应用于热管的纳米流体热物性参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的快速发展,纳米材料已被应用到传热领域中,孕育而生了“纳米流体”的概念。纳米流体是指以一定的方式和比例在液体中添加纳米级金属、非金属或聚合物固体粒子以构成一种新型的传热工质,这种新传热工质可用于换热设备中替代传统的工质。热管作为换热设备中的一种高效传热元件,将纳米流体应用于其中可显著改善传热性能。因此,对应用于热管的纳米流体热物性参数的研究是将纳米技术应用于热能工程的创新性研究,具有重要的工程应用价值。
     本文以Al_2O_3-水纳米流体作为热管的工作介质,通过测试其各种热物性参数,来研究Al_2O_3纳米颗粒的加入如何改变工作介质的热物性参数以对热管传热能力的影响。其主要研究内容为:
     首先,通过透射电子显微镜、X射线衍射仪对Al_2O_3纳米颗粒进行了表征,采用两步法制备了两种粒径(40nm、65nm)、五种体积分数(0.1%~0.5%)的Al_2O_3-水纳米流体。为了制备悬浮稳定的纳米流体,采用L9(3~4)正交试验进行分析,得出了最佳工艺参数为:pH值为8、超声振动时间为3h、不添加分散剂、磁力搅拌时间为30min。并通过Zeta电位分析仪、激光粒度分析仪等分析了超声振动时间、分散剂、pH值等对Al_2O_3-水纳米流体悬浮稳定性的影响,得出:pH值为8、超声振动时间为3h、分散剂添加量为0.02%时,Al_2O_3-水纳米流体的悬浮稳定性最好。并对其悬浮稳定性作用机理进行了一定的理论分析。
     其次,采用旋转粘度计、全自动界面张力仪、KD 2 Pro导热系数仪、热重差热联用仪等仪器对Al_2O_3-水纳米流体在不同条件下的粘度、表面张力系数、导热系数、热重、汽化潜热、密度、沸点等热物性参数进行了测量,结果发现:Al_2O_3-水纳米流体的粘度随着纳米颗粒体积分数的增加而增加,随着温度的升高而减小,随着颗粒尺寸的减小而增大;Al_2O_3-水纳米流体的表面张力系数随着体积分数的增加而减小,随着颗粒粒径的减小而减小,随着温度的升高而减小;Al_2O_3-水纳米流体的导热系数随着体积分数的增加而增加,随着颗粒粒径的减小而增大,随着温度的升高而增大;Al_2O_3-水纳米流体的相变速率随着颗粒体积分数的增加而增大,而颗粒粒径对其基本没影响;Al_2O_3-水纳米流体的汽化潜热随着颗粒体积分数的增加而减小;Al_2O_3-水纳米流体的密度随着颗粒体积分数的增加而增大;Al_2O_3-水纳米流体的沸点随着颗粒体积分数的增加而减小。并对各热物性参数的作用机理进行了一定的理论分析。
     最后,分析了应用于热管的Al_2O_3-水纳米流体工作介质的综合热物理性质。结果表明Al_2O_3-水纳米流体具有较好的综合热物理性质,适合做热管的工作介质;与水相比,其传输因素提高了3.2%~14.9%,具有较好的传热性能。
With the rapid development of nanotechnology, nanomaterials have been applied into the heat transfer areas, breded as "nano-fluid". Nanofluid is a new type of heat working fluid, which is formed by adding nano-level metal, non-metallic or polymer solid particles into the liquid in a certain way and ratio. This kind of new heat transfer working substance may substitute traditional working substance in the heat exchange equipment. Heat pipe as one kind of highly effective heat transfer part in heat exchange equipment, nano-fluid may obviously improve the heat-transfer property, when it was applied in the heat pipe. Therefore, the research of nanometer class volumetric heat natural parameter used in heat pipe is innovative research of appling nanotechnology in the thermal engineering, it has the important project application value.
