可逆电双稳薄膜器件以及“动态”分子整流器件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由两部分组成,以第一部分为主体内容。
     第一部分可逆电双稳薄膜器件的研究
     为克服传统硅集成电路发展面临的极限尺寸效应并满足电子产品庞大的消费需求,开发结构简单的“电极/功能层/电极”夹层薄膜可逆电双稳存储器成为科学界研究的重要课题。从功能层材料划分,可将电双稳器件分为无机和有机两种器件。无机器件具有存储性能稳定的优点,但其复杂的制备工艺和较高的制造成本限制了无机器件的推广和应用。而到目前为止,对无机器件的研究集中于对已开发材料器件的性能和机理研究,较少从简化薄膜的制备工艺出发进行新材料和器件的探索。研发能用简单工艺制备、具有稳定存储性能的新型无机可逆电双稳薄膜将对简化器件制备、降低成本、实现无机电双稳存储器的商品化具有重要的意义。另一方面,有机薄膜存储器具有制备方法简单、成本低、可折叠、质量轻等优点,并能实现多重态电存储功能,所以对新型有机薄膜电存储器的开发也是电子器件领域研究的重点。
     本文中,我们开发出一种基于界面化学反应制备无机电存储薄膜的方法,实现了无机功能薄膜的简单制备,并获得了两种性能稳定的新型无机可逆电双稳薄膜器件。首先通过简单的真空热蒸镀法利用金属与无机前驱物的固-固界面反应制备无机薄膜,研究发现以该无机复合薄膜为介质层的夹层器件具有较稳定的可逆电双稳特性;在此基础上,使用更简单的水溶液浸泡方法,利用金属、无机物间的固-液界面反应制备无机薄膜,获得了性能更优、能反复擦写上千次而保持状态稳定、具有较好应用潜力的无机电存储器件。我们采用多种表征手段对所获得的无机薄膜进行分析,并提出了形成无机功能薄膜的反应机制;重点研究了薄膜器件的开关机理和电存储性能。此外,我们研究了基于MC分子的有机薄膜器件的开关及电存储特性,重点分析包括电极以及有机层厚度等工艺参数对器件性能的影响。
     本部分的具体内容可概括为:
     1、通过真空热蒸镀法,利用Ag与KSCN的固-固界面反应在Ag薄膜上原位生长AgK_2(SCN)_3复合薄膜,实现了无机可逆电双稳薄膜的简单制备。利用可见光谱、拉曼光谱、X-射线多晶衍射谱,X-射线光电子能谱等表征手段对薄膜进行分析,并提出了Ag/KSCN界面反应形成AgK_2(SCN)_3复合薄膜的机制,即:KSCN水解生成HSCN,HSCN进一步与界面的Ag_2O反应形成AgK_2(SCN)_3复合薄膜。
     2、研究发现,基于AgK_2(SCN)_3复合薄膜的夹层器件具有双极性可逆电双稳特性,能实现连续的“写-读-擦-读”操作,高低电阻比高达百万倍,并具有良好的稳定性。通过电流曲线拟合以及不同电极组合的器件的研究,确定器件开关是基于导电通道的形成-断裂模式,我们还认为导电通道断裂是焦耳热和电离共同作用的结果。
     3、采用简单的水溶液浸泡方法,利用铜薄膜与硫氰酸盐溶液的固-液界面反应在铜薄膜上原位制备CuSCN薄膜。用拉曼谱,XRD等表征手段对CuSCN薄膜进行分析,并发现硫氰酸盐溶液种类及溶液浓度等因素对CuSCN薄膜生长有影响;同时利用SEM观察发现,CuSCN薄膜遵循岛状模式生长。
     4、研究发现基于水溶液浸泡法制备的CuSCN薄膜器件具有稳定的双极性可逆电双稳特性,而该器件的“电老化”预处理过程具有改善薄膜微组分和结构、形成局域铜离子扩散通道的作用,对稳定器件性能具有重要意义。器件在未经封装处理的条件下能实现连续3000多次“写-读-擦-读”操作,高、低电阻态电阻分布具有较好的一致性且状态比大于100;同时器件还显示了良好的非易失性和热稳定性,具有较好的应用前景。我们用局域导电通道形成-断裂机制解释了器件的电致开关特性及连续写-读-擦-读过程中较好的电阻分布一致性。
     5、利用真空热蒸镀法制备了基于MC分子的夹层结构器件,其中的MC是三聚腈胺氰尿酸。研究发现以Ag为顶电极的Ag/MC/Al器件具备多重态电存储特性。通过开关曲线拟合、不同电极组合器件的比较、光谱分析、以及不同有机层厚度器件的比较,发现该器件的多重态电存储特性与蒸镀顶电极银有关,并研究了器件的开关机理。
     第二部分基于“动态”模式分子整流器的研究
     分子整流器是实现分子电子线路的基本元件,是分子电子学领域的重要课题。虽然近年来对有机分子整流研究取得了一定的进展,但现有的基于D-σ-A模型的分子整流器整流比小,限制了器件的应用。
     在实验室前期工作的基础上,我们系统研究了实现分子整流的方法,并在扫描隧道显微镜(STM)条件下进一步验证了一类新型的“动态”分子器件。实验证明这种动态分子器件具有明显的整流效应,并且具有较大的整流比,我们还阐述了分子整流的机理。具体内容可概括为:
     1、利用分子自组装作用将DT-1分子吸附在STM针尖上,测试发现DT-1分子能实现稳定的整流功能,整流比高达10~4,并阐述了“动态”分子器件的整流机理,即:带偶极的分子在电场作用下发生摆动,改变了分子末端与基底的距离,引起了隧道电流的变化,从而获得高比值的整流特性。
     2、比较研究了分子排布的紧密程度以及扫描电压速率等对DT-1分子整流的影响,证明排布较紧密的单分子膜以及速率较快的电压扫描会压制该分子基器件的整流特性,从而进一步验证了“动态”分子整流模式。此外,还采用其他具有相似结构的分子DT-2、DT-3、DT-4和DT-5来构建动态分子器件,并且都获得了稳定的整流效应。
Part 1 Research on Reversible bistable film devices
     To overcome the potentially limiting scaling difficulties present in the silicon-based semiconductor devices and to fulfill huge demands for electronic products, there is a strong desire to develop "electrode / functional layer / electrode" reversible electrical bistable memory devices. The devices could be divided into inorganic and organic ones, based on the functional materials employed. Inorganic memory devices are thought to be hopeful for application because of their good stability. However, the complexity and high cost in fabricating limit their popularization. Up to date, majority studies on inorganic devices have been mainly focused on the properties and mechanisms of developed devices, whereas few researches have been concerned with exploring inorganic functional layer that could be prepared with simple methods. Developing novel easy-fabricating inorganic devices with high stability is of great importance for simplifying manufactory process, lowering cost and commercializing the memory devices. On the other hand, organic devices provide simplified manufacturing process yielding low-cost, flexible, and light-weight devices, and may accomplish multilevel conductance storage. So exploring novel organic memories is a major interest of many scientists.
     Herein, we develop simple ways to fabricate inorganic functional films through interface reactions, and obtain two novel inorganic electrical bistable devices. Firstly, vacuum thermal evaporation method is employed to deposit metal and inorganic precursor layers on the substrate. Through the solid-solid interface reactions between the two components, an inorganic film is formed, which can be employed as the functional layer in electrical bistable memory devices. Then based on the aforementioned method, an even simpler aqueous solution dipping method is developed to prepare inorganic functional layer through liquid-solid interface reaction. Through the solid-liquid method, electrical memories with excellent performances are realized and successive thousands of write-read-erase-read cycles are observed in the devices, promising high potential for application. The inorganic functional films are characterized with many types of measurements and the reaction mechanism for the formation of inorganic functional films are proposed. The switching mechanism and electrical memory characteristics are investigated. Besides, MC molecule-basedorganic devices are fabricated and their electrical switching memory characteristicsare studied, including the influences of parameters like electrodes and organic layerthickness.
