嵌入电极的界面特性及锰系电极材料的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可充电锂离子电池由于其具有较高的能量密度和功率密度,并且价格低廉、安全性好和循环寿命长等优点,被认为是便携式电子产品、电动汽车以及混合电动汽车的最主要的能源存储设备。本论文旨在针对新型锂离子电池正负极材料的开发、电解液改性、锂离子电池的电极/电解液界面特性等几个关键问题展开系统的研究,主要的研究内容及所得到的结论如下:
     (1)建立了单个嵌入化合物颗粒、混合嵌入化合物颗粒、均匀多孔嵌入电极和非均匀多层多孔嵌入电极的数学模型。制备了非均匀、多层多孔石墨电极,并测试了其EIS特性,结果发现在中频区域内出现了一个新的半圆,整个阻抗表现为三个半圆和一条斜线的特征,选取合适的等效电路并对EIS进行拟合可以得出第三个半圆的出现是和电荷传递过程相关的,通过相关的模型建立和数学模拟,我们发现影响第三个半圆出现并形成的因素主要为电极中的颗粒尺寸分布以及电极层的厚度分布,也就是说电极片中出现不同尺寸分布的颗粒以及形成薄厚不同的电极层时,容易导致阻抗谱中第三个半圆的出现。
     (2)运用CV和恒流充放电测试并结合FTIR、SEM、XPS以及EIS等测试技术,讨论了乙烯基碳酸亚乙烯酯(VEC)和氟代碳酸亚乙烯(FEC)做为固体电解质相界面膜(SEI膜)成膜添加剂在EC基电解液中的成膜机制以及添加不同量的上述添加剂对石墨电极的电化学性能的影响。对于VEC添加剂来说,添加量<5vol%时,电解液中EC的双电子还原生成ROCO2Li的过程可以被抑制,而当添加量>5vol%时,EC的单电子还原生成Li2CO3的过程同样被抑制,通过FTIR和SEM测试可以发现,此时石墨电极表面的SEI膜的组成主要有VEC的聚合物、Li2CO3和ROCO2Li组成,其中的VEC聚合物能够有效的阻止SEI膜和电解液中的痕量水杂质发生反应,使得SEI膜具有更好的钝化作用。运用EIS技术在添加VEC的电解液中的成膜机制,发现在电解液中添加VEC后,生成的SEI膜具有更好的韧性,能够有效的适应锂离子嵌脱过程中石墨材料所发生的体积膨胀,减少了因SEI膜破裂修复造成的锂离子的消耗,进而提高石墨电极的循环稳定性和可逆性。
     加入FEC同样可以抑制EC的双电子还原生成ROCO2Li的过程,当添加量在1vol%时,石墨电极的充放电容量较高且循环性能较好,当添加量>1vol%时,石墨电极的电化学性能变差。通过SEM对石墨电极在添加FEC的电解液中的电化学测试后的SEI膜的形貌进行分析,添加FEC后,石墨电极表面被粒径在100nm左右的小颗粒均匀覆盖。进一步利用XPS研究了SEI膜的组成,发现SEI膜的主要成为应为LiF、Li2CO3、ROCO2Li以及少量Li2O组成,无机组分的LiF和Li2CO3的导锂性能较好,使得石墨具有更好的循环性能。EIS分析得出,添加FEC后所生成的SEI膜的阻值较小并且比较稳定,能够适应锂离子在脱嵌过程中导致的体积变化。石墨电极在添加FEC的电解液中形成的分布均匀的、较薄、稳定且界面阻抗较低的SEI膜是其电化学性能得到提高的主要原因。
     (3)采用化学气相沉积法制备了品质较好的碳微米螺旋纤维(CMCs),将CMCs制成电极研究其电化学性能及首次嵌锂过程的电极与电解液的界面特性。结果表明CMCs电极在30和100mA·g-1的电流密度下的首周不可逆容量均较大,但在100mA·g-1的电流密度下的循环性能更优,循环250周后仍有226.9mAh·g-1。利用EIS研究了CMCs电极在首次嵌锂过程的电极与电解液的界面特性,发现CMCs电极表面的SEI膜在其首次嵌锂过程中完成,成膜主要分为三个阶段,即在1.5-1.0V区间为SEI膜的生长初期,此区间内SEI膜生长较为缓慢,厚度略有增加;在1.0-0.6V区间SEI膜的快速增长阶段,SEI膜生长速率增快,膜的厚度增加较多;低于0.6V时,SEI膜的生长趋于稳定,膜的厚度及阻值基本不变,稳定、密实的SEI膜能为后续的循环稳定性提供良好的基础。
     (4)采用水热合成的方法首先合成了Mn3O4纳米颗粒以及Mn3O4/CNTs纳米复合材料,之后将所合成的Mn3O4及Mn3O4/CNTs材料在Ar/H2混合气氛下500℃烧结,得到MnO及MnO/CNTs复合材料。将上述材料用做锂离子电池负极材料,对其进行了充放电测试。结果表明,所合成的Mn3O4/CNTs及MnO/CNTs在100mA·g-1电流密度下的充放电容量及循环性能均优于纯相的Mn3O4和MnO。电化学性能的提高主要归因于复合材料中的CNTs提供有效“搭桥”,保持复合体内良好的导电性能,并有效地抑制电极在充放电过程中的体积膨胀现象。
     (5)采用溶胶-凝胶法合成Li2MnSiO4并以葡萄糖、己二酸和蔗糖为碳源合成Li2MnSiO4/C材料,对其进行XRD物相分析和SEM形貌分析。恒流充放电测试显示上述四种材料的首次放电容量分别为23.3、179.7、184.4和81.4mAh·g-1,碳源的加入不但可以提高电极的嵌脱锂容量,同时也能够提高其循环稳定性;EIS结果说明,Li2MnSiO4/C能够减小电荷传递电阻,增加锂离子在颗粒内部的扩散速率,从而提高材料的电化学性能。综合以上结果,得出以下结论:碳包覆能够明显提高Li2MnSiO4的放电容量,提高材料的电化学活性,并且在上述选择的几种碳源中,以葡萄糖为碳源合成的Li2MnSiO4/C材料提高的效果最明显。
     该论文有图84幅,表12个,参考文献263篇。
Rechargeable lithium-ion batteries are regarded as promising energy storagedevices for portable electronic devices as well as electric vehicles (EVs) and hybridelectric vehicles (HEVs), due to their high energy density, high power density, lowcost, superior safety, and stable cycling life. This dissertation is focused on threeaspects related to the development and research of lithium-ion batteries. They are thepreparation of new type anode and cathode materials for Li-ion batteries, theoptimization of the electrolyte and the properties of electrode/electrolyte interfaces forLi-ion batteries, respectively.
     The main research contents and conclusions are as follows:
     (1) Single intercalation particles, mixed particles, homogeneous porouselectrodes and nonhomogeneous, multilayered porous electrode models are proposed.Meanwhile, nonhomogeneous, multilayered porous graphite electrodes are prepared,and the first lithium-ion insertion and extraction processes of nonhomogeneous,multilayered porous graphite electrode at different potentials are studied byelectrochemical impedance spectroscopy (EIS). The results reveal that a newsemicircle is observed in the middle frequency region. There are three semicircles andone line appeared in the whole frequency region. This new phenomenon has beeninvestigated through the detailed analysis of the change of kinetic parameters obtainedfrom simulating the experimental EIS data as a function of potential. It has found thatthe two semicircles in the intermediate frequency region were strongly potentialdependent, and they were both attributed to the charge transfer process. A detailedanalysis reveal that a different particle size distribution could lead to the appearanceof a new arc and a different layer distribution (a thicker layer and a thinner layer),which could lead to a well-developed semicircle.
     (2) The effects of vinylethylene carbonate (VEC) and fluoroethylene carbonate(FEC) as electrolyte additives, and the content of VEC or FEC in ethylene carbonate(EC)-based electrolyte on the formation mechanisms of solid electrolyte interface(SEI) film and the electrochemical properties of the graphite electrodes in lithium-ionbatteries are investigated by cyclic voltammetry (CV) measurement andcharge-discharge test. The results show that in the case of electrolyte containing lowcontent of VEC(<5vol%), the formation of ROCO2Li due to the double electronsreduction process of EC can be suppressed, thus improvs the electrochemical performance of graphite electrodes. In the case of electrolyte containing high contentof VEC, the formation of Li2CO3due to the single electron reduction process of ECcan be also suppressed, that may take an adverse effect on the cycle performance ofgraphite electrodes. Scanning electron microscopy (SEM) and Fourier transforminfrared (FTIR) spectroscopy are used to investigate the morphology and the surfacechemistry of graphite electrodes cycled in VEC-free and VEC-containing electrolytes.Finally, EIS is used in order to better understand the formation mechanisms of SEIfilm in VEC-containing electrolyte. The results reveal that the main reductionproducts of the SEI film formed in VEC-containing electrolyte are VEC polymerizes,Li2CO3and ROCO2Li. The SEI film covering graphite electrodes in VEC-containingelectrolyte can be more stable during lithium ions insertion, and be flexible toaccommodate the volume changes of graphite material, resulting in a betterreversibility of lithium ions insertion and extraction.
