锂离子电池金属氟化物正极材料的制备及界面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高能锂离子电池是未来新能源发展的重要技术方向之一。目前负极材料已经在硅、合金材料等方面获得较大突破,可逆容量高达4200mAh g-1。而目前商品化的锂离子电池多基于脱嵌锂机制,一般采用层状LiCoO2和LiNiO2、尖晶石LiMn2O4和橄榄石LiFePO4等材料为正极,这些材料在脱嵌锂过程中一个3d金属只交换一个电子,理论质量比容量较低。如LiCoO2, LiNiO2, LiMn2O4and LiFePO4理论容量分别为274,148,184和170mAhg-1,实际容量只有150mAh g-1,已不能满足日益增长的能量密度需求,急需发展新的正极材料。过渡金属氟化物因具有较高的工作电压,并可通过可逆的转化反应实现更高的能量密度,而被认为是未来极具竞争力的正极材料。但由于氟化物的极性较强,带隙较宽,电子电导率极低,造成电极极化严重;同时转化反应前后伴随着明显的体积变化,影响电池循环性能。本文将不同类型的氟化物与多种导电剂复合,旨在寻求此类高能密度正极材料的改性方案;重点运用电化学阻抗谱技术,探讨这类材料电极的电极动力学过程及其电极界面反应过程,阐明其电化学循环过程中的容量衰减的机理。
     主要研究内容和结果如下:
     (1)以NiF2为研究对象,采用高能球磨法制备了NiF2/C复合正极材料,首周放电容量高达1100mAh g-1,第十周后,容量为200mAh g-1。EIS结果揭示NiF2/C电极的Nyquist图的主要特征,依次为高频区半圆(HFS)、中频区半圆(MFS)和低频区圆弧或直线(LFS/L)。根据阻抗谱特征并结合CV和充放电研究结果,本文提出了相应的等效电路并获得了较好的拟合结果,研究发现,各部分区域的阻抗均与极化电位的变化相关,其中HFS主要与锂离子通过电极表面的SEI膜过程有关,LFS/L则反应了电荷传递的过程。而MFS则反映了电极内部的氟化物与导电剂形成的肖特基接触阻抗,导电剂的选择对金属氟化物电极内阻具有显著的影响。并提出了NiF2/C电极转化反应的模型。
     (2)以FeF3为研究对象,分别选择不同的导电剂(炭黑石墨、TiO2、MoS2或V2O5)与商品化FeF3球磨制备复合材料。FeF3复合电极的充放电实验结果表明,在4.5~1.5V之间,以10mA g-1的电流密度充放电时,FeF3/C电极首次放电容量可达712mAh g-1,100周后放电容量仍具有266mAh g-1,保持率为37%;FeF3/TiO2/C电极首次放电容量为340mAhg-1,20周后放电容量244mAh g-1,保持率为71.7%;FeF3/MoS2/C复合电极首次放电容量为423mAh g-1,100周后放电容量45mAh g-1,保持率仅为10.6%。FeF3/V2O5/C复合电极充放电电流密度为20mA g-1,首次放电容量为490mAh g-1,100周后放电容量34mAhg-1,保持率仅为7%。综合比较,FeF3/C复合电极的容量较高,循环性能较好,FeF3/TiO2/C次之,FeF3/V2O5/C最差。上述复合材料的EIS结果与NiF2/C电极类似,均由HFS、MFS和LFS/L三部分组成,但对应的肖特基接触阻抗有较大差异,其中FeF3/MoS2/C复合电极材料的肖特基接触阻抗最小,肖特基电阻是影响电极电化学性能的一个重要因素。综合分析实验结果,提出了FeF3/C电极转化反应的模型。
     (3)采用液相法分别合成了FeF3和FeF3/TiO2材料,并通过高能球磨法制备了FeF3/C与FeF3/TiO2/C复合材料。FeF3/C复合电极在4.5~1.5V、以71.2mA g-1电流密度充放电时,首次放电容量为293mAh g-1,30周后放电容量170mAh g-1,保持率为58.0%。FeF3/TiO2/C复合电极在4.5~1.5V、充放电电流密度为10mA g-1的首次放电容量为504mAh g-1,30周后放电容量124mAh g-1,容量保持率为24.6%,20mA g-1电流密度下的容量则略低。
     EIS结果表明,所合成的FeF3/C和FeF3/TiO2/C复合材料电极的Nyquist图在整个测试频率范围内均由三部分组成,即HFS、MFS和LFS/L,与商品化材料的EIS结果一致。依据拟合结果,放电过程中,FeF3/C电极的SEI膜电阻为8.97~21.98,肖特基接触电阻为13.42~36.01;而合成FeF3/TiO2/C复合电极的SEI膜电阻为14.76~33.20,肖特基接触电阻为70.52~846.30,显示FeF3/TiO2/C复合材料的界面电阻较大,接近商品化材料,说明TiO2较炭黑能产生更高的肖特基接触电阻,一定程度上降低了材料的电化学性能。
     (4)本文还研究了CuF2正极材料的电化学性能。采用高能球磨法制备CuF2/MoO3/C和CuF2/C的复合材料。充放电研究结果表明,组合导电剂(MoO3和炭黑)较单一导电剂(炭黑)能更好地提高CuF2的电化学活性。CuF2/MoO3/C复合电极的EIS基本特征依然为典型的“三个半圆”,即HFS、MFS和LFS/L。其中MFS对应了CuF2和MoO3及C之间的接触阻抗,低频区半径巨大的圆弧表明反应过程电荷传递电阻较大,尽管MoO3和炭黑的引入,一定程度上改善了CuF2不良的导电性能,减小了电极极化,但对缓减反应产物造成的电化学失活,其效果仍然不佳。
     该论文有图113幅,表18个,参考文献169篇。
The high-energy lithium-ion battery is one of the important technical directions for newenergy development in the future. At present, many breakthroughs have been achieved in anodedevelopment, especially in silicon and alloy materials. The reversible capacity of anode hasreached as high as4200mAh g-1. A wide range of layered intercalation compounds such asLiCoO2, LiMn2O4, LiNiO2and LiFePO4, etc. have been developed as cathode materials forcurrent commercial LIBs. However, these compounds exchange only one electron per a3Dmetal, corresponding to a limited capacity. Ror example, the theory capacities of LiCoO2,LiMn2O4, LiNiO2and LiFePO4are274,184,148and170mAh g-1, respectively. However, theactual capacities are only150mAh g-1. Thus, it is necessary to explore new redox mechanismsand electrode materials to meet the requirements.