     The experiments and results are summarized as follows:
     1. An AgK_2(SCN)_3 composite layer is in situ growing on the silver electrode through solid-solid interface reactions between silver and potassium thiocyanate films prepared by vacuum thermal evaporation. This method accomplishes easy-fabricating of inorganic memory devices. Visible spectrometry, Raman spectra, X-Ray diffraction (XRD) patterns and X-ray photoelectron spectroscopy (XPS) are employed to analyze the film and the mechanism of interface reactions in the formation of AgK_2(SCN)_3 composite films are proposed: KSCN dydrolyses to form HSCN, and HSCN further reacts with Ag_2O at the interface to form AgK_2(SCN)_3 composite film.
     2. The AgK_2(SCN)_3 composite layer-based devices show electrical bipolar reversible bistability and can be operated stably and successively in "write-read-erase-read" mode with 10~6 ON/OFF ratio. Conductive model fittings are analyzed and the electrical characteristics of devices using different electrodes are investigated, based on which it is concluded that the switching is due to formation-annihilation of conducting channels; and the rupture of conducting channels is suggested to be due to both Joule heating effect and ionization of conducting channels.
     3. A simple aqueous solution dipping method is developed for in situ growing CuSCN films on Cu electrodes through liquid-solid interface reactions between thiocyanate salt solutions and Cu films. This method provides a facile way to prepare inorganic memories with excellent performances. The as-prepared films are analyzed by Raman spectra and XRD patterns. The sorts of thiocyanate salts and their solution concentration are found to have effect on CuSCN film growing. The forming process of CuSCN film is monitored by scanning electron microscope (SEM), showing that the CuSCN grows in an islands-growth mode.
     4. The CuSCN-based device exhibits stable electrical reversible bistability. An enhancement of memory switching properties is specified after an "electrical aging" process, which changes the microstructures and components of the medium layer, forms localized Cu diffusion channels, and accordingly stabilizes the device properties. More than 3000 write-read-erase-read cycles are achieved in the unpackaged devices, with ON/OFF ratio higher than 100 and narrow dispersions of both ON and OFF resistances; besides, the devices show good nonvolatile properties and perform stably at high temperatures, promising potential for applications. A localized conducting channels model is proposed to explain the switching and good resistance uniformity in the device.
     5. MC-based M/O/M structure devices are fabricated through vacuum thermal evaporation, where MC is melamine cyanuric acid. The Ag / MC / Al device with Ag top electrode exhibits multilevel conductance memory effects. With the analysis based on the curves fittings, film characterizations, comparison of devices using different electrodes and different organic thickness, it is suggest the evaporation of Ag top electrode is crucial for the multilevel conductance and the switching mechanism is studied.
     Part 2 Research on dynamic-molecular-based rectifier
     As fundamental one of the molecular electronic devices, molecular rectifier is now the major interest of many scientists. In spite of some progress made in molecular rectifier area, the rectification ratios of most devices based on D-σ-A model are too small for application.
     Following previous researches in our lab, we systematically study the achievement of molecular rectification and further verify the novel "dynamic" model of molecular electronics under the condition of Scanning Tunneling Microscope (STM). We demonstrate that such molecular devices exhibit pronounced rectification with high ratios, and elucidate the rectification mechanism as well.
     The specific experiments and results are listed as follows:
     1. The DT-1 molecules are chemisorbed on STM tip and the adsorbed molecules exhibit stable pronounced rectification with ratio about 10~4. The excellent characteristics are attributed to the "dynamic" mechanism as follows: the swing of molecules with dipoles under external electric field leads to the change of tunneling distances and accordingly alter tunneling currents, thus resulting in high rectification ratio.