     For the electrolyte contains FEC, the double electrons reduction process of ECcan also be suppressed. When the content of FEC is1vol%, the graphite electrode hashigher reversible capacity and better cycle performance. The graphite electrode cycledin FEC-containing electrolyte is uniformly covered by small particles with the particlesize of100nm according to SEM results. The surface chemistry of graphite electrodecycled in FEC-containing electrolyte is investigated by X-ray photoelectronspectroscopy (XPS). The results demonstrate the compositions of SEI film are LiF,Li2CO3, ROCO2Li and Li2O. It is believed that inorganic Li2CO3and LiF have ahigher conductivity than organic ROCO2Li; hence the discharge capacity and theconductivity of lithium ions are increased. EIS results reveal that adding FEC to theelectrolyte can cause the formation of a stable SEI film with low resistance on thegraphite electrode, which effectively prevents carbon exfoliation and the volumechange during the lithium ions insertion and extraction processes. These resultsindicate that the improvement of electrochemical performance of the graphiteelectrode can be attributed to the formation of a uniform, thin, compact and stable SEIfilm with low resistance.
     (3) Carbon micro-coils (CMCs) are synthesized by chemical vapor deposition(CVD) method. CV, charge-discharge test and EIS are introduced to characterize theelectrochemical properties of CMCs electrode and discuss the properties ofelectrode/electrolyte interfaces during the fist lithium ions insertion process.Charge-discharge results show that the initial irreversible capacities of CMCs electrodes are both large at30and100mA·g-1. But for electrode at the current densityof100mA·g-1, it has a better cycle performance with the reversible capacity of226.9mAh·g-1after250cycles. EIS results demonstrate the SEI film is mainly formed in thefirst discharge process, and there are three main stages in the SEI film formationprocess. First, the rate of SEI film formation is slow, and the thickness of SEI filmincreases slightly in the potential range of1.5to1.0V; second, when the potential isdecreased from1.0to0.6V, SEI film develops and the thickness increase rapidly; thethird stage is the stable stage when the potential is further decreased, SEI film growthtends to be stable, the thickness and the resistance of SEI film are nearly invariable. Astable and compact SEI film can pronounce a positive effect on the cycling behaviorof the CMCs electrode.
     (4) Mn3O4nanoparticles and Mn3O4/carbon nanotubes (CNTs) composites areprepared via a hydrothermal synthesis method. MnO and MnO/CNTs composites areobtained by heating Mn3O4and Mn3O4/CNTs at500℃for3h in flowing Ar/H2. Thephase structure, composition and morphology of the composites are characterized byXRD and field emission scanning electron microscopy (FESEM). Theelectrochemical properties of the composite electrodes are studied by performing CV,galvanostatic charge and discharge tests. The results reveal that the Mn3O4/CNTs andMnO/CNTs electrodes exhibit higher specific capacity at the current density of100mAh·g-1and better cycle performance than pure Mn3O4and MnO electrodes. Theexcellent electrochemical properties of Mn3O4/CNTs and MnO/CNTs electrodes canbe attributed to the presence of CNTs in the composites offering an electronicconducting network and suppressing the volume expansion of Mn3O4and MnOparticles efficiently during the charge and discharge processes.
     (5) Li2MnSiO4and Li2MnSiO4/C with glucose, adipic acid and sugar as carbonsources, are synthesized by sol-gel method. The crystalline structure and morphologyare determined by XRD and SEM. Charge-discharge data reveal that, carbon coatingcan increase the discharge capacity of Li2MnSiO4, the initial discharge capacities ofLi2MnSiO4/C with glucose, adipic acid and sugar as carbon sources are23.3,179.7,184.4and81.4mAh·g-1, respectively. EIS results demonstrate that carbon coating candecrease the charge-transfer resistance, and improve the velocity of lithium iondiffusions in the bulk of the electrode. According to the above results, it can beconcluded that the addition of C can noticeably increase the discharge capacity ofLi2MnSiO4and improve the electrochemical activity of material. Meanwhile, Li2MnSiO4/C with glucose as carbon source can achieve the best electrochemicalproperties.
     In this paper, there are84figures,12tables and263reference articles.
引文
[1] Li L, Zhu X, Yang D, Gao L, Liu J, Kumar R V, Yang J. Preparation and characterization ofnano-structured lead oxide from spent lead acid battery paste[J]. Journal of Hazardous Materials,2012,203-204:274-282.
    [2] Moseley P T, Bonnet B, Cooper A, Kellaway M J. Lead-acid battery chemistry adapted for hybridelectric vehicle duty[J]. Journal of Power Sources,2007,174(1):49-53.
    [3] May G J. Development of valve-regulated lead/acid batteries for distributed power requirements[J].Journal of Power Sources,1996,59(1-2):147-151.
    [4] Ghavami R K, Rafiei Z, Tabatabaei S M. Effects of cationic CTAB and anionic SDBS surfactantson the performance of Zn-MnO2alkaline batteries[J]. Journal of Power Sources,2007,164(2):934-946.
    [5] Freitas M B J G, Pegoretti V C, Pietre M K. Recycling manganese from spent Zn-MnO2primarybatteries[J]. Journal of Power Sources,2007,164(2):947-952.
    [6] Yang C-C, Lin S-J. Improvement of high-rate capability of alkaline Zn–MnO2battery[J]. Journal ofPower Sources,2002,112(1):174-183.
    [7] Steele B C H, Heinzel A. Materials for fuel-cell technologies[J]. Nature,2001,414(6861):345-352.
    [8] Steele B C H. Fuel-cell technology-Running on natural gas[J]. Nature,1999,400(6745):619-621.
    [9] Demirdoven N, Deutch J. Hybrid cars now, fuel cars later[J]. Science,2004,305(5686):974-976.
    [10] Scrosati B, Garche J. Lithium batteries: Status, prospects and future[J]. Journal of Power Sources,2010,195(9):2419-2430.
    [11] Winter M. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews,2004,104:4245-4269.
    [12] Kang B, Ceder G. Battery materials for ultrafast charging and discharging[J]. Nature,2009,458(7235):190-193.
    [13]黄可龙,王兆翔,刘素琴.锂离子电池原理和关键技术[M].北京:化学工业出版社,2007.
    [14]吴宇平,戴晓兵,马军旗,程预江.锂离子电池-应用与实践[M].北京:化学工业出版社,2004.
    [15]郭炳坤,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002.
    [16] Whittingham M S. Electrical energy storage and intercalation chemistry[J]. Science,1976,192(4244):1126-1127.
    [17] Armand M. Materials for advanced batteries[M]. New York: Plenum Press,1980.
    [18] Pietro B D, Patriarca M, Serosati B. On the use of rocking chair configurations for cyclablelithium organic electrolyte batteries[J]. Journal of Power Sources,1982,8:289-299.
    [19] Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J].Science,2011,334(6058):928-935.
    [20]郑洪河.锂离子电池电解质[M].北京:化学工业出版社,2007.
    [21] Jung Y S, Cavanagh A S, Dillon A C, Groner M D, George S M, Lee S-H. Enhanced stability ofLiCoO2cathodes in lithium-ion batteries using surface modification by atomic layer deposition[J].Journal of The Electrochemical Society,2010,157(1): A75-A81.
    [22] Jung W I, Nagao M, Pitteloud C, Yamada A, Kanno R. Synthesis of LixMnO2by chemicallithiation in an aqueous media[J]. Journal of Power Sources,2010,195(10):3328-3332.
    [23] Qiu X-Y, Zhuang Q-C, Zhang Q-Q, Cao R, Ying P-Z, Qiang Y-H, Sun S-G. Electrochemical andelectronic properties of LiCoO2cathode investigaeted by galvanostatic cycling and EIS[J].Physical Chemistry Chemical Physics,2012,14:2617-2630.
    [24] Cao Q, Zhang H P, Wang G J, Xia Q, Wu Y P, Wu H Q. A novel carbon-coated LiCoO2as cathodematerial for lithium ion battery[J]. Electrochemistry Communications,2007,9(5):1228-1232.
    [25] Yang S, Wang X, Yang X, Bai Y, Liu Z, Shu H, Wei Q. Determination of the chemical diffusioncoefficient of lithium ions in spherical Li[Ni0.5Mn0.3Co0.2]O2[J]. Electrochimica Acta,2012,66:88-93.
    [26] Zheng H, Tan L, Liu G, Song X, Battaglia V S. Calendering effects on the physical andelectrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2cathode[J]. Journal of Power Sources,2012,208:52-57.