     With higher working voltage and energy density obtained through reversible conversionreaction, transition metal fluorides are regarded as potential cathode material for futurelithium-ion batteries. Despite the above advantages, there are also several problems to be solvedfor transition metal fluoride. First, fluoride generally has stronger polarity, wider band gap andlower electronic conductivity, which would lead to serious electrode polarization problems.Secondly, the conversion reactions of fluoride are accompanied by obvious volume changes,which will affect the cyclic performance of batteries. In order to search for cathod materials ofhigh density, different kind of conductive agents are mixed with fluoride in this paper. Theelectrochemical impedance spectroscopy (EIS) techniques are used to explore the electrodekinetic processes and the electrode interface performance.
     The main research content and results are as follows:
     (1) The commercial NiF2/C composites were prepared by milling with conductive agent(graphite and carbon black) in a ratio of5:3:1(w/w) for3h in a high-energy milling machine at500rpm.And its discharge capacity in the first cycle reached up to1100mAh g-1. However,after tenth cycles, the capacity is200mAh g-1. The main Nyquist characteristic of NiF2/Celectrode recorded by EIS showed a semicircle in both high and middle frequencyregion(HFS,MFS), and an arc or a line in the low-frequency region(LFS/L). An equivalentcircuit was proposed according to the different impedance response time of each part inside theelectrode, and the fitting results are satisfactory. This study reveals that, the impedance of eachpart is related to voltage changes, particularly HFS is commonly attributed to the process oflithium ions migrating through SEI film, while LFS/L is ascribed to charge transfer process onthe electrolyte-electrode interface. MFS reflects the Schottky Contact resistance formed byfluoride and conductive agent inside the electrode, which doesn't exist in lithium intercalation compound electrodes, indicating that the choice of conductive agent has significant influenceon the resistance of the metal fluoride electrode. And the NiF2/C electrode reaction model wasproposed.
     (2) The commercial FeF3composites were prepared by milling FeF3with differentconductive agents (carbon black, TiO2, MoS2and V2O5) in a ratio of5:3(w/w) for3h in ahigh-energy milling machine at500rpm.
     The charge/discharge tests showed that the initial specific discharge capacity of FeF3/Celectrode was close to712mAh g-1at the current density of10mA g-1during4.5~1.5V. After100cycles, the discharge capacity was266mAh g-1with the capacity retention of37%; the firstdischarge capacity of FeF3/TiO2/C electrode is close to340mAh g-1, and reduced to244mAhg-1after20cycles, with the capacity retention of71.7%; as for FeF3/MoS2/C compositeelectrode, the first discharge capacity was423mAh g-1, after100circles, only45mAh g-1ofthe capacity remained and the capacity retention is10.6%; The first circle discharge capacity ofFeF3/V2O5/C electrode was490mAh g-1at the current density of20mA g-1, and34mA g-1after100circles, with a capacity retention of only7%. According to the above results, FeF3/Celectrode has the highest capacity and the best cyclic performance, FeF3/TiO2/C electrode isnext and FeF3/V2O5/C electrode is the worst. The EIS results of the above composite electrodesare similar to that of NiF2/C electrode, and all are composed of three parts: HFS, MFS andLFS/L. However, there is difference in the correspon ding Schottky contactimpedance.Schottky contact impedance of FeF3/MoS2/C composite electrode materials is theminimal. Schottky resistance is one of the important factors which affect electrochemicalperformance of the electrode. According to comprehensive analysis of the experimental results,FeF3/C electrode reaction model was proposed.
     (3) FeF3/C and FeF3/TiO2of different morphologies were synthesized respectively throughtwo liquid phase methods. Then FeF3/C and FeF3/TiO2/C compounds were prepared byhigh-energy ball milling. The FeF3/C electrode is charge/discharged at a current density of71.2mA g-1between4.5and1.5V. The first circle discharge capacity of the electrode is293mAhg-1,34mAh g-1after30circles, and the capacity retention is58.0%. The FeF3/TiO2/C electrodeis charge-discharged at10mA g-1between4.5and1.5V with initial discharge capacity of504mAh g-1,124mAh g-1after30circles, and the capacity retention of24.6%. When cycled underthe current density of20mA g-1, the capacity became a little lower.
     The EIS results show that, the Nyquist plots of FeF3/C electrode and FeF3/TiO2/Ccompound electrode are both consisted of three parts, namely HFS, MFS and LFS/L. This EISresult is similar to that of the commercial material. According to the fitting results, in thedischarge process the SEI resistance of the synthesized FeF3/C electrode ranges from8.97to 21.98, and its Schottky contact resistance is between13.42to36.01. As to the FeF3/TiO2/Ccompound electrode, the SEI resistance ranges from14.76to33.20, and Schottky contactresistance from70.52to846.30. It is seen that the interfacial impedance is larger for thiscompound material, similar to the commercial material, indicating TiO2leads to larger Schottkycontact resistance than carbon black, therefore resulting in decline in the electrochemicalperformance of electrode.