     2. The influences of adsorbed molecules tightness and external voltage sweeping rates are investigated. More densely packed monolayer or faster voltage sweeping suppresses the rectification effect. And the results further demonstrate the "dynamic" molecule device model. Besides, other molecules (DT-2, DT-3, DT-4, and DT-5) with the same frameworks are adopted in the construction of dynamic molecular devices. All the molecular devices exhibit stable rectification effect.
引文
[1]姜复松.信息材料[M].北京:化学工业出版社,2003.
    [2]A.Chiabrera,E.D.Zitti,F.Costa,G.M.Bisio.Physical limits of integration and information processing in molecular systems[J].J.Phys.D:Appl.Phys.,1989,22(11):1571-1579.
    [3]华中一.21世纪的新兴产业—塑料电子[J].电子技术,2000,(2):69-70.
    [4]华中一.纳米技术:新世纪的机遇和挑战[J].真空,2001,(3):1-7.
    [5]P.Pavan,R.Bez,P.Olivo,E.Zanoni.Flash memory cells- an overview[J].Proc.IEEE,1997,85(8):1248-1271.
    [6]夏皴,徐伟,农吴,潘星龙,诸葛健,华中一,周峥嵘,陶凤岗.一种新型的有机电双稳薄膜及其极性记忆效应[J].真空科学与技术,2001,21(5):349-351.
    [7]刘春明,吕银祥,郭鹏,农昊,蔡永挚,徐伟,潘星龙,华中一,周峥嵘,陶凤岗.一种具有极性记忆效应的热可擦有机电双稳薄膜[J].真空电子技术,2003,(6):11-14.
    [8]徐伟,郭鹏,吕银祥,刘春明,蔡永挚,华中一.一种可擦写可读出的分子基电双稳器件[J].真空科学与技术学报,2004,24(6):401-403.
    [9]郭鹏,蔡永挚,刘春明,吕银祥,徐伟,潘星龙,华中一.一种电可擦写可读出的有机薄膜存储器件[J].功能材料,2004,35:1186-1188.
    [10]郭鹏,季欣,董元伟,吕银祥,徐伟.一种有机薄膜器件的制备及电存储特性.[J].半导体学报,2008,29(1):140-143.
    [11]M.A.Reed,J.M.Tour.Computing with molecules[J].Scientific American,2000,282(6):86-93.
    [12]J.S.Moodera,L.R.Kinder,T.M.Wong,R.Meservey.Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions[J].Phys.Rev.Lett.,1995,74(16):3273-3276.
    [13]S.Tehrani,J.M.Slaughter,M.Deherrera,B.N.Engel,N.D.Rizzo,J.Salter,M.Durlam,R.W.Dave,J.Janesky,B.Butcher,K.Smith,G.Grynkewich.Magnetoresistive random access memory using magnetic tunnel junctions[J].Proc.IEEE,2003,91(5):703-714.
    [14]S.R.Ovshinsky.Reversible electrical switching phenomena in disordered structures[J].Phys.Rev.Lett.,1968,21(20):1450-1453.
    [15]M.Wuttig,N.Yamada.Phase-change materials for rewriteable data storage[J].Nature Mater.,2007,6(11):824-832.
    [16]Y.Jung,S.-H.Lee,D.-K.Ko,R.Agarwal.Synthesis and characterization of Ge_2Sb_2Te_5 nanowires with memory switching effect[J].J.Am.Chem.Sot.,2006,128(43):14026-14027.
    [17]P.K.Larsen,G.L.M.Kampschoer,M.J.E.Ulenaers,G.A.C.M.Spierings,R.Cuppens.Nanosecond switching of thin ferroelectric films[J].Appl.Phys.Lett.,1991,59(5):611-613.
    [18]R.Moazzami.Ferroelectric thin film technology for semiconductor memory[J].Semicond.Sci.Technol.1995,10(4):375-390.
    [19]J.G.Simmons,R.R.Verderber.New conduction and reversible memory phenomena in thin insulating films[J].Proc.Royal Soc.London A,1967,310(1464):77-102.
    [20]K.Szot,W.Speier,G.Bihlmayer,R.Waser.Switching the electrical resistance of individual dislocations in single-crystalline SrTiO_3[J].Nature Mater.,2006,5(4):312-320.
    [21]A.Beck,J.G.Bednorz,C.Gerber,C.Rossel,D.Widmer.Reproducible switching effect in thin oxide films for memory applications[J].Appl.Phys.Lett.,2000,77(1):139-141.
    [22]A.Asamitsu,Y.Tomioka,H.Kuwahara,Y.Tokura.Current switching of resistive states in magnetoresistive manganites[J].Nature,1997,388(6637):50-52.
    [23]S.Seo,M.J.Lee,D.H.Seo,E.J.Jeoung,D.-S.Suh,Y.S.Joung,I.K.Yoo,I.R.Hwang,S.H.Kim,I.S.Byun,J.-S.Kim,J.S.Choi,B.H.Park.Reproducible resistance switching in polycrystalline NiO films[J].Appl.Phys.Lett.,2004,85(23):5655-5657.
    [24]K.Tsunoda,Y.Fukuzumi,J.R.Jameson,Z.Wang,P.B Griffin,Y.Nishi.Bipolar resistive switching in polycrystalline TiO_2 films[J].Appl.Phys.Lett.,2007,90(11):113501.
    [25]B.J.Choi,D.S.Jeong,S.K.Kim,C.Rohde,S.Choi,J.H.Oh,H.J.Kim,C.S.Hwang,K.Szot,R.Waser,B.Reichenberg,S.Tiedke.Resistive switching mechanism of TiO_2 thin films grown by atomic-layer deposition[J].J.Appl.Phys.,2005,98(3):033715.
    [26]W.-Y.Chang,Y.-C.Lai,T.-B.Wu,S.-F.Wang,F.Chen,M.-J.Tsai.Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications[J].Appl.Phys.Lett.,2008,92(2):022110.
    [27]N.Xu,L.Liu,X.Sun,X.Liu,D.Han,Y.Wang,R.Han,J.Kang,B.Yu.Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories[J].Appl.Phys.Lett.,2008,92(23):232112.
    [28]W.Guan,M.Liu,S.Long,Q.Liu,W.Wang.On the resistive switching mechanisms of Cu/ZrO_2:Cu/Pt[J].Appl.Phys.Lett.,93(22):223506.
    [29]W.Guan,S.Long,Q.Liu,M.Liu,W.Wang.Nonpolar nonvolatile resistive switching in Cu doped ZrO_2[J].IEEE Electron Device Lett.,2008,29(5):434-437.
    [30]C.-Y.Ling,S.-Y.Wang,D.-Y.Lee,T.-Y.Tseng.Electrical properties and fatigue behaviors of ZrO_2 resistive switching thin films[J].J.Electrochem.Soc.,2008,155(8):H615-H619.
    [31]A.Chen,S.Haddad,Y.-C.Wu,T.-N.Fang,Z.Lan,S.Avanzino,S.Pangrle,M.Buynoski,M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirt, M. Taguchi. Non-volatile resistive switching for advanced memory applications [A]. In: IEDM Symposium [C]. 2005: 746-749.
    