    [27] Tang W, Wang X J, Hou Y Y, Li L L, Sun H, Zhu Y S, Bai Y, Wu Y P, Zhu K, van Ree T. NanoLiMn2O4as cathode material of high rate capability for lithium ion batteries[J]. Journal of PowerSources,2012,198:308-311.
    [28] Xi L J, Wang H-E, Lu Z G, Yang S L, Ma R G, Deng J Q, Chung C Y. Facile synthesis of porousLiMn2O4spheres as positive electrode for high-power lithium ion batteries[J]. Journal of PowerSources,2012,198:251-257.
    [29] Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y. Porous LiMn2O4as cathodematerial with high power and excellent cycling for aqueous rechargeable lithium batteries[J].Energy&Environmental Science,2011,4(10):3985-3990.
    [30] Liu X-M, Huang Z-D, Oh S, Ma P-C, Chan P C H, Vedam G K, Kang K, Kim J-K. Sol–gelsynthesis of multiwalled carbon nanotube-LiMn2O4nanocomposites as cathode materials forLi-ion batteries[J]. Journal of Power Sources,2010,195(13):4290-4296.
    [31] Lee H-W, Muralidharan P, Ruffo R, Mari C M, Cui Y, Kim D K. Ultrathin spinel LiMn2O4nanowires as high power cathode materials for Li-ion batteries[J]. Nano Letters,2010,10(10):3852-3856.
    [32] Zhou L, Zhao D, Lou X D. LiNi0.5Mn1.5O4hollow structures as high-performance cathodes forlithium-ion batteries[J]. Angewandte Chemie International Edition,2012,51(1):239-241.
    [33] Brutti S, Gentili V, Reale P, Carbone L, Panero S. Mitigation of the irreversible capacity andelectrolyte decomposition in a LiNi0.5Mn1.5O4/nano-TiO2Li-ion battery[J]. Journal of PowerSources,2011,196(22):9792-9799.
    [34] Lin C-Y, Duh J-G, Hsu C-H, Chen J-M. LiNi0.5Mn1.5O4cathode material by low-temperaturesolid-state method with excellent cycleability in lithium ion battery[J]. Materials Letters,2010,64:2328-2330.
    [35] Lee H, Choi S, Choi S, Kim H-J, Choi Y, Yoon S, Cho J-J. SEI layer-forming additives forLiNi0.5Mn1.5O4/graphite5V Li-ion batteries[J]. Electrochemistry Communications,2007,9(4):801-806.
    [36] Yuan W, Yan J, Tang Z, Sha O, Wang J, Mao W, Ma L. Synthesis of Li3V2(PO4)3cathode materialvia a fast sol–gel method based on spontaneous chemical reactions[J]. Journal of Power Sources,2012,201:301-306.
    [37] Zheng H, Chai L, Song X, Battaglia V. Electrochemical cycling behavior of LiFePO4cathodecharged with different upper voltage limits[J]. Electrochimica Acta,2012,62:256-262.
    [38]聂平,申来法,陈琳,苏晓飞,张校刚,李洪森.溶胶-凝胶法制备多孔LiMnPO4/MWCNT复合材料及其电化学性能[J].物理化学学报,2011,27(9):2123-2128.
    [39] Allen J L, Jow T R, Wolfenstine J. Improved cycle life of Fe-substituted LiCoPO4[J]. Journal ofPower Sources,2011,196(20):8656-8661.
    [40] Markevich E, Sharabi R, Gottlieb H, Borgel V, Fridman K, Salitra G, Aurbach D, Semrau G,Schmidt M A, Schall N, Bruenig C. Reasons for capacity fading of LiCoPO4cathodes in LiPF6containing electrolyte solutions[J]. Electrochemistry Communications,2012,15(1):22-25.
    [41] Wang J, Zhang X, Liu J, Yang G, Ge Y, Yu Z, Wang R, Pan X. Long-term cyclability and high-ratecapability of Li3V2(PO4)3/C cathode material using PVA as carbon source[J]. Electrochimica Acta,2010,55(22):6879-6884.
    [42] Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt M A, Schall N,Stinner C. Significantly improved cycling performance of LiCoPO4cathodes[J]. ElectrochemistryCommunications,2011,13(8):800-802.
    [43] Devaraju M K, Honma I. Hydrothermal and solvothermal process towards development ofLiMPO4(M=Fe, Mn) nanomaterials for lithium-ion batteries[J]. Advanced Energy Materials,2012,2(3):284-297.
    [44] Zheng Z, Wang Y, Zhang A, Zhang T, Cheng F, Tao Z, Chen J. Porous Li2FeSiO4/C nanocompositeas the cathode material of lithium-ion batteries[J]. Journal of Power Sources,2012,198:229-235.
    [45] Shao B, Taniguchi I. Synthesis of Li2FeSiO4/C nanocomposite cathodes for lithium batteries by anovel synthesis route and their electrochemical properties[J]. Journal of Power Sources,2012,199:278-286.
    [46] Aravindan V, Ravi S, Kim W S, Lee S Y, Lee Y S. Size controlled synthesis of Li2MnSiO4nanoparticles: Effect of calcination temperature and carbon content for high performance lithiumbatteries[J]. Journal of Colloid and Interface Science,2011,355(2):472-477.
    [47] Armstrong A R, Lyness C, Ménétrier M, Bruce P G. Structural polymorphism in Li2CoSiO4intercalation electrodes: A combined diffraction and NMR study[J]. Chemistry of Materials,2010,22(5):1892-1900.
    [48] Dominko R. Li2MSiO4(M=Fe and/or Mn) cathode materials[J]. Journal of Power Sources,2008,184(2):462-468.
    [49] Wu S, Zhu Z, Yang Y, Hou Z. Effects of Na-substitution on structural and electronic properties ofLi2CoSiO4cathode material[J]. Transactions of Nonferrous Metals Society of China,2009,19(1):182-186.
    [50] Lyness C, Delobel B, Armstrong A R, Bruce P G. The lithium intercalation compound Li2CoSiO4and its behaviour as a positive electrode for lithium batteries[J]. Chemical Communications,2007,(46):4890-4892.
    [51] Gong Z L, Li Y X, Yang Y. Synthesis and electrochemical performance of Li2CoSiO4as cathodematerial for lithium ion batteries[J]. Journal of Power Sources,2007,174(2):524-527.
    [52]周友元,李新海,郭华军,王志兴,杨勇.中间相炭-天然石墨球复合材料的制备及电化学性能[J].中南大学学报(自然科学版),2007,38(4):652-656.
    [53] Huang X, Qi X, Boey F, Zhang H. Graphene-based composites[J]. Chemical Society Reviews,2012,41(2):666-686.
    [54] Pumera M. Graphene-based nanomaterials for energy storage[J]. Energy&Environmental Science,2011,4(3):668-674.
    [55] Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, Cheng H-M. Graphene/metal oxide composite electrodematerials for energy storage[J]. Nano Energy,2012,1(1):107-131.
    [56]杨晓伟,何雨石,廖小珍,马紫峰.减少再堆叠改性的石墨烯薄膜在锂离子电池中的应用[J].物理化学学报,2011,27(11):2583-2586.
    [57]李昌明,赵灵智,刘志平,张仁元,李伟善.锂离子电池碳纳米管负极材料储锂性能研究[J].化工新型材料,2009,37(6):28-29.
    [58]张绪刚,刘敏,王作明,李峰,刘畅.碳纳米管复合导电剂及其在锂离子电池负极中的应用[J].炭素技术,2008,27(4):10-13.
    [59]王振旭.非晶碳纳米管新型锂离子电池负极材料[J].材料研究学报,2008,22(3):312-316.
    [60] Zhang K, Han P, Gu L, Zhang L, Liu Z, Kong Q, Zhang C, Dong S, Zhang Z, Yao J, Xu H, Cui G,Chen L. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ionbatteries[J]. ACS Applied Materials&Interfaces,2012,4(2):658-664.
    [61] Zhong K, Zhang B, Luo S, Wen W, Li H, Huang X, Chen L. Investigation on porous MnOmicrosphere anode for lithium ion batteries[J]. Journal of Power Sources,2011,196(16):6802-6808.
    [62] Yu A, Park H W, Davies A, Higgins D C, Chen Z, Xiao X. Free-standing layer-by-layer hybrid thinfilm of graphene-MnO2nanotube as anode for lithium ion batteries[J]. The Journal of PhysicalChemistry Letters,2011,2:1855-1860.
    [63] Li J F, Xi B J, Zhu Y C, Li Q W, Yan Y, Qian Y T. A precursor route to synthesize mesoporousgamma-MnO2microcrystals and their applications in lithium battery and water treatment[J].Journal of Alloys and Compounds,2011,509(39):9542-9548.