     (4) Furthermore, the electrochemical performance of CuF2as cathode material forlithium-ion battery was discussed in this paper. The CuF2/MoO3/C and CuF2/C compoundmaterials were prepared by high-energy ball milling. And then Galvanostatic discharge/chargemeasurements were carried out in the Neware battery test system at0.01C (7.12mA g-1)between1.5V and4.5V versus Li+/Li at room temperature.The results indicate that thecombination of conduct agents (MoO3and carbon black) has better improvement on theelectrochemical activity of CuF2than single carbon black. The EIS of CuF2/MoO3/C compoundelectrode remains typical three parts, namely HFS, MFS and LFS/L. MFS is related tocontacting resistance among CuF2, MoO3and C. LFS/L reflects the large charge transferresistance during the reaction process.Although the introduction of MoO3and carbon black canimprove the conductivity of CuF2to a certain extent and reduce the polarization of electrodes,there is little improvement in relieving the electrochemical inactivation of reaction products inconclusion.
     In this paper, there are113figures,18tables and169reference articles.
引文
[1]杜啸岚,李建修等.锂离子电池正极材料的研究[J].机电产品开发与创新,2011,24(1):41,42.
    [2]唐宇峰.高功率锂离子电池用新型纳微分级结构Li4Ti5O12负极材料的研究[D].上海:上海交通大学图书馆,2010.
    [3]许晶.聚阴离子型锂离子电池正极材料的制备及改性[D].哈尔滨:哈尔滨工业大学图书馆,2010.
    [4]陈仕玉,王兆翔,房向鹏,等.二硫化钛作为锂离子电池负极材料的特性[J].物理化学学报,2011,27(1):97-102.
    [5]刘黎,焦丽芳,袁华堂,等.锂离子电池电极材料Li1+xV3O8研究进展[J].化工进展,2011,30(1):189-194.
    [6]赵艳艳,张玉荣等.锂离子电池正极材料Li(1-2x)MgxMnPO4/C的合成与表征[J].化学研究,2011,22(1):17-21.
    [7]禹莜元.层状LiNi1//3Co1/3Mn1/3O2与改性尖晶石LiMn2O4的研究一锂离子电池正极材料深度研发之一[D].长沙:中南大学图书馆,2005.
    [8] Arai J, Katayama H, Akahoshi H. Binary mixed solvent electrolytes containing trifluoropropylenecarbonate for lithium secondary batteries[J]. Journal of the Electrochemical Society,2002,149(2):A217-A226.
    [9] Wang X, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes forlithium-ion batteries: Ⅱ.the use of an amorphous carbon anode[J]. Journal of the ElectrochemicalSociety,2001,148(10): A1066-A1071.
    [10] Wang X, Yasukawa E, Kasuya S. Nonflammable trimethyl phosphate solvent-containing electrolytes forlithium-ion batteries:.fundamental properties[J]. Journal of the Electrochemical Society,2001,148(10):A1058-A1065.
    [11] Buqa H, W¨ursig A, Vetter J, et al. SEI film formation on highly crystalline graphitic materials inlithium-ion batteries[J]. Journal of Power Sources,2006,153:385-390.
    [12]彭庆文.锂过量过渡金属氧化物锂离子电池正极材料的研究[D].天津:天津大学图书馆,2010.
    [13] Murphy D W, Broodhead J, Steel B C. Materials for advanced batteries [M]. Plenum Press,1980:145.
    [14] Theveninj J G, Muller R H. Impedance of lithium electrode in a propylene carbonate electrolyte[J].Journal of the Electrochemical Society,1987,134:273-280.
    [15] Aurbach D, Weissman I, Schechter A. X-ray photoelectron spectroscopy studies of lithium surfacesprepared in several important electrolyte solutions.a comparison with previous studies with previousstudies by forier transform infrared spectroscopy[J]. Langmiur,1996,12(16):3991-4007.
    [16] Oesten R, Heider U, Schmidt M. Advanced electrolytes[J]. Solid State Ionics,2002,148:391-397.
    [17] Gnanaraj J S, Zinigrad E, Asraf L, et al. On the use of LiPF3(CF2CF3)3(LiFAP) solutions for Li-ionbatteries. Electrochemical and thermal studies[J]. Electrochemistry Communications,2003,5:946-951.
    [18] Keiichi Y, Takako S, Akio H. Fluorine-substituted cyclic carbonate electrolytic solution and batterycontaining the same: US,6010806[P].2000-01-04.
    [19]杨志.锂离子电池层状正极材料及其前躯体的制备与性能研究[D].长沙:中南大学图书馆,2010.
    [20] Nishi Y. Lithium ion secondary batteries; past10years and the future[J]. Journal of Power Sources,2001,100:101–-106.
    [21] Schougaard S B, Bréger J, Jiang M, et al. LiNi0.5+δMn0.5-δO2—A high-Rate, high-capacity cathode forlithium rechargeable batteries[J]. Advanced Materials,2006,18:905–-909.
    [22] Taraseon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414:359-367.
    [23] Tamura K, Horiba T. Large-scale development of lithium batteries for electric vehicles and electricpower storage applications[J]. Journal of Power Sources,1999,81:156-161.
    [24] Karthikeyan D K, Sikha G, WhiteR E. Deepak K, et alThermodynamic model development for lithiumintercalation electrodes[J]. Journal of Power Sources,2008,185:1398-1407.
    [25] Patil, Arun; Patil, Vaishali; Shin, Dong WookArun Patil, et al. Issue and challenges facing rechargeablethin film lithium batteries[J]. Materials Research Bulletin,2008,43::1913-–1942.
    [26] Amatucci G G, Pereira NGlenn G. Amatucci, et al. Fluoride based electrode materials for advancedenergy storage devices[J]. Journal of Fluorine Chemistry,2007,128:243-262.
    [27] Tabuchi T, Katayama Y, Nukuda TT.Tabuchi, et al. Surface reaction of β--FeOOH film negativeelectrode for lithium-ion cells[J]. Journal of Power Sources,2009:636-639.
    [28] Huang B, Cook C C, Mui S, et al. High energy density, thin film, rechargeable lithium batteries formarine field operations[J]. Journal of Power Sources,2001,97-98:674-676.
    [29]陈权启.磷酸钒锂和磷酸铁锂锂离子电池正极材料研究[D].杭州:浙江大学图书馆,2008.