    [32] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, H. Hwang. Reproducible hysteresis and resistive switching in metal-Cu_xO-metal heterostructures [J]. Appl. Phys. Lett., 2007, 90(4): 042107.
    
    [33] H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, Y. Y. Lin. Resistive memory switching of Cu_xO films for a nonvolatile memory application [J]. IEEE Electron Device Lett., 2008,29(4): 309-311.
    
    [34] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono. Quantized conductance atomic switch [J]. Nature, 2005,433(7021): 47-50.
    
    [35] T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, M. Aono. Nanometer-scale switches using copper sulfide [J]. Appl. Phys. Lett., 2003, 82(18): 3032-3034.
    
    [36] X. F. Liang, Y. Chen, L. Chen, J. Yin, Z. G. Liu. Electric switching and memory devices made from RbAg_4I_5 films [J]. Appl. Phys. Lett., 2007,90(2): 022508.
    
    [37] M. N. Kozicki, M. Park, M. Mitkova. Nanoscale memory elements based on solid-state electrolytes [J]. IEEE Trans. Nanotechnol., 2005,4(3): 331-338.
    
    [38] H. X. Guo, B. Yang, L. Chen, Y. D. Xia, K. B. Yin, Z. G. Liu, J. Yin. Resistive switching devices based on nanocrystalline solid electrolyte (AgI)_(0.5)(AgPO_3)_(0.5) [J]. Appl. Phys. Lett., 2007, 91(24): 243513.
    