    [64] Liu S-Y, Xie J, Zheng Y-X, Cao G-S, Zhu T-J, Zhao X-B. Nanocrystal manganese oxide (Mn3O4,MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties[J].Electrochimica Acta,2012,66:271-278.
    [65] Gao J, Lowe M A, Abru a H c D. Spongelike nanosized Mn3O4as a high-capacity anode materialfor rechargeable lithium batteries[J]. Chemistry of Materials,2011,23(13):3223-3227.
    [66] Liu P, Vajo J J, Wang J S, Li W, Liu J. Thermodynamics and kinetics of the Li/FeF3reaction byelectrochemical analysis[J]. The Journal of Physical Chemistry C,2012,116(10):6467-6473.
    [67] Zhou M, Zhao L, Kitajou A, Okada S, Yamaki J-i. Mechanism on exothermic heat of FeF3cathodein Li-ion batteries[J]. Journal of Power Sources,2012,203:103-108.
    [68] Yabuuchi N, Sugano M, Yamakawa Y, Nakai I, Sakamoto K, Muramatsu H, Komaba S. Effect ofheat-treatment process on FeF3nanocomposite electrodes for rechargeable Li batteries[J]. Journalof Materials Chemistry,2011,21(27):10035-10041.
    [69] Lin Z, Yue W, Huang D, Hu J, Zhang X, Yuan Z-Y, Yang X. Pore length control of mesoporousCo3O4and its influence on the capacity of porous electrodes for lithium-ion batteries[J]. RSCAdvances,2012,2(5):1794-1797.
    [70] Wang X, Guan H, Chen S, Li H, Zhai T, Tang D, Bando Y, Golberg D. Self-stacked Co3O4nanosheets for high-performance lithium ion batteries[J]. Chemical Communications,2011,47(45):12280-12282.
    [71] Yao X, Tang C, Yuan G, Cui P, Xu X, Liu Z. Porous hematite (α-Fe2O3) nanorods as an anodematerial with enhanced rate capability in lithium-ion batteries[J]. ElectrochemistryCommunications,2011,13(12):1439-1442.
    [72] Yamauchi S, Hibino M, Yao T. Structure change analysis in γ-Fe2O3/carbon composite in theprocess of electrochemical lithium insertion[J]. Solid State Ionics,2011,191(1):45-48.
    [73] Xue X-Y, Ma C-H, Cui C-X, Xing L-L. High lithium storage performance of α-Fe2O3/graphenenanocomposites as lithium-ion battery anodes[J]. Solid State Sciences,2011,13(8):1526-1530.
    [74] Wang G, Liu T, Luo Y, Zhao Y, Ren Z, Bai J, Wang H. Preparation of Fe2O3/graphene compositeand its electrochemical performance as an anode material for lithium ion batteries[J]. Journal ofAlloys and Compounds,2011,509(24): L216-L220.
    [75] Wang Z, Luan D, Madhavi S, Hu Y, Lou X W. Assembling carbon-coated α-Fe2O3hollownanohorns on the CNT backbone for superior lithium storage capability[J]. Energy&Environmental Science,2012,5(1):5252-5256.
    [76] Su D, Kim H-S, Kim W-S, Wang G. Synthesis of tuneable porous hematites (α-Fe2O3) for gassensing and lithium storage in lithium ion batteries[J]. Microporous and Mesoporous Materials,2012,149(1):36-45.
    [77] Guo B, Chi M, Sun X-G, Dai S. Mesoporous carbon-Cr2O3composite as an anode material forlithium ion batteries[J]. Journal of Power Sources,2012,205:495-499.
    [78] Hu J, Li H, Huang X, Chen L. Improve the electrochemical performances of Cr2O3anode forlithium ion batteries[J]. Solid State Ionics,2006,177(26-32):2791-2799.
    [79] Mai Y J, Shi S J, Zhang D, Lu Y, Gu C D, Tu J P. NiO–graphene hybrid as an anode material forlithium ion batteries[J]. Journal of Power Sources,2012,204:155-161.
    [80] Huang Y, Huang X-l, Lian J-s, Xu D, Wang L-m, Zhang X-b. Self-assembly of ultrathin porousNiO nanosheets/graphene hierarchical structure for high-capacity and high-rate lithium storage[J].Journal of Materials Chemistry,2012,22(7):2844-2847.
    [81] Wang X, Yang Z, Sun X, Li X, Wang D, Wang P, He D. NiO nanocone array electrode with highcapacity and rate capability for Li-ion batteries[J]. Journal of Materials Chemistry,2011,21(27):9988-9990.
    [82] Cao F, Zhang F, Deng R, Hu W, Liu D, Song S, Zhang H. Surfactant-free preparation of NiOnanoflowers and their lithium storage properties[J]. CrystEngComm,2011,13(15):4903-4908.
    [83] Xiao L F, Cao Y L, Ai X P, Yang H X. Optimization of EC-based multi-solvent electrolytes for lowtemperature applications of lithium-ion batteries[J]. Electrochimica Acta,2004,49(27):4857-4863.
    [84] Cai Z, Liu Y, Zhao J, Li L, Zhang Y, Zhang J. Tris(trimethylsilyl) borate as electrolyte additive toimprove performance of lithium-ion batteries[J]. Journal of Power Sources,2012,202:341-346.
    [85] Ning G, Haran B, Popov B N. Capacity fade study of lithium-ion batteries cycled at high dischargerates[J]. Journal of Power Sources,2003,117(1-2):160-169.
    [86] Markovsky B, Nimberger A, Talyosef Y, Rodkin A, Belostotskii A M, Salitra G, Aurbach D, KimH-J. On the influence of additives in electrolyte solutions on the electrochemical behavior ofcarbon/LiCoO2cells at elevated temperatures[J]. Journal of Power Sources,2004,136(2):296-302.
    [87] Wohlfahrt-Mehrens M, Vogler C, Garche J. Aging mechanisms of lithium cathode materials[J].Journal of Power Sources,2004,127(1-2):58-64.
    [88] Sarre G, Blanchard P, Broussely M. Aging of lithium-ion batteries[J]. Journal of Power Sources,2004,127(1-2):65-71.
    [89] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources,2006,162(2):1379-1394.
    [90] Levi M D, Aurbach D. Simultaneous measurements and modeling of the electrochemicalimpedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium[J].The Journal of Physical and Chemistry B,1997,101:4630-4640.
    [91]庄全超,徐守冬,邱祥云,崔永丽,方亮,孙世刚.锂离子电池的电化学阻抗谱分析[J].化学进展,2010,22(6):1044-1057.
    [92] Li B, Xu M, Li T, Li W, Hu S. Prop-1-ene-1,3-sultone as SEI formation additive in propylenecarbonate-based electrolyte for lithium ion batteries[J]. Electrochemistry Communications,2012,17:92-95.
    [93] Etacheri V, Haik O, Gofer Y, Roberts G, Stefan I, Fasching R, Aurbach D. The effect offluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ionbattery anodes[J]. Langmuir,2012,28(1):965-976.
    [94] Zheng H, Liu G, Battaglia V. Film-forming properties of propylene carbonate in the presence of aquaternary ammonium ionic liquid on natural graphite anode[J]. The Journal of Physical andChemistry C,2010,114:6182-6189.
    [95] Park G, Nakamura H, Lee Y, Yoshio M. The important role of additives for improved lithium ionbattery safety[J]. Journal of Power Sources,2009,189(1):602-606.
    [96] Li W, Lucht B L. Inhibition of solid electrolyte interface formation on cathode particles forlithium-ion batteries[J]. Journal of Power Sources,2007,168(1):258-264.
    [97]熊琳强,张英杰,董鹏,杨瑞明,夏书标.锂离子电池电解液防过充添加剂研究进展[J].化工进展,2011,30(6):1198-1204.
    [98]唐致远,陈玉红,汪亮.锂离子电池过充保护添加剂研究进展[J].化工进展,2005,24(12):1368-1372.
    [99]庄全超,武山,刘文元,陆兆达.二次锂电池过充电保护添加剂[J].电池工业,2003,8(4):177-181.
    [100]骆宏钧,张校刚,陈黎.锂离子电池过充保护添加剂shuttle的研究[J].电源技术,2012,36(2):172-174.
    [101] Paled E. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous batterysystems-the solid electrolyte interphase model[J]. Journal of The Electrochemical Society,1979,126(12):2047-2051.
    [102] Fong R, Sacken U V, Dahn J R. Studies of lithium intercalation into carbons using nonaqueouselectrochemical cells[J]. Journal of The Electrochemical Society,1990,137(7):2009-2013.
    [103] Ein-Eli Y, Thomas S R, Koch V R. New electrolyte system for Li-ion battery[J]. Journal of TheElectrochemical Society,1996,143(9): L195-L197.