    [30] Manthiram A., Kim et al. Low Ttemperature Synthesis synthesis of Insertion insertion Oxides oxides forLlithium Batteriesbatteries[J]. Chemistry of Materials,1998,10:2895-2909.
    [31] Zhuang Q C, Wei T, Du L L, et al. An electrochemical impedance spectroscopic study of the electronicand ionic transport properties of spinel LiMn2O4[J]. Journal of Physical Chemistry C,2010,114:8614-8621.
    [32]赵艳艳,等.锂离子电池正极材料Li(1-2x)MgxMnPO4/C的合成与表征[J].化学研究,2011,22(1):17-21.
    [33]马玉林,尹鸽平,徐宇虹,等.提高锂离子电池过充安全性研究进展[J].电源技术,2011,35(1):97-101.
    [34]黄学杰,李泓,王庆等.纳米储锂材料和锂离子电池[J].物理,2002,7:444-449.赵艳艳,等.锂离子电池正极材料Li(1-2x)MgxMnPO4/C的合成与表征[J].化学研究,2011,22(1):17-21.
    [35] Thackeray M M, Vaughey J T, Johnson C S, et al. Structural considerations of intermetallic electrodesfor lithium batteries[J]. Journal of Power Sources,2003,113::124-130.
    [36]王静,谷学静,朱静等. Glenn G. Amatucci, et al. Fluoride based electrode materials for advancedenergy storage devices[J]. Journal of Fluorine Chemistry,2007,128:243–262.LiCoO2过充性能的研究[J].电源技术,2006,130:305-307.
    [37] Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materialsfor lithium-ion batteries[J]. Nature,2000,407:496-499.
    [38] Armand M, Tarascon J-M. Building better batteries[J]. Nature,2008,451:652-657.
    [39] Boyanov S, Womes M, Monconduit L, et al. Mossbauer spectroscopy and magnetic measurements ascomplementary techniques for the phase analysis of FeP electrodes cycling in Li-ion batteries[J].Chemistry of Materials,2009,21:3684-3692.
    [40] Timmons A, Dahn J Ret al. In situ optical observations of particle motion in alloy negative electrodes forLi-ion batteries [J]. Journal of the Electrochemical Society,2006,153((6)): A1206-A1210.
    [41] Cabana J,, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-ion batteries: the state of theart and challenges of electrode materials reacting through conversion reactions [J]. Advanced Materials,2010,22: E170–E192.
    [42] Maier J,et al. Size effects on mass transport and storage in lithium batteries[J]. Journal of Power Sources,2007,174::569-–574
    [43] Laruelle S, Grugeon S, Poizot PS. Laruelle, S. Grugeon, et al. On the origin of the extra electrochemicalcapacity displayed by MO/Li cells at low potential[J]. Journal of the Electrochemical Society,2002,149:A627-A634.
    [44] Balaya P, Bhattacharyya A J, Jamnik JJ. Maier, et al. Nano-ionics in the context of lithium batteries[J].Journal of Power Sources,2006,159::171-–178.
    [45] Beaulieu L Y, Larcher D, Dunlap R A, L.Y. Beaulieu, et al. Reaction of Li with grain-boundary atoms innanostructured compounds[J]. Jouranal of the Electrochemical Society,2000,147:3206-3212.
    [46] Maier P. Balaya, J. Maier, et al. Nano-ionics in the context of lithium batteries[J]. Journal of PowerSources,2006,159:171–178.
    [47] Zhukovskii Y F, Kotomin E A, Balaya PYu.F., J. Maier, et al. Enhanced interfacial lithium storage innanocomposites of transition metals with LiF and Li2O: Comparison of DFT calculations andexperimental studies[J]. Solid State Sciences,2008,10:491-495.
    [48] Zhong K, Xia X, Zhang BKaifu Zhong, et al. MnO powder as anode active materials for lithium ionbatteries[J]. Journal of Power Sources2010,195:3300-3308.
    [49] Zhao N, Fu L, Yang LNahong Zhao, et al.Nanostructured anode materials for Li-ion batteris[J]. Pure andApplied Chemistry,2008,80:2283-2295.
    [50] Henkes A E, Schaak R EAmanda E, et al. Trioctylphosphine: A a General general phosphorus source forthe Lowlow-Temperature temperature Conversion conversion of Metals metals into Metal metalPhosphidesphosphides[J]. Chemistry of Materials,2007,19:4234-4242.
    [51] Gillot F, Boyanov S, Dupont LF. Gillot, J.-M. Tarascon, et al. Electrochemical Reactivity reactivity andDesign design of NiP2Negative negative Electrodes electrodes for Secondary secondary LiLi-IionBatteriesbatteries[J]. Chemistry of Materials,2005,17:6327-6337.
    [52] Boyanov S, Bernardi J, Gillot FS. Boyanov, J.-M. Tarascon, et al. FeP: Another another Attractiveattractive Anode anode for the LiLi-Iion Battery battery Enlisting enlisting a Reversible reversibleTwotwo-Step step Insertioninsertion/Conversion conversion Processprocess[J]. Chemistry of Materials,2006,18:3531-3538.
    [53] Mitra S, Poizot P, Finke ABy Sagar Mitra, Jean-Marie Tarascon, et al. Growth and Electrochemicalelectrochemical Characterization characterization versus Lithium lithium of Fe3O4Electrodes electrodesMade made via Electrodepositionelectrodeposition[J]. Advanced Functional Materials.2006,16:2281-2287.
    [54] Poizot P, Laruelle S, Grugeon SP. Poizot, J.-M. Tarascon, et al. Rationalization of the low-potentiallotential reactivity reactivity of3d-metalmetal-based inorganic inorganic compounds toward Li[J].Journal of the Electrochemical Society,2002,149(9): A1212-A121.
    [55] Grugeon S, Laruelle S, Herrera-Urbina RS. Grugeon, J.-M. Tarascon, et al. Particle size effectson theelectrochemical performance of copper oxides toward lithium[J]. Journal of the Electrochemical Society,2001,148,4: A285-A292.