    [39] L. F. Render, R. J. Fleming. Memory switching in glow discharge polymerized thin films [J]. J. Appl. Phys., 1975,46(8): 3426-3431.
    
    [40] Y. Segui, B. Ai, H. Carchano. Switching in polystyrene films: transition from on to off state [J]. J. Appl. Phys., 1976,47(1): 140-143.
    
    [41] S. Moller, C. Perlov, W. Jackson, C. Taussig, S. R. Forrest. A polymer/semiconductor write-once read-many-times memory [J]. Nature, 2003,426(6963): 166-169.
    
    [42] Y. Song, Y. P. Tan, E. Y. H. Teo, C. Zhu, D. S. H. Chan, Q. D. Ling, K. G. Neoh, E. T. Kang. Synthesis and memory properties of a conjugated copolymer of fluorene and benzoate with chelated europium complex [J]. J. Appl. Phys., 2006, 100(8): 084508.
    
    [43] E. Y. H. Teo, Q. D. Ling, Y. Song, Y. P. Tan, W. Wang, E. T. Kang, D. S. H. Chan, C. Zhu. Non-volatile WORM memory device based on an acrylate polymer with electron donating carbazole pendant groups [J]. Organic Electronics, 2006, 7(3): 173-180.
    
    [44] S. L. Lim, Q. Ling, E. Y. H. Teo, C. X. Zhu, D. S. H. Chan, E.-T. Kang, K. G. Neoh. Conformation-induced electrical bistability in non-conjugated polymers with pendant carbazole moieties [J]. Chem. Mater., 2007, 19(21): 5148-5157.
    [45]G.Liu,Q.-D.Ling,E.-T.Kang,K.-G.Neoh,D.-J.Liaw,F.-C.Chang,C.-X.Zhu,D.S.-H.Chan.Bistable electrical switching and write-once read-many-times memory effect in a donor-acceptor containing polyfluorene derivative and its carbon nanotube composites[J].J.Appl.Phys.,2007,102(2):024502.
    [46]S.Choi,S.-H.Hong,S.H.Cho,S.Park,S.-M.Park,O.K/m,M.Ree.High-performance programmable memory devices based on hyperbranched copper phthalocyanine polymer thin films[J].Adv.Mater.,2008,20(9):1766-1771.
    [47]J.Lin,D.Ma.The morphology control ofpentacene for write-once-read-many-times memory devices[J].J.Appl.Phys.,2008,103(2):024507.
    [48]J.Lin,D.Ma.Realization of write-once-read-many-times memory devices based on poly(N-vinylcarbazole) by thermally annealing[J].Appl.Phys.Lett.,2008,93(9):093505.
    [49]W.Xu,G.R.Chen,R.J.Li,Z.Y.Hua.Two new all-organic complexes with electrical bistable states[J].Appl.Phys.Lett.,1995,67(15):2241-2242.
    [50]Z.Y.Hua,G.R.Chen,W.Xu,D.Y.Chen.New organic bistable films for ultrafast electric memories[J].Appl.Surf.Sci.,2001,169-170:447-451.
    [51]R.S.Potember,T.O.Poehler,D.O.Cowan.Electrical switching and memory phenomena in Cu-TCNQ thin films[J].Appl.Phys.Lett.,1979,34(6):405-407.
    [52]L.P.Ma,J.Liu,Y.Yang.Organic electrical bistable devices and rewritable memory cells[J].Appl.Phys.Lett.,2002,80(16):2997-2999.
    [53]L.Ma,S.Pyo,J.Ouyang,Q.Xu,Y.Yang.Nonvolatile electrical bistability of organic/metal-nanocluster/organic system[J].Appl.Phys.Lett.,2003,82(9):1419-1421.
    [54]L.D.Bozano,B.W.Kean,V.R.Deline,J.R.Salem,J.C.Scott.Mechanism for bistability in organic memory elements[J].Appl.Phys.Lett.,2004,84(4):607-609.
    [55]L.D.Bozano,B.W.Kean,M.Beinhoff,K.R.Carter,P.M.Rice,J.C.Scott.Organic materials and thin-film structures for cross-point memory cells based on trapping in metallic nanoparticles[J].Adv.Funct.Mater.,2005,15(12):1933-1939.
    [56]J.Ouyang,C.-W.Chu,C.R.Szrnanda,L.Ma,Y.Yang.Prograrnmable polymer thin film and non-volatile memory device[J].Nature Mater.,2004,3(12):918-922.
    [57]Y.Yang,J.Ouyang,L.Ma,R.J.-H.Tseng,C.-W.Chu.Electrical switching and bistability in organic/polymeric thin films and memory devices[J].Adv.Funct.Mater.,2006,16(8):1001-1014.
    [58]Y.Song,Q.D.Ling,S.L.Lim,E.Y.H.Teo,Y.P.Tan,L.Li,E.T.Kang,D.S.H.Chan,C.Zhu.Electrically bistable thin-film device based on PVK and GNPs polymer material[J].IEEE Electron Device Lett.,2007,28(2):107-110.