    [104] Ein-Eli Y, Thomas S R, Koch V R. The role of SO2as an additive to organic Li-ion batteryelectrolytes[J]. Journal of The Electrochemical Society,1997,144(4):1159-1165.
    [105] Wuersig A, Scheifele W, Novák P. CO2gas evolution on cathode materials for lithium-ionbatteries[J]. Journal of The Electrochemical Society,2007,154(5): A449-A454.
    [106] Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y, Yamin H. The study ofelectrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries[J].Journal of The Electrochemical Society,1995,142(9):2882-2890.
    [107] Chung K. Studies on the effects of coated Li2CO3on lithium electrode[J]. Microchemical Journal,2003,75(2):71-77.
    [108] Shin J-S, Han C-H, Jung U-H, Lee S-I, Kim H-J, Kim K. Effect of Li2CO3additive on gasgeneration in lithium-ion batteries[J]. Journal of Power Sources,2002,109:47-52.
    [109] Choi Y-K, Chung K, Kim W-S, Sung Y-E, Park S-M. Suppressive effect of Li2CO3on initialirreversibility at carbon anode in Li-ion batteries[J]. Journal of Power Sources,2002,104:132-139.
    [110]郑洪河,王显军,李苞,常照荣.钾盐添加剂改善天然石墨负极的嵌脱锂性质[J].无机材料学报,2006,21(5):1109-1113.
    [111] Zhuang Q-C, Li J, Tian L-L. Potassium carbonate as film forming electrolyte additive forlithium-ion batteries[J]. Journal of Power Sources,2013,222:177-183.
    [112] Shu Z X, McMillan R S, Murray J J, Davidson I J. Use of chloroethylene carbonate as anelectrolyte solvent for a lithium ion battery containing a graphitic anode[J]. Journal of TheElectrochemical Society,1995,142(9): L161-L162.
    [113] Shu Z X, McMillan R S, Murray J J, Davidson I J. Use of chloroethylene carbonate as anelectrolyte solvent for a graphite anode in a lithium-ion battery[J]. Journal of TheElectrochemical Society,1996,143(7):2230-2245.
    [114] Ryou M-H, Han G-B, Lee Y M, Lee J-N, Lee D J, Yoon Y O, Park J-K. Effect of fluoroethylenecarbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells[J].Electrochimica Acta,2010,55(6):2073-2077.
    [115] Choi N-S, Lee Y, Kim S-S, Shin S-C, Kang Y-M. Improving the electrochemical properties ofgraphite/LiCoO2cells in ionic liquid-containing electrolytes[J]. Journal of Power Sources,2010,195(8):2368-2371.
    [116]杨春巍,吴锋,吴伯荣,任永欢,姚经文.含FEC电解液的锂离子电池低温性能研究[J].电化学,2011,17(1):63-66.
    [117] Choi N-S, Yew K H, Lee K Y, Sung M, Kim H, Kim S-S. Effect of fluoroethylene carbonateadditive on interfacial properties of silicon thin-film electrode[J]. Journal of Power Sources,2006,161(2):1254-1259.
    [118] Yao W, Zhang Z, Gao J, Li J, Xu J, Wang Z, Yang Y. Vinyl ethylene sulfite as a new additive inpropylene carbonate-based electrolyte for lithium ion batteries[J]. Energy Environ. Sci.,2009,2(10):1102-1108.
    [119]姚万浩,李劼,张忠如,高军,王周成,杨勇.锂离子电池电解液成膜添加剂乙烯基亚硫酸乙烯酯的电化学行为[J].化学学报,2009,67(22):2531-2535.
    [120] Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive for lithium-ioncells with graphitic anodes[J]. Journal of The Electrochemical Society,1999,146(2):470-472.
    [121] Chang C-C, Hsu S-H, Jung Y-F, Yang C-H. Vinylene carbonate and vinylene trithiocarbonate aselectrolyte additives for lithium ion battery[J]. Journal of Power Sources,2011,196(22):9605-9611.
    [122] Sun X-G, Dai S. Electrochemical investigations of ionic liquids with vinylene carbonate forapplications in rechargeable lithium ion batteries[J]. Electrochimica Acta,2010,55(15):4618-4626.
    [123] El Ouatani L, Dedryvère R, Siret C, Biensan P, Reynaud S, Irat abal P, Gonbeau D. The effect ofvinylene carbonate additive on surface film formation on both electrodes in Li-ion batteries[J].Journal of The Electrochemical Society,2009,156(2): A103-A113.
    [124] Chen L, Wang K, Xie X, Xie J. Effect of vinylene carbonate (VC) as electrolyte additive onelectrochemical performance of Si film anode for lithium ion batteries[J]. Journal of PowerSources,2007,174(2):538-543.
    [125] Lee H-H, Wang Y-Y, Wan C-C, Yang M-H, Wu H-C, Shieh D-T. The function of vinylenecarbonate as a thermal additive to electrolyte in lithium batteries[J]. Journal of AppliedElectrochemistry,2005,35(6):615-623.
    [126] Fu Y, Chen C, Qiu C, Ma X. Vinyl ethylene carbonate as an additive to ionic liquid electrolyte forlithium ion batteries[J]. Journal of Applied Electrochemistry,2009,39(12):2597-2603.
    [127] Li J, Yao W, Meng Y S, Yang Y. Effects of vinyl ethylene carbonate additive onelevated-temperature performance of cathode material in lithium ion batteries[J]. The Journal ofPhysical and Chemistry C,2008,112:12550-12556.
    [128] Hu Y, Kong W, Li H, Huang X, Chen L. Experimental and theoretical studies on reductionmechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries[J].Electrochemistry Communications,2004,6(2):126-131.
    [129] Nam T-H, Shim E-G, Kim J-G, Kim H-S, Moon S-I. Electrochemical performance of Li-ionbatteries containing biphenyl, vinyl ethylene carbonate in liquid electrolyte[J]. Journal of TheElectrochemical Society,2007,154(10): A957-A963.
    [130] Santner H J, M ller K C, Ivan o J, Ramsey M G, Netzer F P, Yamaguchi S, Besenhard J O,Winter M. Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries,which belongs to the family of additives containing vinyl groups[J]. Journal of Power Sources,2003,119-121:368-372.
    [131] M ller K C, Santner H J, Kern W, Yamaguchi S, Besenhard J O, Winter M. In situcharacterization of the SEI formation on graphite in the presence of a vinylene group containingfilm-forming electrolyte additives[J]. Journal of Power Sources,2003,119-121:561-566.
    [132] Aurbach D, Gamolsky K, Markovsky B, Gofer Y, Schmidt M, Heider U. On the use of vinylenecarbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J]. Electrochimica Acta,2002,47:1423-1429.
    [133] Matsuoka O, Hiwara A, Omi T, Toriida M, Hayashi T, Tanaka C, Saito Y, Ishida T, Tan H, Ono SS, Yamamoto S. Ultra-thin passivating film induced by vinylene carbonate on highly orientedpyrolytic graphite negative electrode in lithium-ion cell[J]. Journal of Power Sources,2002,108(1-2):128-138.
    [134] Vollmer J M, Curtiss L A, Vissers D R, Amine K. Reduction mechanisms of ethylene, propylene,and vinylethylene carbonates[J]. Journal of The Electrochemical Society,2004,151(1):A178-A183.
    [135]许杰,姚万浩,姚宜稳,王周成,杨勇.添加剂氟代碳酸乙烯酯对锂离子电池性能的影响[J].物理化学学报,2009,25(2):201-206.
    [136] Profatilova I A, Kim S-S, Choi N-S. Enhanced thermal properties of the solid electrolyteinterphase formed on graphite in an electrolyte with fluoroethylene carbonate[J]. ElectrochimicaActa,2009,54(19):4445-4450.
    [137] Nytén A, Abouimrane A, Armand M, Gustafsson T, Thomas J O. Electrochemical performance ofLi2FeSiO4as a new Li-battery cathode material[J]. Electrochemistry Communications,2005,7(2):156-160.
    [138] Zaghib K, Ait Salah A, Ravet N, Mauger A, Gendron F, Julien C M. Structural, magnetic andelectrochemical properties of lithium iron orthosilicate[J]. Journal of Power Sources,2006,160(2):1381-1386.
    [139] Yan Z, Cai S, Miao L, Zhou X, Zhao Y. Synthesis and characterization of in situ carbon-coatedLi2FeSiO4cathode materials for lithium ion battery[J]. Journal of Alloys and Compounds,2012,511(1):101-106.
    [140]胡国荣,曹雁冰,彭忠东,杜柯,蒋庆来.微波合成法制备锂离子电池正极材料Li2FeSiO4[J].物理化学学报,2009,25(5):1004-1008.
    [141]曹雁冰,段建国,胡国荣,姜锋,彭忠东,杜柯.微波辅助固相法合成锂离子电池正极复合材料Li2FeSiO4/C[J].无机材料学报,2012,27:1023-1029.