     In this paper, the Al_2O_3-water nanofluid was used to the heat pipe working medium, and through testing its various thermal parameters, the effects of the addition of Al_2O_3 nanoparticles on the thermal parameters of working fluid and heat transfer ability of heat pipe were studied. The main research contents are as follows:
     Fristly, the Al_2O_3 nanoparticles were characterized by transmission electron microscopy, X-ray diffraction, two particle sizes (40nm,65nm) and five volume fractions (0.1% ~ 0.5%) of Al_2O_3-water nanofluids were prepared by the two-step method. In order to prepare stable nanofluids suspended, the L9(34) orthogonal experiment was employed to analysis, the optimum process parameters are: pH value of 8, ultrasonic vibration time of 3h, not add the dispersing agent, magnetic stirring time of 30min. By using Zeta potential analyzer, laser particle size analyzer, the influences of the time of the ultrasonic vibration, dispersing agent, pH value on the suspension stability Al_2O_3-water nanofluids were studies, the obtained results are: the suspension stability of Al_2O_3-water nanofluid is best when the pH value was 8, ultrasonic vibration time was 3h, dispersion agent was 0.02%. The mechanism of the suspension stability was theoretically analyzed as well.
     Secondly, viscosity, surface tension, thermal conductivity, heat weight, latent heat of vaporization, density, boiling point and other thermal parameters for Al_2O_3-water nanofluids under different conditions were measured by rotating viscometer, automatic surface tension meter, KD 2 Pro thermal conductivity meter, thermogravimetric differential thermal spectrometer and other instruments. The results showed that: the viscosity of Al_2O_3-water nanofluid increases with increasing the volume fraction of nanoparticles, decreases with increasing temperature, increases with decreasing particle size; the surface tension coefficient of Al_2O_3-water nanofluid decreases with increasing volume fraction, decreasing particle size, and increasing temperature, respectively; the thermal conductivity of Al_2O_3-water nanofluid increases with increasing volume fraction, decreasing particle size, and increasing temperature, respectively; the phase transition rate of Al_2O_3-water nanofluid increases with increasing the particle volume fraction, the particle size did not affect its basic; the latent heat of evaporation of Al_2O_3-water nanofluid increases with decreasing the particle volume fraction; the nanofluids density of Al_2O_3-water increases with increasing the volume fraction of particles; the boiling point of Al_2O_3-water nanofluid decreases with increasing volume fraction of particles. The mechanism of the every thermal parameter was theoretically analyzed as well.
     Lastly, analyzed synthesis hot physical property of Al_2O_3-water nanofluid working substance which has applied in heat pipe. The result indicated that Al_2O_3-water nanofluid has the good synthesis hot physical property, suitable to make heat pipe's working substance; Its transmission factor enhanced 3.2%~14.9% compared to water, has the good heat-transfer property.
引文
[1] Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME Fluids Engineering Division,1995,231:99-105.
    [2] Choi S U S, Eastman J A, Yu W, et al. Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles[J]. Appl Phys Lett,2001,78: 718-720.
    [3] Lo C H, Tsung T T, Chen L C, et al. Fabriation of copper oxide nanfluid using submerged are nanoparticale synthesis system (SANSS)[J].Journal of Nanopartical Research,2005,7:313-320.
    [4]朱海涛.纳米流体的制备、稳定导热性能研究[博士学位论文].山东:山东大学,2005.
    [5] Liu Min sheng, Lin Mark Chingcheng, Tsai C Y, et al. Enhancement Of thermal conductivity with Cu for nanofl- uids using chemical reduction method[J]. International Journal of Heat and Mass Transfer,2006,49:3028-3033.
    [6]王涛,骆仲泱,郭顺松等.可控纳米流体的制备热导率研究[J].浙江大学报(工学版),2007,41(3):514-518.
    [7]李泽梁,李俊明,胡海滔等.CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响[J].热科学与技术,2005,4(2):157-163.