    [59]F.Li,D.-I.Son,S.-M.Seo,H.-M.Cha,H.-J.Kim,B.-J.Kim,J.H.Jung,T.W.Kim.Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer[J].Appl.Phys.Lett.,2007,91(12):122111.
    [60]Y.-S.Lai,C.-H.Tu,D.-L.Kwong,J.S.Chen.Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications[J].Appl.Phys.Lett.,2005,87(12):122101.
    [61]S.K.Majee,H.S.Majumdar,A.Bolognesi,A.J.Pal.Electrical bistability and memory applications of poly(p-phenylenevinylene) films[J].Synth.Met.,2006,156(11-13):828-832.
    [62]H.Ha,O.Kim.Bipolar switching characteristics of nonvolatile memory devices based on poly(3,4-ethylenedioxythiophene):poly(styrensulfonate) thin film[J].Appl.Phys.Lett.,2008,93(3):033309.
    [63]Q.Ling,Y.Song,S.J.Ding,C.Zhu,D.S.H.Chan,D.-L.Kwong,E.-T.Kang,K.-G.Neoh.Non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and Eu-complexed vinylbenzoate[J].Adv.Mater.,2005,17(4):455-459.
    [64]J.Billen,S.Steudel,R.Muller,J.Genoe,P.Heremans.A comprehensive model for bipolar electrical switching of CuTCNQ memories[J].Appl.Phys.Lett.,2007,91(26):263507.
    [65]R.Muller,R.Naulaerts,J.Billen,J.Genoe,P.Heremans.CuTCNQ resistive nonvolatile memories with a noble metal bottom electrode[J].Appl.Phys.Lett.,2007,90(6):063503.
    [66]C.-H.Tu,Y.-S.Lai,D.-L.Kwong.Memory effect in the current-voltage characteristic of 8-Hydroquinoline aluminum salt films[J].IEEE Electron Device Lett.,2006,27(5):354-356.
    [67]J.Chen,D.Ma.Single-layer organic memory devices based on N,N'-di(naphthalene-l-yl)-N,N'-diphenyl-benzidine[J].Appl.Phys.Lett.,2005,87(2):023505.
    [68]M.Caironi,D.Natali,M.Sampietro,C.Bertarelli,A.Bianco,A.Dundulachi,E.Canesi,G.Zerbi.Organic memory device based on 3,3 '-bis-(3,5-di-tert-butyl-4-methoxyphenyl)-2,2'-bithiophene with high endurance and robustness to ambient air operation[J].Appl.Phys.Lett.,2006,89(24):243519.
    [69]A.Bandyopadhyay,A.J.Pal.Large conductance switching and memory effects in organic molecules for data-storage applications[J].Appl.Phys.Lett.,2003,82(8):1215-1217.
    [70]徐伟,吕银祥,华中一.一种电可擦写的分子基有机电双稳薄膜器件及其制作工艺[P].中国专利:01132374.4,2002-6-5.(已授权).
    [71]P.Guo,Y.-W.Dong,X.Ji,Y.-X.Lu,W.Xu.Nonvolatile multilevel conductance and memory effect in molecule-based device[J].IEEE Electron Device Lett.,2007,28(7):572-574.
    [72]M.Lauters,B.McCarthy,D.Sarid,G.E.Jabbour.Nonvolatile multilevel conductance and memory effects in organic thin films[J].Appl.Phys.Lett.,2005,87(23):231105.
    [73]B.C.Das,A.J.Pal.Switching between different conformers of a molecule:multilevel memory elements[J].Organic Electronics,2008,9(1):39-44.
    [74]V.S.Reddy,S.Karak,A.Dhar.Multilevel conductance switching in organic memory devices based on AlQ_3 and Al/Al_2O_3 core-shell nanoparticles[J].Appl.Phys.Lett.,2009,94(17):173304.
    [75]J.-G.Park,W.-S.Nam,S.-H.Seo,Y.-G.Kim,Y.-H.Oh,G.-S.Lee,U.-G.Paik.Multilevel nonvolatile small-molecule memory cell embedded with Ni nanocrystals surrounded by a NiO tunneling barrier[J].Nano Lett.,2009,9(4):1713-1719.
    [76]L.R.Melby,R.J.Harder,W.R.Healer,W.Mahler,R.E.Benson,W.E.Mochel.Substituted quinodirnethans.Ⅱ.Anion-radical derivatives and complexes of 7,7,8,8-Tetracyanoquinodimethan [J].J.Am.Chem.Sot.,1962,84(17):3374-3387.
    [77]A.Bandyopadhyay,A.J.Pal.Multilevel conductivity and conductance switching in supramolecular structures of an organic molecule[J].Appl.Phys.Lett.,2004,84(6):999-1001.
    [78]Q.Liu,W.Guan,S.Long,R.Jia,M.Liu,J.Chen.Resistive switching memory effect of ZrO_2 films with Zr~+ implanted[J].Appl.Phys.Lett.,2008,92(1):012117.