    [56] Liu H, Wexler D, Wang G, et al. One-pot facile synthesis of iron oxide nanowires as high capacityanode materials for lithium ion batteries[J]. Journal of Alloys and Compounds,2009,48(1): L24-L27.
    [57] Shu J, Shui M, Huang FJie Shu, et al. A New new Look look at Lithium lithium Cobalt cobalt Oxideoxide in a Broad broad Voltage voltage Range range for Lithiumlithium-Ion ion Batteriesbatteries[J].Journal of Physical Chemistry C,2010,114:3323-3328.
    [58] Liu H, Wang G, Park J Hao Liu, et al. Electrochemical performance of Fe2O3nanorods asanode material for lithium-ion cells[J]. Electrochimica Acta,2009,54:1733-1736.
    [59] Komaba S, Mikumo T, Ogata A, et al. Electrochemical Insertion insertion of Li and Na Ions ions intoNanocrystalline nanocrystalline Fe3O4and α-Fe2O3for Rechargeable rechargeable Batteriesbatteries[J].Journal of the Electrochemical Society,2010,157(1): A60-A65.
    [60] Brezesinski T, Wang J, Tolbert S HTorsten Brezesinski, et al. Ordered mesoporous α-MoO3withiso-oriented nanocrystalline walls for thin-film pseudocapacitors[J]. Nature Materials,2010,9:146-150.
    [61] Ortiz G F, Hanzu I, Lavela PGregorio F. Ortiz, et al. Nanoarchitectured TiO2/SnO: a future negativeelectrode for high power density Li-ion microbatteries [J]. Chemistry of Materials,2010,22:1926–-1932.
    [62] Wang J, Yang Q, Zhang ZJunli Wang, et al.. Selective synthesis of magnetic Fe2P/C and FeP/Ccore/shell nanocables[J]. Journal of Physics Chemistry Letter,2010,1:102-106.
    [63] Muthuswamy E, Kharel P R, Lawes G, et al. Control of phase in phosphide nanoparticles produced bymetal nanoparticle transformation: Fe2P and FeP[J]. ACS Nano,2009,3(8):2383-2393.
    [64] Woo S, Jung J H, Kim H, et al. Electrochemical characteristics of Ti-P compositesprepared by mechanochemical synthesis[J]. Journal of the Electrochemical Society,2006,153(10): A1979-A1983.
    [65] Gillot F, Ménétrier M, Bekaert E, et al. Vanadium diphosphides as negative electrodes forsecondary Li-ion batteries[J]. Journal of Power Sources,2007,172:877-885.
    [66] Mauvernay B, Doublet M L, Monconduit L. Redox mechanism in the binary transition metal phosphideCu3P[J]. Journal of Physics and Chemistry of Solids,2006,(67):1252-1257.
    [67] Hayashi A, Inoue A, Tatsumisago M. Electrochemical performance of NiP2negative electrodes inall-solid-state lithium secondary batteries[J]. Journal of Power Sources,2009(189):669-671.
    [68] Gillot F, Boyanov S, Dupont L, et al. Electrochemical reactivity and design of NiP2negative electrodes for secondary Li-Ion batteries[J]. Chemistry of Materials,2005,17:6327-6337.
    [69] Rodriguez J A, Kim J Y, Hanson J C, et al. Physical and chemical properties of MoP,Ni2P, and MoNiP hydrodesulfurization catalysts: time-resolved X-ray diffraction, densityfunctional, and hydrodesulfurization activity studies[J]. Journal of Physical Chemistry B,2003,107:6276-6285.
    [70] Pralong V, Souza D C S, Leung K T, et al. Reversible lithium uptake by CoP3at lowpotential: role of the anion[J]. Electrochemistry Communications,2002,4:516-520.
    [71] Davidson F M, Wiacek R, Korgel B A. Supercritical fluid-liquid-solid synthesis ofgallium phosphide nanowires[J]. Chemistry of Materials,2005,17:230-233.
    [72] Cui Y H, Xue M Z, Wang X L, et al. InP as new anode material for lithium ion batteries[J].Electrochemistry Communications,2009,11:1045-1047.
    [73] Somaskandan K, Tsoi G M, Wenger L E, et al. Ternary heterostructured phosphide nanoparticles:MnP@InP[J]. Journal of Materials Chemistry,2010,20:375-380.
    [74] Hwang H, Kim M G, Kim Y, et al. The electrochemical lithium reactions of monoclinic ZnP2material[J].Journal of Materials Chemistry,2007,17:3161-3166.
    [75] Brock S L, Perera S C, Stamm K L. Chemical routes for production of transition-metal phosphides onthe nanoscale: implications for advanced magnetic and catalytic materials[J]. Chemistry-A EuropeanJournal.2004,10,3364-3371.
    [76] Cabana J, Monconduit L, Larcher D, et al. Beyond intercalation-based Li-Ion batteries: the state of theart and challenges of electrode materials reacting through conversion reactions[J]. Advanced Materials,2010,22: E170-E192.
    [77] Pereira N, Dupont L, Tarascon J M, et al.Electrochemistry of Cu3N with lithium a complex system withparallel processes[J]. Journal of the Electrochemical Society,2003,150(9): A1273-A1280.
    [78] Grugeon S, Laruelle S, Herrera-Urbina R, et al. Particle size effects on the electrochemical performance of copper oxides toward lithium[J]. Journal of the Electrochemical Society,2001,148(4): A285-A292.
    [79] Badway F, Pereira N, Cosandey F, et al.1st International Energy Conversion Engineering Conference.Rutgers University,2002[C]. Virginia: Cambridge Univ Press,2003.
    [80] Amatuccia G G. Transition metal fluoride: carbon nanoamalgam rechargeable battery cell electrodematerial: US,20040062994[P].2004-04.
    [81] Amatuccia G G. Metal fluorides as electrode materials: US,20040121235[P].2004-06.