    [8] Zhang Ling lin, Jiang Yun hong, Ding Yun long, et al. Investigation into the nanofluids[J]. Journal of nanoparticle Research,2007,9:478-489.
    [9] Li Xing Fang, Zhu Dong sheng, Wang Xia ju. Evaluation on dispersion behavior of the aqueous cooper nanosuspensions[J]. Journal of colloid and Interface science,2007,310(2):456-463.
    [10] Hong K S, Hong T K, Yang H S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles[J]. Appl Phys Lett,2006,88:31901 1-3.
    [11] S M S Murshed, K C Leong, C Yang. Enhanced thermal conductivity of TiO_2-water based nanofluids[J]. International Journal of Thermal Sciences,2005,44 (4):367-373.
    [12] Xie H, Wang J, Xi T, et al. Thermal conductivity enhancement of suspension containing nanosized alumiua particles[J]. J Appl Phys,2002,91(7):4568-4572.
    [13] Choi S U S, Zhang Z G, Yu W, et al. Anomalous thermal conductivity enhancement in nanotubesuspensions[J]. Appl Phys Lett,2001,79:2252-2254.
    [14] Liu M S, Lin M C, Huang I T, et al. Enhancement of thermal conductivity with carbon nanotube for nanofluids[J]. International communications in heat and mass transfer,2005, 32(9):1202-1210.
    [15] Lee Ji Hwan, Hwang Kyo Sik, Jang Seok Pil, et al. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al_2O_3 nanoparticles[J]. Internatio- nal Journal of Heat and Mass Transfer,2008,51:2651-2656.
    [16] Xie Hua qing, Chen Li fei, Wu Qing ren. Measurements of the viscosity of suspensions (nanofluids) containing nanosized Al_2O_3 particles+[J]. High Temperatures-High Pressures, 2008,37:127-135.
    [17] Li Chuanping, Akinc Mufit, Wiench Jerzy, et al. Relationship between Water Mobility and Viscosity of Nanometric Alumina Suspensions[J]. Journal of the American Ceramic Society, 2005,88(10):2762-2768.
    [18]范庆梅,卢文强.纳米流体热导率和粘度的分子动力学模拟计算[J].工程热物理学报,2004,25(2):268-270.
    [19] Das Sarit K, Putra Nandy, Roetzel Wilfried. Pool boiling characteristics of nanofluids[J]. Internati- onal Journal of Heat and Mass Transfer,2003,46:851-862.
    [20] Heris S Zeinali, Etemad S Gh, Esfahany M Nasr. Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer[J]. International Communications in Heat and Mass Transfer,2006,33:529-535.
    [21] Ho C J, Chen M W, Li Z W. Numerical simulation of natural convection of nanofluid in a square enclosure: Effects due to uncertainties of viscosity and thermal conductivity[J]. International Journal of Heat and Mass Transfer,2008,51:4506-4516.
    [22] Putra Nandy, Roetzel Wilfried, Das Sarit K. Natural Convection of Nano-Fluids[J]. Heat and Mass Transfer,2003,39:775-784.
    [23]帅美琴,施明恒,李强.纳米颗粒悬浮液池内泡状沸腾机理[J].东南大学学报(自然科学版),2006,36(5):785-789.
    [24] Pak B C, Choi Y L. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles[J]. Experimental Heat Transfer,1998,11:151-170.
    [25] Wang Xin wei, Xu Xian fan, Choi S U S. Thermal conductivity of nanoparticle–fluid mixture[J]. Journal of Thermophysics and Heat Transfer,1999,13 (4): 474-480.
    [26]彭小飞,俞小莉,夏立峰等.低浓度纳米流体粘度变化规律试验[J].农业机械学报,2007,38(4):138-141.
    [27] Maiga Sidi El Becaye, Nguyen Cong Tam, Galanis Nicolas, et al. Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube[J]. Superlattices and Microstructures,2004,35: 543-557.