    [142] Dominko R, Bele M, Gaber ek M, Meden A, Rem kar M, Jamnik J. Structure andelectrochemical performance of Li2MnSiO4and Li2FeSiO4as potential Li-battery cathodematerials[J]. Electrochemistry Communications,2006,8(2):217-222.
    [143] Xu Y, Li Y, Liu S, Li H, Liu Y. Nanoparticle Li2FeSiO4as anode material for lithium-ionbatteries[J]. Journal of Power Sources,2012,220:103-107.
    [144] Li Y-X, Gong Z-L, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocompositecathode material for lithium ion batteries[J]. Journal of Power Sources,2007,174(2):528-532.
    [145] Aravindan V, Karthikeyan K, Ravi S, Amaresh S, Kim W S, Lee Y S. Adipic acid assisted sol–gelsynthesis of Li2MnSiO4nanoparticles with improved lithium storage properties[J]. Journal ofMaterials Chemistry,2010,20(35):7340-7343.
    [146] Gummow R J, Sharma N, Peterson V K, He Y. Synthesis, structure, and electrochemicalperformance of magnesium-substituted lithium manganese orthosilicate cathode materials forlithium-ion batteries[J]. Journal of Power Sources,2012,197:231-237.
    [147] Liu W, Xu Y, Yang R. Synthesis, characterization and electrochemical performance ofLi2MnSiO4/C cathode material by solid-state reaction[J]. Journal of Alloys and Compounds,2009,480(2): L1-L4.
    [148] Kokalj A, Dominko R, Mali G, Meden A, Gaberscek M, Jamnik J. Beyond one-electron reactionin Li cathode materials: Designing Li2MnxFe1-xSiO4[J]. Chemistry of Materials,2007,19:3633.
    [149] Rangappa D, Murukanahally K D, Tomai T, Unemoto A, Honma I. Ultrathin nanosheets ofLi2MSiO4(M=Fe, Mn) as high-capacity Li-ion battery electrode[J]. Nano Letters,2012,12(3):1146-1151.
    [150]魏怡,王利娟,闫继,沙鸥,唐致远,马莉.焙烧温度对锂离子电池正极材料Li2MnSiO4/C电化学性能的影响[J].物理化学学报,2011,27(11):2587-2592.
    [151] Fan X-Y, Li Y, Wang J-J, Gou L, Zhao P, Li D-L, Huang L, Sun S-G. Synthesis andelectrochemical performance of porous Li2FeSiO4/C cathode material for long-life lithium-ionbatteries[J]. Journal of Alloys and Compounds,2010,493(1-2):77-80.
    [152] Dominko R, Conte D E, Hanzel D, Gaberscek M, Jamnik J. Impact of synthesis conditions on thestructure and performance of Li2FeSiO4[J]. Journal of Power Sources,2008,178(2):842-847.
    [153] Kam K C, Gustafsson T, Thomas J O. Synthesis and electrochemical properties of nanostructuredLi2FeSiO4/C cathode material for Li-ion batteries[J]. Solid State Ionics,2011,192(1):356-359.
    [154] Huang X, Li X, Wang H, Pan Z, Qu M, Yu Z. Synthesis and electrochemical performance ofLi2FeSiO4/carbon/carbon nano-tubes for lithium ion battery[J]. Electrochimica Acta,2010,55(24):7362-7366.
    [155]杨勇,方海升,李莉萍,闫国丰,李广社. Li2MnSiO4/C复合正极材料的合成及电化学性能[J].稀有金属材料与工程,2008,37:1085-1088.
    [156] Li L-m, Guo H-j, Li X-h, Wang Z-x, Peng W-j, Xiang K-x, Cao X. Effects of roastingtemperature and modification on properties of Li2FeSiO4/C cathode[J]. Journal of Power Sources,2009,189(1):45-50.
    [157] Deng C, Zhang S, Yang S Y, Fu B L, Ma L. Synthesis and characterization of Li2Fe0.97M0.03SiO4(M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries[J]. Journal of Power Sources,2011,196(1):386-392.
    [158] Zhang S, Deng C, Fu B L, Yang S Y, Ma L. Effects of Cr doping on the electrochemicalproperties of Li2FeSiO4cathode material for lithium-ion batteries[J]. Electrochimica Acta,2010,55(28):8482-8489.
    [159] Zhang S, Deng C, Fu B L, Yang S Y, Ma L. Doping effects of magnesium on the electrochemicalperformance of Li2FeSiO4for lithium ion batteries[J]. Journal of Electroanalytical Chemistry,2010,644(2):150-154.
    [160] Guo H, Cao X, Li X, Li L, Li X, Wang Z, Peng W, Li Q. Optimum synthesis ofLi2Fe1xMnxSiO4/C cathode for lithium ion batteries[J]. Electrochimica Acta,2010,55(27):8036-8042.
    [161] Shao B, Abe Y, Taniguchi I. Synthesis and electrochemical characterization ofLi2FexMn1xSiO4/C (0≦x≦0.8) nanocomposite cathode for lithium-ion batteries[J]. PowderTechnology,2013,235:1-8.
    [162] Zhang S, Li Y, Xu G, Li S, Lu Y, Toprakci O, Zhang X. High-capacity Li2Mn0.8Fe0.2SiO4/carboncomposite nanofiber cathodes for lithium-ion batteries[J]. Journal of Power Sources,2012,213:10-15.
    [163] Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X. Cr-dopedLi2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries[J]. Journalof Materials Chemistry,2012,22:14611-14666.
    [164]刘文刚,许云华,杨蓉,任冰.锂离子电池正极材料Li2Mn0.95Mg0.05SiO4的合成和电化学性能[J].硅酸盐通报,2009,28(3):464-467.
    [165] Yu X Q, He Y, Sun J P, Tang K, Li H, Chen L Q, Huang X J. Nanocrystalline MnO thin filmanode for lithium ion batteries with low overpotential[J]. Electrochemistry Communications,2009,11(4):791-794.
    [166] Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L. MnO powder as anode active materials forlithium ion batteries[J]. Journal of Power Sources,2010,195:3300-3308.
    [167]丁朋,徐友龙,孙孝飞.纳米MnO锂离子电池负极材料的制备与性能[J].物理化学学报,2013,29(2):293-297.
    [168]许高洁,杨海燕,韩鹏献,张立学,张克军,张传健,范玉华,毕彩丰,崔光磊.锂离子电池MnO/TiN负极研究[J].电化学,2012,18(1):37-42.
    [169] Xu G-L, Xu Y-F, Sun H, Fu F, Zheng X-M, Huang L, Li J-T, Yang S-H, Sun S-G. Facile synthesisof porous MnO/C nanotubes as a high capacity anode material for lithium ion batteries[J].Chemical Communications,2012,48(68):8502-8504.
    [170] Sun B, Chen Z, Kim H-S, Ahn H, Wang G. MnO/C core-shell nanorods as high capacity anodematerials for lithium-ion batteries[J]. Journal of Power Sources,2011,196(6):3346-3349.
    [171] Hsieh C-T, Lin C-Y, Lin J-Y. High reversibility of Li intercalation and de-intercalation inMnO-attached graphene anodes for Li-ion batteries[J]. Electrochimica Acta,2011,56(24):8861-8867.
    [172]蒋蓉蓉.纳米结构二氧化锰的制备及其作为电化学电容器电极材料的研究[D].上海:复旦大学,2010.
    [173] Arava Leela Mohana Reddy, Manikoth M. Shaijumon, Gowda S R, Ajayan P M. CoaxialMnO2/Carbon nanotube array electrodes for high-performance lithium batteries[J]. Nano Letters,2009,9:1002-1006.
    [174] Wu M-S, Chiang P-C J, Lee J-T, Lin J-C. Synthesis of manganese oxide electrodes withinterconnected nanowire structure as an anode material for rechargeable lithium ion batteries[J].The Journal of Physical and Chemistry B,2005,109:23279-23284.
    [175]郭玉刚,田庆华,郭学益. Mn3O4制备研究进展[J].金属材料与冶金工程,2008,36(2):60-64.
    [176]张西军,袁伟.一步水解氧化法制备纳米级Mn3O4[J].北京化工大学学报,2002,29(3):74-78.
    [177] Bastami T R, Entezari M H. Sono-synthesis of Mn3O4nanoparticles in different media withoutadditives[J]. Chemical Engineering Journal,2010,164(1):261-266.
    [178] Dubal D P, Holze R. High capacity rechargeable battery electrode based on mesoporous stackedMn3O4nanosheets[J]. RSC Advances,2012,2(32):12096-12100.
    [179] Xiao W, Chen J S, Lou X W. Synthesis of octahedral Mn3O4crystals and their derivedMn3O4-MnO2heterostructures via oriented growth[J]. CrystEngComm,2011,13:5685-5687.
