. Sugar-Integrated Gelators of Organic Solvents.Chem.Eur. J.,2001,7:4328–4334
    [127] R Luboradzki, O Gronwald, M Ikeda, et al. An Attempt to Predict theGelation Ability of Hydrogen-bond-based Gelators Utilizing a Glycoside Library.Tetrahedron,2000,56:9595–9599
    [128] Y Jeong, A Friggeri, I Akiba, et al. Small-angle X-ray scattering from adual-component organogel to exhibit a charge transfer interaction. J. ColloidInterface Sci.,2005,283:113–122
    [129] K Yoza, N Amanokura, Y Ono, et al. Sugar-Integrated Gelators of OrganicSolvents-Their Remarkable Diversity in Gelation Ability and Aggregate Structure.Chem. Eur. J.,1999,5(9):2722-2729
    [130] QN Pham, N Brosse, C Frochot, et al. Influence of the gelator structure andsolvent on the organisation and chirality of self-assembling fibrillar networks.New J. Chem.,2008,32:1131–1139
    [131] N Zweep, A Hopkinson, A Meetsma, et al. Balancing Hydrogen Bonding andvan der Waals Interactions in Cyclohexane-Based Bisamide and BisureaOrganogelators. Langmuir,2009,25:8802–8809
    [132] J Chen, JW Kampf and AJ McNeil. Comparing Molecular Gelators andNongelators Based on Solubilities and Solid-State Interactions. Langmuir,2010,26:13076–13080
    [133] DS Tsekova, JA Sáez, B Escuder, et al. Solvent-free construction ofself-assembled1D nanostructures from low-molecular-weight organogelators:sublimation vs. gelation. Soft Matter,2009,5:3727–3735
    [134] AR Katritzky, DC Fara, HF Yang, et al. Quantitative Measures of SolventPolarity. Chem. Rev.,2004,104:175-198
    [135]程能林,溶剂手册(第二版),北京:化学工业出版社,1994
    [136] NS Moyo,S Mitra. Fluorescence Solvatochromism in Lumichrome andExcited-State Tautomerization A Combined Experimental and DFT Study. J.Phys. Chem. A,2011,115:2456–2464
    [137] R Lungwitz, M Friedrich, W Linertc, et al. New aspects on the hydrogenbond donor (HBD) strength of1-butyl-3-methylimidazolium room temperatureionic liquids. New J. Chem.,2008,32:1493–1499
    [138] M Jozefowicz, JR Heldt, J Heldt. Solvent effects on electronic transitions offluorenone and4-hydroxyfluorenone. Chemical Physics.,2006,323:617–621
    [139] S Spange, E Vilsmeier, S Adolph, et al. Unusual solvatochromism of the4,4'-bis(dimethylamino)benzophenone (Michler's ketone)-tetracyanoetheneelectron donor-acceptor complex. J. Phys. Org. Chem.,1999,12:547–556
    [140] MJ Kamlet, JM Abboud, MH Abraham, et al. Linear solvation energyrelationships.23. A comprehensive collection of the solvatochromic parameters,π*,α,β and Some Methods for Simplifying the Generalized SolvatochromicEquation. J. Org. Chem.,1983,48:2877-2887
    [141] J Catalan, C Diaz. A Generalized Solvent Acidity Scale: TheSolvatochromism of o-tert-Butylstilbazolium Betaine Dye and Its Homomorpho,o'-Di-tert-butylstilbazolium Betaine Dye. Liebigs Ann.Recueil, l997:1941-1949
    [142] J Catalan, C Diaz, V Lbpez, et al. A Generalized Solvent Basicity Scale: TheSolvatochromism of5-Nitroindoline and Its Homomorph1-Methyl-5-nitroindoline. Liebigs Ann.,1996:1785-1794
    [143] C Reichard. Solvatochromic Dyes as Solvent Polarity Indicators. Chem.Rev.,1994,94:2319-2358
    [144] Y Marcus. The effectivity of solvents as electron pair donors. Journal ofSolution Chemistry,1984,13(9):599-624
    [145] BA Miller-Chou, JL Koenig, Harada, et al. A review of polymer dissolution.Prog. Polym. Sci.,2003,28:1223–1270
    [146] CM Hansen, Hansen Solubility Parameters A User’s Handbook, ed. C.Hansen, Taylor&Francis Group-CRC, Boca Raton,2nd edn,2007, ch.1, pp.19–20
    [147] A Banerjee, G Paluib, A Banerjee. Pentapeptide based organogels: the role ofadjacently located phenylalanine residues in gel formation. Soft Matter,2008,4:1430–1437
    [148] CM Garner, P Terech, JJ Allegraud. Thermoreversible gelation of organicliquids by arylcyclohexanol derivatives: Synthesis and characterisation of thegels. J. Chem. Soc., Faraday Trans.,1998,94(15):2173-2179
    [149] H Koshima, W Matsusaka and H Yu. Preparation and photoreaction oforganogels based on benzophenone. J.Photochem.Photobiol. A,2003,156:83–90
    [150] M George and RG Weiss. Chemically Reversible Organogels: AliphaticAmines as “Latent” Gelators with Carbon Dioxide. J. Am. Chem. Soc.,2001,123:10393–10394
    [151] D Gao, M Xue, JX Peng, et al. Preparation and gelling properties ofsugar-contained low-molecular-mass gelators: Combination of cholesterol andlinear glucose. Tetrahedron,2010,66:2961–2968
    [152] PC Xue, R Lu, GJ Chen, et al. Functional Organogel Based on aSalicylideneaniline Derivative with Enhanced Fluorescence Emission andPhotochromism. Chem.Eur. J.,2007,13:8231–8239
    [153] HX Wu, L Xue, Y Shi, et al. Organogels Based on J-and H-Type Aggregatesof Amphiphilic Perylenetetracarboxylic Diimides. Langmuir,2011,27:3074–3082
    [154] Y Feng, ZT Liu, J Liu, et al. Peripherally DimethylIsophthalate-Functionalized Poly(benzyl ether) Dendrons: A New Kind ofUnprecedented Highly Efficient Organogelators. J. Am. Chem. Soc.,2009,131:7950–7951