    [28]李强.纳米流体强化传热机理研究[博士学位论文].南京:南京理工大学,2004.
    [29] Prasher Ravi, Song David, Wang Jinlin. Measurements of nanofluid viscosity and its implications for thermal applications[J]. Applied Physics Letters,2006,89:133108(3pp).
    [30] Nguyen C T, Desgranges F, Roy G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids– Hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow,2007,28:1492-1506.
    [31]刘玉东,李夔宁,童明伟等.TiO2-水纳米流体的粘度修正公式[J].重庆大学学报(自然科学版),2006,29(9):52-55.
    [32] Murshed S M Sohel, Tan Say-Hwa, Nguyen Nam-Trung. Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics[J]. Journal of Physics D: Applied Physics,2008,41: 085502 (5pp).
    [33] Tseng Wenjea J, Lin Kuang-Chih. Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions[J]. Materials Science and Engineering A,2003,355:186-192.
    [34]郭顺松,骆仲泱,王涛等.SiO_2纳米流体粘度研究[J].硅酸盐通报,2006,25(5):52-55.
    [35] Ding Yu long, Alias Hajar, Wen Dong sheng, et al. Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNTnanofluids)[J]. International Journal of Heat and Mass Transfer, 2006,49:240-250.
    [36] Namburu Praveen K, Kulkarni Devdatta P, Misra Debasmita, et al. Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture[J]. Experimental Thermal and Fluid Science,2007,32:397-402.
    [37]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液的粘度、热扩散系数与Pr数[J].自然科学进展,2004,14(7):799-803.
    [38]李泽梁,李俊明,王补宣等.SDBS对氧化铜纳米颗粒悬浮液粘度的影响[J].工程热物理报,2003,24(5):849-851.
    [39] Li Jun ming, Li Ze liang, Wang Bu xuan. Experimental viscosity measurements for copper oxide nanoparticle suspensions[J]. Tsinghua Science And Technology,2002,7(2):198-201.
    [40] Eastman J A, Choi U S, Li S, et al. Enhanced thermal conductivity through the development ofnanofliud [C]. KomarnenlS Parkel J C,Wollenberger H J,eds.Mater ResSoc SympProc. Pittsburgh PA:MRS,1997,3-11.
    [41]田春山,王志伟.纳米二氧化钛水溶液表面张力系数的研究[J].青海大学学报(自然科学版),2006,25(3):78-79.
    [42]帅美琴,施明恒,李强.纳米颗粒流体池内泡状沸腾机理[J].东南大学学报(自然科学版),2006,36(9):786-789.
    [43]高亦普,刘振华.水基纳米流体在水平毛细管中的气液两相流流型特性[J].化工学报,2007,58(8):1944-1947.
    [44] Sarit Kumar, Das Nandy, Putra Peter, et al.Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids[J]. Journal of Heat Transfer,2003,125:567-569.
    [45] Xie H, Lee H, Youn W, et al. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities[J]. Appl Phys Letter,2003,95(8):4967-4971.
    [46] C H Li, Calvin H, Peterson G P. Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)[J]. Journal of Applied Physics,2006,99:084-314.
    [47]李芃,仇中柱.纳米流体热导率的测量与评价[J].节能,2005,4:13-15.
    [48] S M S Murshed, K C Leong, C Yang. Enhanced thermal conductivity of TiO_2-water based nanofluids[J]. International Journal of Thermal Sciences,2005,44 (4):367-373.
    [49] Masuda H, Ebata A, Teramae K, et al. Alternation of thermal conductivity and viscosity of liquid dispersing ultrafine particles (dispersion ofγ-A12O3, SiO2and TiO2 ultra-fine particles) [J]. Bussei (Japan),1993,4 (4):227-233.