    [180] Wang J, Du N, Wu H, Zhang H, Yu J, Yang D. Order-aligned Mn3O4nanostructures as superhigh-rate electrodes for rechargeable lithium-ion batteries[J]. Journal of Power Sources,2013,222:32-37.
    [181] Wang Z-H, Yuan L-X, Shao Q-G, Huang F, Huang Y-H. Mn3O4nanocrystals anchored onmulti-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries[J].Materials Letters,2012,80:110-113.
    [182]庄全超.锂离子电池电极界面特性研究[D].厦门:厦门大学,2007.
    [183]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,1999.
    [184]章晓中.电子显微分析[M].北京:清华大学出版社,2006.
    [185]白春礼.扫描隧道显微技术及其应用[M].上海:上海科学技术出版社,1992.
    [186]周玉,武高辉.材料分析测试技术-材料X射线衍射与电子显微分析[M].哈尔滨:哈尔滨工业大学出版社,2007.
    [187]蔡正千.热分析[M].北京:高等教育出版社,1993.
    [188]李余增.热分析[M].北京:清华大学出版社,1987.
    [189]史美伦.交流阻抗谱原理及应用[M].北京:国防工业出版社,2001.
    [190]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [191] Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemical properties ofLixNi1-yCoyO2cathodes studied by impedance spectroscopy[J]. Chemistry of Materials,2001,13:1642-1646.
    [192] Zhuang Q-C, Wei T, Du L-L, Cui Y-L, Fang L, Sun S-G. An electrochemical impedancespectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4[J]. TheJournal of Physical and Chemistry C,2010,114:8614-8621.
    [193] Macdonald D. Reflections on the history of electrochemical impedance spectroscopy[J].Electrochimica Acta,2006,51(8-9):1376-1388.
    [194]魏涛,庄全超,吴超,崔永丽,方亮,孙世刚.温度对尖晶石LiMn2O4中锂离子嵌脱过程的影响[J].化学学报,2010,68(15):1481-1486.
    [195]庄全超,魏国祯,董全峰,孙世刚.温度对石墨电极性能的影响[J].物理化学学报,2009,25(3):406-410.
    [196] Song J Y, Lee H H, Wang Y Y, Wan C C. Two-and three-electrode impedance spectroscopy oflithium-ion batteries[J]. Journal of Power Sources,2002,111(2):255-267.
    [197] Xu M, Dewald H. Impedance studies of copper foil and graphite-coated copper foil electrodes inlithium-ion battery electrolyte[J]. Electrochimica Acta,2005,50(27):5473-5478.
    [198] Doyle M, Meyers J P, Newman J. Computer simulations of the impedance response of lithiumrechargeable batteries[J]. Journal of The Electrochemical Society,2000,147(1):99-110.
    [199] Meyers J P, Doyle M, Darling R M, Newman J. The impedance response of a porous electrodecomposed of intercalation particles[J]. Journal of The Electrochemical Society,2000,147(8):2930-2940.
    [200] Devan S, Subramanian V R, White R E. Analytical solution for the impedance of a porouselectrode[J]. Journal of The Electrochemical Society,2004,151(6): A905-A913.
    [201] Sikha G, White R E. Analytical expression for the impedance response of an insertion electrodecell[J]. Journal of The Electrochemical Society,2007,154(1): A43-A54.
    [202] Sikha G, White R E. Analytical expression for the impedance response for a lithium-ion cell[J].Journal of The Electrochemical Society,2008,155(12): A893-A902.
    [203] Huang R W J M, Chung F, Kelder E M. Impedance simulation of a Li-ion battery with porouselectrodes and spherical Li+intercalation particles[J]. Journal of The Electrochemical Society,2006,153(8): A1459-A1465.
    [204] La Mantia F, Vetter J, Novák P. Impedance spectroscopy on porous materials: A general modeland application to graphite electrodes of lithium-ion batteries[J]. Electrochimica Acta,2008,53(12):4109-4121.
    [205] Andre D, Meiler M, Steiner K, Walz H, Soczka-Guth T, Sauer D U. Characterization ofhigh-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling[J].Journal of Power Sources,2011,196(12):5349-5356.
    [206] Bard A J, Faulkner L R. Electrochemical methods-fundamentals and applications[M].2nd ed.;John Wiley&Sons, Inc.,2001.
    [207] Levi M D, Aurbach D. Impedance of a single intercalation particle and of non-homogeneous,multilayered porous composite electrodes for Li-ion batteries[J]. The Journal of Physical andChemistry B,2004,108:11693-11703.
    [208] Levi M D, Aurbach D. Impedance spectra of porous, composite intercalation electrodes: Theorigin of the low-frequency semicircles[J]. Journal of Power Sources,2005,146(1-2):727-731.
    [209] Levi M D, Wang C, Aurbach D. Two parallel diffusion paths model for interpretation of PITT andEIS responses from non-uniform intercalation electrodes[J]. Journal of ElectroanalyticalChemistry,2004,561:1-11.
    [210] Itagaki M, Kobari N, Yotsuda S, Watanabe K, Kinoshita S, Ue M. In situ electrochemicalimpedance spectroscopy to investigate negative electrode of lithium-ion rechargeable batteries[J].Journal of Power Sources,2004,135(1-2):255-261.
    [211] Sun X-G, Dai S. Electrochemical and impedance investigation of the effect of lithium malonateon the performance of natural graphite electrodes in lithium-ion batteries[J]. Journal of PowerSources,2010,195(13):4266-4271.
    [212] Holzapfel M, Martinent A, Alloin F, Le Gorrec B, Yazami R, Montella C. First lithiation andcharge/discharge cycles of graphite materials, investigated by electrochemical impedancespectroscopy[J]. Journal of Electroanalytical Chemistry,2003,546:41-50.
    [213] Chang Y C, Sohn H J. Electrochemical impedance analysis for lithium ion intercalation intographitized carbons[J]. Journal of The Electrochemical Society,2000,147(1):50-58.
    [214]庄全超,陈作锋,董全峰,姜艳霞,黄令,孙世刚.石墨负极首次阴极极化过程的电化学阻抗谱研究[J].科学通报,2006,51(1):17-20.
    [215] Zhang S, Shi P. Electrochemical impedance study of lithium intercalation into MCMB electrodein a gel electrolyte[J]. Electrochimica Acta,2004,49(9-10):1475-1482.
    [216] Kim Y-O, Park S-M. Intercalation mechanism of lithium ions into graphite layers studied bynuclear magnetic resonance and impedance experiments[J]. Journal of The ElectrochemicalSociety,2001,148(3): A194-A199.
    [217] Li Y, Wu H. Theoretical treatment of kinetics of intercalation electrode reaction[J].Electrochimica Acta,1989,34:157-159.
    [218] Levi M D, Aurbach D. Frumkin intercalation isotherm-a tool for the description of lithiuminsertion into host materials: a review[J]. Electrochimica Acta,1999,45:167-185.
    [219] Diard J-P, Gorrec B L, Montella C. Influence of particle size distribution on insertion processesin composite electrodes. Potential step and EIS theory Part I. Linear diffusion[J]. Journal ofElectroanalytical Chemistry,2001,499:67-77.
    [220] Yao W, Zhang Z, Gao J, Li J, Xu J, Wang Z, Yang Y. Vinyl ethylene sulfite as a new additive inpropylene carbonate-based electrolyte for lithium ion batteries[J]. Energy&EnvironmentalScience,2009,2(10):1102.
    [221] Chen R, Wu F, Li L, Guan Y, Qiu X, Chen S, Li Y, Wu S. Butylene sulfite as a film-formingadditive to propylene carbonate-based electrolytes for lithium ion batteries[J]. Journal of PowerSources,2007,172(1):395-403.
    [222] Matsuo Y, Fumita K, Fukutsuka T, Sugie Y, Koyama H, Inoue K. Butyrolactone derivatives aselectrolyte additives for lithium-ion batteries with graphite anodes[J]. Journal of Power Sources,2003,119-121:373-377.
    [223] Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D. Electroreduction of graphite inLiClO4-ethylene carbonate electrolyte. Characterization of the passivating layer by transmissionelectron microscopy and Fourier-transform infrared spectroscopy[J]. Journal of Power Sources,1996,63:33-39.
    [224] Naji A, Ghanbaja J, Willmann P, Humbert B, Billaud D. First characterization of the surfacecompounds formed during the reduction of a carbonaceous electrode in LiClO4-ethylenecarbonate electrolyte[J]. Journal of Power Sources,1996,62:141-143.
    [225] Xu S-D, Zhuang Q-C, Tian L-L, Qin Y-P, Fang L, Sun S-G. Impedance spectra ofnonhomogeneous, multilayered porous composite graphite electrodes for Li-ion batteries:experimental and theoretical studies[J]. The Journal of Physical Chemistry C,2011,115(18):9210-9219.