    [82] Arai H, Okada S, Sakurai Y, et al. Cathode performance and voltage estimation of metal trihalides[J].Journal of Power Sources,1997(68):716-719.
    [83] Li H, Richter G, Maier J. Reversible formation and decomposition of LiF clusters using transition metalfluorides as precursors and their application in rechargeable Li batteries[J]. Advanced Materials,2003,15(9):736-739.
    [84] Plitz I, Badway F, Al-Sharab J, et al. Structure and electrochemistry of carbon-metal fluoridenanocomposites fabricated by solid-state redox conversion reaction[J]. Journal of theElectrochemical Society,2005,152(2): A307-A315.
    [85] Li H, Ba laya P, Maie r J. Li-stora ge via hetero geneous reac tion in selected bi nary metalfluorides and oxides[J]. Journal of the Electrochemical Society,2004,151(11): A1878-A1885.
    [86]崔艳华,薛明,胡可等.脉冲激光沉积MnF2薄膜的电化学性能[J].无机材料学报,2010,25(2):145-150.
    [87] Doe R E, Persson K A, Meng Y S, et al. First-principles investigation of the Li-Fe-F phase diagram andequilibrium and nonequilibrium conversion reactions of iron fluorides with lithium[J]. Chemistry ofMaterials,2008,20:5274-5283.
    [88] Badway F, Pereira N, Cosandey F, et al. Carbon-metal fluoride nanocomposites structure andelectrochemistry of FeF3:C[J]. Journal of the Electrochemical Society,2003,150(9): A1209-A1218.
    [89] Cosandey F, Al-Sharab J F, Badway F, et al. EELS spectroscopy of iron fluorides and FeFx/Cnanocomposite electrodes used in Li-ion batteries[J]. Microscopy and Microanalysis,2007,13:87-95.
    [90] Doe R E, Persson K A, Meng Y S, et al. First-principles investigation of the Li-Fe-F phase diagram andequilibrium and nonequilibrium conversion reactions of iron fluorides with lithium[J]. Chemistry ofMaterials,2008,20:5274-5283.
    [91] Makimura Y, Rougier A, Tarascon J M, et al. Pulsed laser deposited iron fluoride thin films forlithium-ion batteries[J]. Applied Surface Science,2006,252:4587-4592.
    [92] Makimura Y, Rougier A, Laffont L, et al. Electrochemical behaviour of low temperature grown ironfluoride thin films[J]. Electrochemistry Communications,2006,8:1769-1774.
    [93] Liao P, MacDonald B L, Dunlap R A, et al. Combinatorially prepared [LiF]1-xFexnanocomposites forpositive electrode materials in Li-Ion batteries[J]. Chemistry of Materials,2008,20:454-46.
    [94] Yamakawa N, Jiang M, Key B, et al. Identifying the local structures formed during lithiation of theconversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray siffraction, and pairdistribution function analysis study[J]. Journal of the American Chemical Society,2009,131:10525-10536.
    [95] Li C, Gu L, Tsukimoto S, et al. Low-temperature ionic-liquid-based synthesis of nanostructurediron-based fluoride cathodes for lithium batteries[J]. Advanced Materials,2010,22:3650-3654.
    [96] Li C, Gu L, Tong J, et al. A mesoporous iron-based fluoride cathode of tunnel structure for rechargeablelithium batteries[J]. Advanced Functional Materials.2011,21(8):1391-1397.
    [97] Kim S W, Seo D H, Gwon H, et al. Fabrication of FeF3nanoflowers on CNT branches and theirapplication to high power lithium rechargeable batteries[J]. Advanced Materials,2010,22:5260-5264.
    [98] Wu W, Wang X, Wang X, et al. Effects of MoS2doping on the electrochemical performanceof FeF3cathode materials for lithium-ion batteries[J]. Materials Letters,2009,63:1788-1790.
    [99] Wu W, Wang Y, Wang X, et al. Structure and electrochemical performance of FeF3/V2O5compositecathodematerial for lithium-ion battery[J]. Journal of Alloys and Compounds,2009,486:93-96.
    [100] Li T, Li L, Cao Y L, et al. Reversible three-electron redox behaviors of FeF3nanocrystals ashigh-capacity cathode-active materials for Li-ion batteries[J]. Journal of Physical Chemistry C,2010,114:3190-3195.
    [101] Li R F, Wu S Q, Yang Y, et al. Structural and electronic properties of Li-ion battery cathode materialFeF3[J]. Journal of Physical Chemistry C,2010,114:16813-16817.
    [102] Zhou Y, Liu W, Xue M, et al. LiF/Co nanocomposite as a new Li storage material[J]. Electrochemicaland Solid-State Letters,2006,9(3): A147-A150.
    [103]周永宁,吴长亮,张华等. LiF-Ni纳米复合薄膜的电化学性能研究[J].物理化学学报,2006,22(9):1111-1115.
    [104] Zhang H, Zhou Y N, Sun Q, et al. Nanostructured nickel fluoride thin film as a new Li storagematerial[J]. Solid State Sciences,2008,10:1166-1172.
    [105] Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoridenanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials,2007,19:4129-4141.
    [106] Yamakawa N, Jiang M, Grey C P, et al. Investigation of the conversion reaction mechanisms for binarycopper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction[J]. Chemistry ofMaterials,2009,21:3162-3176.
    [107]张华,周永宁,吴晓京等.脉冲激光沉积CuF2薄膜的电化学性能[J].物理化学学报,2008,24(7):1287-1291.
    [108] Bervas M, Badway F, Klein L C, et al. Bismuth fluoride nanocomposite as a positive electrodematerial for rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters,2005,8(4):A179-A183.
    [109] Berv as M, Man sour A N, Y oon W S, et al. Inv estigation of the lith iation and delith iationconversion mechanisms of bismuth fluoride nanocomposites[J]. Journal of the ElectrochemicalSociety,2006,153(4): A799-A808.