    [50] T K Hong, H S Yang, C J Choi. Study of the enhanced thermal conductivity of Fe nanofluids [J]. Journal of Applied Physics,2005,97 (6):1-4.
    [51] S U S Choi, Z G Zhang, W Yu, et al. Anomalous thermal conductivity enhancement in nanotube suspensions [J]. Applied Physics Letters,2001,79:2252-2254.
    [52] Keblinski P, Phillpot S R, Choi S U S, et al. Mechanisms of Heat Flow in Suspensions of Nano-sized Particles(Nanofluids)[J]. Int J Heat MassTransfer,2002,45(4):855-863.
    [53] Eastman J A, Choi S U S, Li S. Development of Energy-efficient Nanofluids for Heat Transfer Applications[J]. Argonne National Laboratory Report,2001.
    [54] Lee S, Choi S U S, Li S, et al. Measuring thermal conductivity of fluids containing oxidenanoparticles[J]. J of Heat Transfer,1999,121:280-289.
    [55]郭顺松.纳米流体热物理特性研究[硕士学位论文].浙江:浙江大学,2006.
    [56]宣益民,李强.纳米流体强化传热研究[J].工程热物理学报,2000,21(4):466-470.
    [57]钟勋,俞小莉,吴俊.氧化铝有机纳米流体的流动传热基础特性[J].化工学报,2009,60(1):35-41.
    [58]何钦波.纳米流体相变蓄冷材料的热物性小型蓄冷系统特性研究[硕士学位论文].重庆:重庆大学,2005.
    [59]蔡岸,刘震炎,奚同庚等.无机纳米流体的热物性其测试新方法的研究[J].无机材料学报,2004,19(5):1151-1157.
    [60]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液热物性颗粒比热容尺寸效应[J].工程热物理学报,2004,25(2):296-298.
    [61]彭小飞,俞小莉,夏立峰等.Al_2O_3纳米粉体悬浮液热物性实验研究[J].材料科学与工程学报,2007,25(1):52-54.
    [62]王补宣,周乐平,彭晓峰.尺寸效应和表面效应对纳米颗粒比热容的影响[J].热科学与技术,2004,3(1):1-6.
    [63]彭小飞,俞小莉,余凤芹.低浓度纳米流体比热容试验研究[J].材料科学与工程学报,2007,25(5):719-722.
    [64]何钦波,童明伟,刘玉东.DSC法测量低温相变蓄冷纳米流体的比热容[J].制冷与空调,2007,7(4):19-22.
    [65]吴淑英,朱冬生,杨硕.Al_2O_3-H2O纳米流体的相变蓄冷实验研究[J].工程热物理学报,2009,30(6):981-983.
    [66]李新芳,朱冬生.纳米流体强化相变蓄冷特性的实验研究[J].材料导报:研究篇,2009,23(3):11-13.
    [67]刘玉东,李夔宁,何钦波等.低温纳米复合相变蓄冷材料热物性研究[J].工程热物理学报,2008,29(1):105-107.
    [68]刘玉东,童明伟,何钦波.相变蓄冷纳米复合材料的溶解热研究[J].材料导报,2005,19(8):111-113.
    [69] W C Wei, S H Tsai, S Y Yang, et al. Effect of Nanofluid Concentration on Heat Pipe Thermal Performance[J]. IASME Transactions,2005 (2):1432-1439.
    [70] W C Wei, S H Tsai, S Y Yang, et al. Experimental Investigation of Silver Nano-fluid on Heat Pipe Thermal Performance[J]. Applied Thermal Engineering,2006,26:2377-2382.
    [71]康尚文,魏维玱,蔡声鸿等.银奈米流体应用于沟槽式热管之效能分析[J].东莞理工学院学报,2006,13(4):5-9.
    [72] C Y Tsai, H T Chien, B Chan, et al. Effect of Structural Character of Gold Nanoparticles in Nano- fluid on Heat Pipe Thermal Performance[J]. Materials Letters,2004,58:1461-1465.