    [226] Hu Y, Kong W, Wang Z, Li H, Huang X, Chen L. Effect of morphology and current density onthe electrochemical behavior of graphite electrodes in PC-based electrolyte containing VECadditive[J]. Electrochemical and Solid-State Letters,2004,7(11): A442.
    [227] Zaban A, Aurbach D. Impedance spectroscopy of lithium and nickel electrodes in propylenecarbonate solutions of different lithium salts A comparative study[J]. Journal of Power Sources,1995,54:289-295.
    [228] Aurbach D. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J]. Journal ofThe Electrochemical Society,1994,141.
    [229] Wang C, Kakwan I, Appleby A J, Little F E. In situ investigation of electrochemical lithiumintercalation into graphite powder[J]. Journal of Electroanalytical Chemistry,2000,489:55-67.
    [230] Wang C, Appleby A J, Little F E. Charge–discharge stability of graphite anodes for lithium-ionbatteries[J]. Journal of Electroanalytical Chemistry,2001,497:33-46.
    [231] Aurbach D, Weissman I, Schechter A, Cohen H. X-ray photoelectron spectroscopy studies oflithium surfaces prepared in several important electrolyte solutions. A comparison with previousstudies by Fourier transform infrared spectroscopy[J]. Langmuir,1996,12:3991-4007.
    [232] Barranco V, Celorrio V, Lazaro M J, Rojo J M. Carbon nanocoils as unusual electrode materialsfor supercapacitors[J]. Journal of The Electrochemical Society,2012,159(4): A464.
    [233] Motojima S, Chen X, Yang S, Hasegawa M. Properties and potential applications of carbonmicrocoils/nanocoils[J]. Diamond and Related Materials,2004,13(11-12):1989-1992.
    [234] Cameán I, García A B, Suelves I, Pinilla J L, Lázaro M J, Moliner R. Graphitized carbonnanofibers for use as anodes in lithium-ion batteries: Importance of textural and structuralproperties[J]. Journal of Power Sources,2012,198(0):303-307.
    [235] Ji L, Zhang X. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anodematerials for high-performance lithium-ion batteries[J]. Electrochemistry Communications,2009,11(4):795-798.
    [236] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M. Nano-sized transition-metal oxides asnegative-electrode materials for lithium-ion batteries[J]. Nature,2000,407:496-499.
    [237] Wang H, Cui L-F, Yang Y, Casalongue H S, Robinson J T, Liang Y, Cui Y, Dai H.Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries[J]. Journal ofAmerican Chemistry Society,2010,132:13978-13980.
    [238] Pasero D, Reeves N, West A. Co-doped Mn3O4: a possible anode material for lithium batteries[J].Journal of Power Sources,2005,141(1):156-158.
    [239] Wang C, Yin L, Xiang D, Qi Y. Uniform carbon layer coated Mn3O4nanorod anodes withimproved reversible capacity and cyclic stability for lithium ion batteries[J]. ACS AppliedMaterials&Interfaces,2012,4(3):1636-1642.
    [240] Sun B, Chen Z, Kim H-S, Ahn H, Wang G. MnO/C core–shell nanorods as high capacity anodematerials for lithium-ion batteries[J]. Journal of Power Sources,2011,196(6):3346-3349.
    [241] Li L, Guo Z, Du A, Liu H. Rapid microwave-assisted synthesis of Mn3O4-graphenenanocomposite and its lithium storage properties[J]. Journal of Materials Chemistry,2012,22(8):3600-3605.
    [242] Sun Y, Hu X, Luo W, Huang Y. Porous carbon-modified MnO disks prepared by amicrowave-polyol process and their superior lithium-ion storage properties[J]. Journal ofMaterials Chemistry,2012,22(36):19190-19195.
    [243] Sui J, Zhang C, Hong D, Li J, Cheng Q, Li Z, Cai W. Facile synthesis of MWCNT–ZnFe2O4nanocomposites as anode materials for lithium ion batteries[J]. Journal of Materials Chemistry,2012,22:13674-13681.
    [244] Wang D, Li Y, Wang Q, Wang T. Facile synthesis of porous Mn3O4nanocrystal-graphenenanocomposites for electrochemical supercapacitors[J]. European Journal of Inorganic Chemistry,2012,2012(4):628-635.
    [245] An G, Yu P, Xiao M, Liu Z, Miao Z, Ding K, Mao L. Low-temperature synthesis of Mn3O4nanoparticles loaded on multi-walled carbon nanotubes and their application in electrochemicalcapacitors[J]. Nanotechnology,2008,19(27):275709.
    [246] Zhang X, Sun X, Chen Y, Zhang D, Ma Y. One-step solvothermal synthesis of graphene/Mn3O4nanocomposites and their electrochemical properties for supercapacitors[J]. Materials Letters,2012,68:336-339.
    [247] Li B, Rong G, Xie Y, Huang L, Feng C. Low-temperature synthesis of α-MnO2hollow urchinsand their application in rechargeable Li+batteries[J]. Inorganic Chemistry,2006,45:6404-6410.
    [248] Li X, Li D, Qiao L, Wang X, Sun X, Wang P, He D. Interconnected porous MnO nanoflakes forhigh-performance lithium ion battery anodes[J]. Journal of Materials Chemistry,2012,22(18):9189-9194.
    [249] Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L. MnO powder as anode active materials forlithium ion batteries[J]. Journal of Power Sources,2010,195(10):3300-3308.
    [250] Ding Y L, Wu C Y, Yu H M, Xie J, Cao G S, Zhu T J, Zhao X B, Zeng Y W. Coaxial MnO/Cnanotubes as anodes for lithium-ion batteries[J]. Electrochimica Acta,2011,56(16):5844-5848.
    [251] Dominko R, Bele M, Kokalj A, Gaberscek M, Jamnik J. Li2MnSiO4as a potential Li-batterycathode material[J]. Journal of Power Sources,2007,174(2):457-461.
    [252] Ghosh P, Mahanty S, Basu R N. Improved electrochemical performance of Li2MnSiO4/Ccomposite synthesized by combustion technique[J]. Journal of The Electrochemical Society,2009,156(8): A677-A681.
    [253] Deng C, Zhang S, Fu B L, Yang S Y, Ma L. Characterization of Li2MnSiO4and Li2FeSiO4cathode materials synthesized via a citric acid assisted sol–gel method[J]. Materials Chemistryand Physics,2010,120(1):14-17.
    [254] Belharouak I, Abouimrane A, Amine K. Structural and electrochemical characterization ofLi2MnSiO4cathode material[J]. The Journal of Physical and Chemistry C,2009,113:20733-20737.
    [255] Muraliganth T, Stroukoff K R, Manthiram A. Microwave-solvothermal synthesis ofnanostructured Li2MSiO4/C (M=Mn and Fe) cathodes for lithium-ion batteries[J]. Chemistry ofMaterials,2010,22:5754–5761.
    [256]张俊喜,曹小卫,张铃松,颜立成,张万友. LiFePO4表面碳包覆方法中碳源的碳化及碳源选择[J].化学通报,2009,72(4):313-319.
    [257] Dominko R, Ar on I, Kodre A, Han el D, Gaber ek M. In-situ XAS study on Li2MnSiO4andLi2FeSiO4cathode materials[J]. Journal of Power Sources,2009,189(1):51-58.
    [258] Larsson P, Ahuja R, Liivat A, Thomas J O. Structural and electrochemical aspects of Mnsubstitution into Li2FeSiO4from DFT calculations[J]. Computational Materials Science,2010,47(3):678-684.
    [259] Arroyo-deDompablo M E, Dominko R. On the energetic stability and electrochemistry ofLi2MnSiO4polymorphs[J]. Chemistry of Materials,2008,20:5574-5584.
    [260] Arroyo-de Dompablo M E, Armand M, Tarascon J M, Amador U. On-demand design ofpolyoxianionic cathode materials based on electronegativity correlations: An exploration of theLi2MSiO4system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications,2006,8(8):1292-1298.
    [261] Huang X, Li X, Wang H, Pan Z, Qu M, Yu Z. Synthesis and electrochemical performance ofLi2FeSiO4/C as cathode material for lithium batteries[J]. Solid State Ionics,2010,181(31-32):1451-1455.
    [262] Liu H, Li C, Zhang H P, Fu L J, Wu Y P, Wu H Q. Kinetic study on LiFePO4/C nanocompositessynthesized by solid state technique[J]. Journal of Power Sources,2006,159(1):717-720.
    [263] Cui Y, Zhao X, Guo R. Improved electrochemical performance of La0.7Sr0.3MnO3and carbonco-coated LiFePO4synthesized by freeze-drying process[J]. Electrochimica Acta,2010,55(3):922-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700