    [155] J Li, P Chen, XB Chen. Synthesis and Gelation Behavior of4’-Propyl-1,1’-bi(cyclohexyl)-4-one4-Alkoxybenzoylhydrazone. Chem.Lett.,2010,39:1329-1330
    [156] M Raynal and L Bouteiller. Organogel formation rationalized by Hansensolubility parameters. Chem. Commun.,2011,47:8271–8273
    [157] S Wu, QJ Zhang, C Bubeck. Solvent Effects on Structure, Morphology, andPhotophysical Properties of an Azo Chromophore FunctionalizedPolydiacetylene. Macromolecules,2010,43:6142–6151
    [158] E Stefanis, C Panayiotou. Prediction of Hansen Solubility Parameters with aNew Group-Contribution Method. Int. J. Thermophys,2008,29:568-585
    [159] DR Trivedi, A Ballabh, P Dastidar, et al. Structure–Property Correlation of aNew Family of Organogelators Based on Organic Salts and Their SelectiveGelation of Oil from Oil/Water Mixtures. Chem. Eur. J.,2004,10:5311–5322
    [160] K Hanabusa, H Kobayashi, M Suzuki, et al. Organogel fromL-leucine-containing surfactant in nonpolar solvents. Colloid. Polym. Sci.,1998,276:252-259
    [161] N Yan, G He, H Zhang, et al. Glucose-Based Fluorescent Low-MolecularMass Compounds: Creation of Simple and Versatile Supramolecular Gelators.Langmuir,2010,26:5909-5917
    [162] A Bicer, A Sari. Synthesis and thermal energy storage properties of xylitolpentastearate and xylitol pentapalmitate as novel solid–liquid PCMs. SolarEnergy Materials&Solar Cells,2012,102:125–130
    [163] A Castell, I Martorell, M Medrano, et al. Experimental study of using PCMin brick constructive solutions for passive cooling. Energy and Buildings,2010,42:534–540
    [164] M Mazmana, LF Cabeza, H Mehling, et al. Utilization of phase changematerials in solar domestic hot water systems. Renewable Energy,2009,34:1639-1643
    [165] S Mondal. Phase change materials for smart textiles–An overview. AppliedThermal Engineering,2008,28:1536-1550
    [166] HB Yin, XN Gao, J Ding, et al. Thermal management of electroniccomponents with thermal adaptation composite material. Applied Energy,2010,87:3784-3791
    [167] GJ Suppes, MJ Go, S Lopes. Latent heat characteristics of fatty acidderivatives pursuant phase change material applications. Chemical EngineeringScience,2003,58:1751-1763
    [168] MR Nikolic, M Marinovic-Cincovic, S Gadzuric, et al. New materials forsolar thermal storage: solid/liquid transitions in fatty acid esters. Solar EnergyMaterials and Solar Cells,2003,79:285-292
    [169] WD Li, EY Ding. Preparation and characterization of a novel solid-liquidPCM: butanediol di-stearate, Materials Letters,2007,61:1526-1528
    [170] WD Li, EY Ding, Preparation and characterization of a series of dioldi-stearates as phase change heat storage materials. Materials Letters,2007,61:4325-4328
    [171] C Alkan, K Kaya, A Sari. Preparation and thermal properties of ethyleneglycol distearate as a novel phase change material for energy storage. MaterialsLetters,2008,62:1122-1125
    [172] G Canik, C Alkan. Hexamethylene dilauroyl, dimyristoyl,and dipalmytoylamides as phase change materials for thermal energy storage. Solar Energy,2010,84:668-772
    [173] A Sari, A Bicer, A Karaipekli. Synthesis, characterization, thermal propertiesof a series of stearic acid esters as novel solid–liquid phase change materials,Materials Letters,2009,63:1213-1216
    [174] A Sari, R Ero lu, A Bicer, et al. Synthesis and thermal energy storageproperties of erythritol tetrastearate and erythritol tetrapalmitate. ChemicalEngineering and Technology,2011,34:87-92
    [175] AA Ayd n, H Okutan. High-chain fatty acid esters of myristyl alcohol witheven carbon number: novel organic phase change materials for thermal energystorage-1, Solar Energy Materials and Solar Cells,2011,95:2752-2762
    [176] GY Fang, H Li, Z Chen, et al. Preparation and characterization of stearicacid/expanded graphite composites as thermal energy storage materials. Energy,2010,35:4622-4626
    [177] YB Cai, QF Wei, FL Huang, et al. Preparation and properties studies ofhalogen-free flame retardant form-stable phase change materials based onparaffin/high density polyethylene composites. Applied Energy,2008,85:765-775
    [178] YB Cai, Y Hu, L Song, et al. Flammability and thermal properties of highdensity polyethylene/paraffin hybrid as a form-stable phase change material. J.Appl. Polym. Sci.,2006,99:1320–1327
    [179] A Karaipekli, A Sari. Preparation and characterization of fatty acidester/building material composites for thermal energy storage in buildings.Energy and Buildings,2011,43:1952-1959
    [180] AA Ayd n, A Ayd n. High-chain fatty acid esters of1-hexadecanol for lowtemperature thermal energy storage with phase change materials. Solar EnergyMaterials&Solar Cells,2012,96:93-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700