    [79]L.-E.Yu,S.Kim,M.-K.Ryu,S.-Y.Choi,Y.-K.Choi.Structure effects on resistive switching of A1/TiOx/A1 devices for RRAM applications[J].IEEE Electron Device Lett.,2008,29(4):331-333.
    [80]G.Deamaley,A.M.Stoneham,D.V.Morgan.Electrical phenomena in amorphous oxide films[J].Rep.Prog.Phys.,1970,33:1129-1191.
    [81]X.Wu,P.Zhou,J.Li,L.Y.Chen,H.B.Lv,Y.Y.Lin,T.A.Tang.Reproducible unipolar resistance switching in stoichiometric ZrO_2 films[J].Appl.Phys.Lett.,2007,90(18):183507.
    [82]D.Lee,D.-J.Seong,I.Jo,F.Xiang,R.Dong,S.Oh,H.Hwang.Resistance switching of copper doped MoO_x films for nonvolatile memory applications[J].Appl.Phys.Lett.,2007,90(12):122104.
    [83]W.-J.Joo,T.-L.Choi,K.-H.Lee,Y.Chung.Study on threshold behavior of operation voltage in metal filament-based polymer memory.[J].J.Phys.Chem.B,2007,111(27):7756-7760.
    [84]X.Guo,C.Schindler,S.Menzel,R.Waser.Understanding the switching-off mechanism in Ag~+ migration based resistively switching model systems[J].Appl.Phys.Lett.,2007,91(13):133513.
    [85]J.Y.Son,Y.-H.Shin.Direct observation of conducting filaments on resistive switching of NiO thin films[J].Appl.Phys.Lett.,2008,92(22):222106.
    [86]K.Nagashima,T.Yanagida,K.Oka,T.Kawai.Unipolar resistive switching characteristics of room temperature grown SnO_2 thin films[J].Appl.Phys.Lett.,2009,94(24):242902.
    [87]K.M.Kim,B.J.Choi,C.S.Hwang.Localized switching mechanism in resistive switching of atomic-layer-deposited TiO_2 thin films[J].Appl.Phys.Lett.,2007,90(24):242906.
    [88]K.M.Kim,B.J.Choi,Y.C.Shin,S.Choi,C.S.Hwang.Anode-interface localized filamentary mechanism in resistive switching of TiO_2 thin films[J].Appl.Phys.Lett.,2007,91(1):012907.
    [89]C.-Y.Lin,M.-H.Lin,M.-C.Wu,C.-H.Lin,T.-Y.Tseng.Improvement of resistive switching characteristics in SrZrO_3 thin films with embedded Cr layer[J].IEEE Electron Device Lett.,2008,29(10):1108-1111.
    [90]R.Jung,M.-J.Lee,S.Seo,D.C.Kim,G.-S.Park,K.Kim,S.Ahn,Y.Park,I.-K.Yoo,J.-S.Kim,B.H.Park.Decrease in switching voltage fluctuation of Pt/NiO_x/Pt structure by process control[J].Appl.Phys.Lett.,2007,91(2):022112.
    [91]D.C.Kim,M.J.Lee,S.E.Ahn,S.Seo,J.C.Park,I.K.Yoo,I.G.Back,H.J.Kim,E.K.Ytm,J.E.Lee,S.O.Park,H.S.Kim,U-I.Chung,J.T.Moon,B.I.Ryu.Improvement of resistive memory switching in NiO using IrO_2[J].Appl.Phys.Lett.,2006,88(23):232106.
    [92]S.H.Jo,K.-H.Kim,W.Lu.Programmable resistance switching in nanoscale two-terminal devices[J].Nano Lett.,2009,9(I):496-500.
    [93]A.Rose.Space-charge-limited currents in solids[J].Phys.Rev.,1955,97(6):1538-1544.
    [94]乔学良,孙增辉,程宇航,陈建国,熊锋,王洪水,邓德圣.N含量对CN薄膜折射率的影响[J].硅酸盐学报,2003,31(5):465-469.
    [95]陈路,王元樟,巫艳,吴俊,于梅芳,乔怡敏,何力.分子束外延CdTe(211)B/Si复合衬底材料[J].红外与毫米波学报,2005,24(4):245-249.
    [96]A.K.Debnath,N.Joshi,K.P.Muthe,J.C.Vyas,D.K.Aswal,S.K.Gupta,J.V.Yakhmi.Surface and electrical-transport studies of Ag/Al bilayer-structures grown by molecular beam epitaxy[J].Appl.Surf.Sci.,2005,243(1-4):220-227.
    [97]侯文义,赵兴国,孙亦蕙,袁庆龙,梁伟.同基合金非磁控电弧离子镀镀层结构特征[J].材料热处理学报,2005,26(3):64-66.
    [98]T.Nakamura,K.Homma,T.Yakushiji,R.Tai,A.Nishio,K.Tachibana.Metalorganic chemical vapor deposition of metal oxide films exhibiting electric-pulse-induced resistance switching[J].Surface and Coating Technology,2007,201(22-23):9275-9278.
    [99]A.Abrutis,V.Plausinaitiene,M.Skapas,C.Wiemer,O.Salicio,M.Longo,A.Pirovano,J.Siegel,W.Gawelda,S.Rushworth,C.Giesen.Chemical vapor deposition of chalcogenide materials for phase-change memories[J].Mieroeleetronie Engineering,2008,85(12):2338-2341.
    [100]M.Nieto-Suarez,N.Vila-Romeu,I.Prieto.Influence of different factors on the phase transitions of non-ionic Langmuir monolayers[J].Appl.Surf.Sci.,2005,246(4):387-391.