    [110] Bervas M, Yakshinskiy B, Klein L C, et al. Soft-chemistry synthesis and characterization of bismuthoxyfluorides and ammonium bismuth fluorides[J]. Journal of the American Ceramic Society,2006,89(2):645-651.
    [111] Bervas M, Klein L C, Amatucci G G. Reversible conversion reactions with lithium in bismuthoxyfluoride nanocomposites[J]. Journal of the Electrochemical Society,2006,151(1): A159-A170.
    [112] Doe R E, Persson K A, Hautier G, et al. First principles study of the Li–Bi–F phase diagram andbismuth fluoride conversion reactions with lithium[J]. Electrochemical and Solid-State Letters,2009,12(7): A125-A128.
    [113] Gmitter A J, Badway F, Rangan S, et al. Formation, dynamics, and implication of solid electrolyteinterphase in high voltage reversible conversion fluoride nanocomposites[J]. Journal of MaterialsChemistry,2010,20:4149-4161.
    [1]史美伦.交流阻抗谱原理及使用[M].北京:国防工业出版社,2000:2-40.
    [2]曹楚南.电化学阻抗谱导论[M].北京:科学出版社,2002:60-70.
    [3] Pollak E, Salitra G, Baranchugov V, et al. In situ conductivity, impedance spectroscopy, andexsituraman spectra of amorphous silicon during the insertion/extraction of lithium[J]. Journal ofPhysical Chemistry C,2007,30(111):11437-11444.
    [4] Aurbach D, Gamolsky K, Markovsky B, et al. The study of surface phenomena related toelectrochemical lithium intercalation into LixMOyhost materials (M=Ni, Mn)[J]. Journal ofThe Electrochemical SocietyJournal of the Electrochemical Society,2000,147:1322-1331.
    [1] Li H, Balaya P, Maier J. Li-storage heterogeneous reaction in selected binary metal fluorides andoxides[J]. Journal of The Electrochemical SocietyJournal of the Electrochemical Society,2004,151:A1878-A1885.
    [2]周永宁,吴长亮,张华. LiF-Ni纳米复合薄膜的电化学性能研究[J].物理化学学报,2006,22(9):1111-1115.
    [3] Hu J, Li H, Huang X J, et al. Improve the electrochemical performances of Cr2O3anode for lithium ionbatteries[J]. Solid State Ionics,2006,177(26-32):2791-2799.
    [4] Hu J, Li H, Huang X J. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemical andSolid-State Letters,2005,8(1): A66-A69.
    [5] Zhang H, Zhou Y N, Sun Q, et al. Nanostructured nickel fluoride thin film as a new Li storage material[J].Solid State Sciences,2008,10:1166-1172.
    [6] Barsoukov E, Kim D H, Lee H-S, et al. Comparison of kinetic properties of LiCoO2and LiTi0.05Mg0.05Ni0.7Co0.2O2by impedance spectroscopy[J].Solid State Ionics,2003,161(1):19-29.
    [7] Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemical impedance andthe cyclic voltammetric characteristics of graphite electrodes doped with lithium[J]. Journal of PhysicalChemistry B,1997,101:4630-4640.
    [8] Zhuang Q C, Wei T, Du L L, et al. An Electrochemical Impedance Spectroscopic Study of the Electronicand Ionic Transport Properties of Spinel LiMn2O4[J]. Journal of Physical Chemistry C,2010,114:8614-8621.
    [9]庄全超,许金梅,樊小勇等. LiCoO2正极材料电子和离子传输特性的电化学阻抗谱研究[J].中国科学通报,2007,52(2):147-153.
    [10] Chang Y-C, Sohn H-J. Electrochemical impedance analysis for lithium ion intercalation intographitized carbons[J]. Journal of The Electrochemical SocietyJournal of the Electrochemical Society,2000,147(1):50-58.
    [11] Gmitter A J, Badway F, Amatucci G G, et al. Formation, dynamics, and implication of solid electrolyteinterphase in high voltage reversible conversion fluoride nanocomposites[J]. Journal of MaterialsChemistry,2010,20:4149-4161.
    [12] Li H, Wang Z X, Chen L Q, et al. Research on advanced materials for Li-ion batteries [J]. AdvancedMaterials,2009,21(45):4593-4607.
    [13] Li H, Balaya P, Maier J. Li storage via heterogeneous reaction in selected binary metal fluorides andoxides[J]. Journal of The Electrochemical SocietyJournal of the Electrochemical Society,2004,151:A1878-A1885.
    [14] Yamakawa N, Jiang M, Grey C P. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction[J]. Chemistry of Materials,2009,21:3162-3176.
    [15]施敏,伍国珏.半导体器件物理(第3版)[M].西安:西安交通大学出版社,2008:102-142.
    [16] Chuah L S, Hassan Z, Hassan H A. High-quality In0.47Ga0.53N/GaN heterostructure on Si(111) and itsapplication to MSM detector[J]. Microelectronics International,2008,25(2):3-8.
    [1] Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoridenanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials,2007,19:4129-41.
    [2] Balaya P, Li H, Kienle L, et al. Fully reversible homogeneous and heterogeneous Li storage in RuO2withhigh capacity[J]. Advanced Functional Materials,2003,13:621-625.
    [3] Grugeon S, Laruelle S, Dupont L, et al. An update on the reactivity of nanoparticles Co-based compoundstowards Li[J]. Solid State Science,2003,5:895-904.
    [4] Aurbach D, Gamolsky K, Markovsky B, et al. The study of surface phenomena related to electrochemicallithium intercalation into LixMOyhost materials (M=Ni, Mn)[J]. Journal of the ElectrochemicalSocietyJournal of the Electrochemical Society,2000,147:1322-1331.
    [5] Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation into graphitizedcarbons[J]. Journal of the Electrochemical SocietyJournal of the Electrochemical Society,2000,147(1):50-58.