    [73] S W Kang, W C Wei, S H Tsai, et al. Experimental Investigation of Nanofluids on Sintered Heat Pipe Thermal Performance[J]. Applied Thermal Engineering,2008,In Press.
    [74] H T Chien, C W Chang, P H Chen. Improvement on thermal performance of circular heat pipe with nanofluid[C]. 13th Int.Heat Pipe Conference.Shanghai,China,2004,399-401.
    [75] Z H Liu, X F Yang, G L Guo. Effect of Nanoparticles in Nanofluids on Thermal Performance in a Miniature Thernosyphon[J]. Journal of Applied Physics,2007,102:013526.
    [76]薛怀生,樊建人,胡亚才等.碳纳米管悬浮液在重力热管中的沸腾特性[J].化工学报,2006,57(11):2562-2567.
    [77] H S Xue, J R Fan, Y C Hu, et al. The Interface Effect of Carbon Nanotube Suspension on the Thermal Performance of a Two-Phase Closed Thernosyphon[J]. Journal of Applied Physics, 2006,100:104909.
    [78] Seok ho Rhi, Ki Woo Lee, Yung Lee. A two-phase loop thermosyphons with nanofluids[J]. 13th Int.Heat Pipe Conference.Shanghai,china,2004,9:198-202.
    [79]熊建国,刘振华.平板热管微槽道传热面上纳米流体沸腾换热特性[J].中国电机工程学报,2007,27(23):105-109.
    [80] K H Park, W H Lee, K W Lee, et al. Study on the Operating Characteristics in Small Size Heat Pipe using Nanofluids[C]. Proceedings of the 3rd IASME/WSEAS Int.Conf.on Heat Transfer, Thermal Engineering and Environment,2005,106-109.
    [81]刘俊红,顾建明,刘辉.纳米级固体颗粒应用于热管的试验研究[J].核动力工程,2005,26(3): 268-271.
    [82]郭广亮,刘振华.碳纳米管悬浮液强化小型重力型热管换热特性[J].化工学报,2007,68(12):3006-3007.
    [83]彭玉辉,黄素逸,黄锟剑.热管中添加纳米颗粒[J].化工学报,2004,55(11):1768-1772.
    [84]彭玉辉,黄素逸,黄锟剑.纳米颗粒强化热虹吸管传热特性的实验研究[J].热能动力工程,2005,20(11):138-141.
    [85] Balkrishna Mehta, Sameer Khandekar. Two phase closed thermosyphon with nanofluids[C]. 14th International Heat Pipe Conference,Florianópolis,Brazil,2007,75-80.
    [86] Sameer Khandekar. Thermal performance of closed two-phase thermosyphon using nanofluids[J]. Int J of Thermal Sciences,2008,47(6):659-667.
    [87]黄素逸,李中洲,黄锟剑等.纳米材料在热管中的应用[J].华中科技大学学报(自然科学版),2006,34(5):105-197.
    [88]李启明,彭晓峰,王补宣.纳米流体振荡热管内部流动和传热特性[J].工程热物理学报,2008,29(3):479-481.
    [89] H B Ma, C Wilson, B Borgmeyer, et al. Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe[J]. Applied Physics Letters,2006,88:1431161-1431163.
    [90] H B Ma, Wilson, C B Borgmeyer, et al. An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe[J]. Journal of Heat Transfer,2006,128:1213 -1216.
    [91]商福民,刘登瀛,冼海珍等.自激振荡流热管内Cu-水纳米流体的传热特性[J].动力工程,2007,27(2):233-236.
    [92]商福民,刘登瀛,冼海珍等.振荡热管内不同形态纳米颗粒流动[J].化工学报,2007,58(9):2200-2204.
    [93] Y H Lin, S W Kang, H L Chen. Effect of silver nano-fluid on pulsating heat pipe thermal performance[J]. Applied Thermal Engineering,2008,(28):1312-1317.