    [6] Nobili F, Dsoke S, Corce F, et al. An ac impedance spectroscopy study of Mg-doped LiCoO2at differenttemperatures: electronic and ionic transport properties[J]. Electrochimica Acta,2005,50:2307-2313.
    [7] Shi Y L, Shen M F, Xu S D, et al. Electrochemical impedance spectroscopic study of the electronic andionic transport properties of NiF2/C composites[J]. International Journal of Electrochemical Science,2011,6(8):3399-3415.
    [8] Kim Y O, Park S M. Intercalation mechanism of lithium ions into graphite layers studied by nuclear magnetic resonance and impedance experiments[J]. Journal of the Electrochemical SocietyJournal of theElectrochemical Society,2001,148(3): A194-A199.
    [9] Aurbach D, Cohen Y. The application of atomic force microscopy for the study of Li deposition process[J].Journal of The Electrochemistry Society,1996,143:3525-3532.
    [10]庄全超,方亮,张党华等. LiMn2O4在水系电液中嵌脱锂的EIS研究[J].电池工业,2009,14(2):84-88.
    [11]庄全超,徐守冬,邱祥云等.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1056.
    [12] Zhuang Q C, Wei T, Du L L, et al. An electrochemical impedance spectroscopic study of theelectronic and ionic tran sport prope rties of spinel LiMn2O4[J]. Journal of PhysicalChemistry C,2010,114:8614-8621.
    [13] Yamakawa N, Jiang M, Grey C P. Investigation of the conversion reaction mechanisms for binarycopper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction [J]. Chemistry ofMaterials,2009,21:3162-3176.
    [1]伍文,王先友,王欣等.锂二次电池新型正极材料FeF3(H2O)0.33的制备及电化学性能研究[J].功能材料,2008,11(39):1824-1827.
    [2] Kim Y O, Park S M. Intercalation mechanism of lithium ions into graphite layers studied by nuclearmagnet ic reson ance and imped ance experi ments[J]. Journal of the Electrochemistry Society,2001,148(3): A194-A199.
    [1]张华,周永宁,吴晓京等.脉冲激光沉积CuF2薄膜的电化学性能[J].物理化学学报,2008,24(7):1287-1291.
    [2] Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoridenanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials,2007,19(17):4129-4141.
    [3] Cui Y H, Xue M Z, Zhou Y N, et al. The investigation on electrochemical reaction mechanism of CuF2thin film with lithium[J]. Electrochimica Acta,2011,56:2328-2335.
    [4]宋继梅,杨捷,宋娟等.层状化合物三氧化钼的制备及其电化学脱嵌锂性质研究[J].中国钼业,2007,31(5):36-42.
    [5] Chernova N A, Roppolo M, Dillon A C, et al. Layered vanadium and molybdenum oxides: batteries andelectrochromics[J]. Journal of Materials Chemistry,2009,19:2526-2552.
    [6] Kumagai N, Kumagai N, Tanno K. Electrochemical characteristics and structural changes of molybdenumtrioxide hydrates as cathode materials for lithium batteries[J]. Journal of Applied Electrochemistry,1988,18:857-862.
    [7] Li W, Cheng F, Tao Z, et al. Vapor-transportation preparation and reversible lithiumintercalation/deintercalation of α-MoO3microrods[J]. Journal of Physical Chemistry B,2006,110(1):119-124.
    [8]庄全超,徐守冬,邱祥云等.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1056.
    [9] Atebamba J M, Moskon J, Pejovnik S, et al. On the interpretation of measured impedance spectra ofinsertion cathodes for lithium-ion batteries[J]. Journal of The Electrochemical SocietyJournal of theElectrochemical Society,2010,157(11): A1218-A1228.
    [10] Mansour A N, Badway F, Yoon W S, et al. In situ X-ray absorption spectroscopic investigation of theelectrochemical conversion reactions of CuF2-MoO3nanocomposite[J]. Journal of Solid State Chemistry,2010,183(12):3029-3038.
    [11] Yamakawa N, Jiang M, Grey C P. Investigation of the conversion reaction mechanisms for binarycopper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction [J]. Chemistry ofMaterials,2009,21:3162-3176.
    [12] Badway F, Mansour A N, Pereira N, et al. Structure and electrochemistry of copper fluoridenanocomposites utilizing mixed conducting matrices[J]. Chemistry of Materials,2007,19:4129-4141.
    [13]施敏,伍国珏.半导体器件物理(第3版)[M].西安:西安交通大学出版社,2008:102-142.
    [14] Shi Y L, Shen M F, Xu S D, et al. Electroche mical impe dance spect roscopic stu dy of theelectronic and ionic transport prop erties of NiF2/C com posites[J]. International Journal ofElectrochemical Science,2011,6:3399-3415.
    [15] Ostrovskii D, Ronci F, Scrosati B, et al. Reactivity of lithium battery electrode materials towardnon-aqu eous electroly tes: spontan eous reactio ns at the el ectrode–electr olyte inter faceinvestigated by FTIR[J]. Journal of Power Sources,2001,103:10-17.
    [16] Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation into graphitizedcarbons[J]. Journal of the Electrochemical SocietyJournal of the Electrochemical Society,2000,147(1):50-58.
    [17] Gmitter A J, Badway F, Rangan S, et al. Formation, dynamics, and implication of solid electrolyteinterphase in high voltage reversible conversion fluoride nanocomposites[J]. Journal of MaterialsChemistry,2010,20,4149-4161.
    [18] Hu J, Li H, Huang X J. Cr2O3-based anode materials for Li-ion batteries[J]. Electrochemicaland Solid-State Letters,2005,8(1): A66-A69.
    [19] Hu J, Li H, Huang X J, et al. Improve the electrochemical performances of Cr2O3anode forlithium ion batteries[J]. Solid State Ionics,2006,177(26-32):2791-2799.
    [20] Wang F, Robert R, Chernova N A, et al. Conversion reaction mechanisms in lithium ion batteries: studyof the binary metal fluoride electrodes[J]. Journal of the American Chemical Society,2011,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700