    [94]董丽娜.纳米粒子热力学性质纳米流体强化传热研究[硕士学位论文].大连:大连海事大学,2005.
    [95] M Chopkar, S Sudarshan, P K Das, et al. Effect of Particle Size on Thermal Cond- uctivity of Nanofluid[J]. Metallurgical And Materials Transactions A,2008,39:1535-1542.
    [96]毋伟,陈建峰,卢寿慈.超细粉体表面修饰[M].北京:化学工业出版社,2004.
    [97]李强,宣益民.纳米流体强化导热系数机理初步分析[J].热能动力工程,2002,17(6):568-571.
    [98] Eistein A. Eine neue Bestimmung der Molekuldimensionen[J]. Annalen der Physik,190- 6,19:289-306.
    [99] Eilers Von h. Die Viskositat von Emulsionen hochviskoser Stoffe als Funktion der Konzentraiton [J]. Kolloid-Zeitschrift,97:313-321.
    [100] De Brujin H. The Viscosity of suspensions of spherical Particles[J]. Recueil des travaux chiniques des Pays-Bas,61:863-874.
    [101] Vand V. Viscosity of Solutions and Suspensions I Theory[J]. Journal of Physical and Chlloid Chemisty,52:277-299.
    [102] Saito N. Concentration Dependence of the Viscosity of High Polymer Solutions I[J]. Journal of the Physical Society of Japan,5:4-8.
    [103] Mooney M. The Viscosity of a concentrated Suspension of Spherical Particles[J]. Journal of Colloid Science,6:162-170.
    [104] Brinkman H C. The Viscosity of Concentrated Suspensions and Solutions[J]. The Journal of Chemical Physics,1952,20:571.
    [105] Batchelor G K. The Effect of Brownian Motion on t he Bulk Stress in a Suspension of Sp herical Particles[J]. Journal of Fluid Mechanics,1977,83(1):97-117.
    [106] Krieger I M. Rheology of Monodisperse Lattices[J]. Advances in Colloid & Interface Sciences,3:111-136.
    [107] Lundgren T S. Slow Flow through Stationary Randon Beds and Suspensions of Spheres[J]. Jo -urnal of Fluid Mechanics,51:273-299.
    [108] Eshelby J D. The Detemination of the Elastic Field of an Ellisoidal Inclusion,and Related Problems[J]. Proceedings of Royal Society of London A,241:376-396.
    [109] Maiga S E, Nguyen Cong Tam, Galanis Nicolas, et al. Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube[J]. Superlattices and Micro structures,200 -4,35:543-557.
    [110]李克文.原油与浆体流变学[M].石油工业出版社,1994.
    [111] H A巴勒斯.流变学导引[M].北京:中国石化出版社,1992.
    [112] P Keblinski. Mechanisms of heat flow in suspensions of nano-sized partieles(nanofluids)[J]. International Journal of Heat and Mass Transfer,2002,45:855-863.
    [113]高世桥,刘海鹏.毛细力学[M].北京:科学出版社,2010.
    [114]杨画春.纳米流体强化传热特性的研究[硕士学位论文].青岛:青岛科技大学,2007.
    [115]陈则韶,葛新石,顾沁.量热技术和热物性测定(第1版)[M].中国科学大学出版社,1990.
    [116]李余增.热分析[M].清华大学出版社,1987.
    [117]陆昌伟.热分析质谱法[M].上海科学技术文献出版社,2002.
    [118] W Yu, S U S Choi, J L Routbort. Review and Assessment of Nanofluid Technology forTransportation and Other Applications[J]. Argonne National Laboratory Energy Systems Division,2007:1-78.
    [119] Gaugler R S. Heat transfer device.U.S.Patent 2350348.Dec.21,1942,June6,1944.
    [120] Realy D, Kew P.Heat Pipes fifth ed[C]. Oxford USA,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700