    [101]S.Isoda,K.Akiyama,S.Nishikawa,S.Ueyama,H.Miyasaka,T.Okada.Quantum electron tunneling in flavin-porphyrin hetero-type Langrnuir-Blodgett films[J].Thin Solid Films,2004, 466(1-2):285-290.
    [102]T.Sakamoto,K.Lister,N.Banno,T.Hasegawa,K.Terabe,M.Aono.Electronic transport in Ta_2O_5 resistive switch[J].Appl.Phys.Lett.,2007,91(9):092110.
    [103]Y.-W.Dong,X.Ji,W.Xu,J.-Q.Tang,P.Guo.Resistive switching and memory effect based on CuSCN complex layer created through interface reactions[J].Electrochem.Solid-State Lett.,2009,12(3):H54-H57.
    [104]K.Jung,H.Seo,Y.Kim,H.Im,J.Hong,J.-W.Park,J.-K.Lee.Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films[J].Appl.Phys.Lett.,2007,90(5):052104.
    [105]S.-J.Lee,S.-G.Yoon,K.-J.Choi,S.-O.Ryu,S.-M.Yoon,N,-Y.Lee,B.-G.Yu.Nitrogen incorporation on the crystallization temperature of silver-doped Ge_(45)Te_(55) solid-electrolyte films for PMC memory applications[J].Electrochem.Solid-State Lett.,2006,9(12):G364-G368.
    [106]H.Krautscheid,S.Gerber.Potassium thiocyanate argentates:K_3[Ag(SCN)_4],K_4[Ag_2(SCN)_6]and K[Ag(SCN)_2][J].Acta Cryst.C,2001,57:781-783.
    [107]M.Gunes,M.Lahtinen,J.Valkonen.Powder X-ray diffraction data for potassium silver thiocyanate,AgK(SCN)_2 and dipotassium silver thiocyanate,AgK_2(SCN)_3[J].Powder Diffaction,2002,17(1):37-40.
    [108]M.J.Weaver,B.Barz,J.G.Gordon II,M.R.Philpott.Surface-enhanced Raman spectroscopy of electrochemically characterized interfaces;potential dependence of Raman spectra for thiocyanate at silver electrodes[J].Surf.Sci.,1983,125(2):409-428.
    [109]J.S.Hammond,S.W.Gaarenstroom,N.Winograd.X-ray photoelectron spectroscopic studies of cadmium- and silver-oxygen surfaces[J].Anal.Chem.,1975,47(13):2193-2199.
    [110]S.S.Djokic,R.E.Burrell,N.Le,D.J.Field.An electrochemical analysis of thin silver films produced by reactive sputtering[J].J.Electrochem.Soc.,2001,148(3):C191-C196.
    [111]W.S.Epling,G.B.Hoflund,G.N.Salaita.Surface characterization study of the thermal decomposition of Ag_2CO_3[J].J.Phys.Chem.B,1998,102(12):2263-2268.
    [112]P.E.Burrows,Z.Shen,V.Bulovic,D.M.McCarty,S.R.Forrest,J.A.Cronin,M.E.Thompson.Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices[J].J.Appl.Phys.,1996,79(10):7991-8006.
    [113]董元伟.用于电阻开关存储器件的新型介质薄膜和工艺研究[D].上海:复旦大学,2009.
    [114]Q.J.Cai,Y.Gan,M.B.Chan-Park,H.B.Yang,Z.S.Lu,Q.L.Song,C.M.Li,Z.L.Dong.Solution-processable organic-capped titanium oxide nanoparticle dielectrics for organic thin-film transistors[J].Appl.Phys.Lett.,2008,93(11):113304.
    [115] Z. Bao, A. Dodabalapur, A. J. Lovinger. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility [J]. Appl. Phys. Lett., 1996,69(26): 4108-4110.
    
    [116] K. C. Dickey, S. Subramanian, J. E. Anthony, L.-H. Han, S. Chen, Y.-L. Loo. Large-area patterning of a solution-processable organic semiconductor to reduce parasitic leakage and off currents in thin-film transistors [J]. Appl. Phys. Lett., 2007,90(24): 244103.
    
    [117] H. Sirringhaus. Device physics of solution-processed organic field-effect transistors [J]. Adv. Mater., 2005,17(20): 2411-2425.
    
    [118] Z. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, A. J. Lovinger. High-performance plastic transistors fabricated by printing techniques [J]. Chem. Mater., 1997,9(6): 1299-1301.
    
    [119] P. Shah, Y. Kevrekidis, J. Benziger. Ink-jet printing of catalyst patterns for electroless metal deposition [J]. Langmuir, 1999,15(4): 1584-1587.
    
    [120] J. Hu, R. G. Beck, T. Deng, R. M. Westervelt, K. D. Maranowski, A. C. Gossard, G. M. Whitesides. Using soft lithography to fabricate GaAs/AlGaAs heterostructure field effect transistors [J]. Appl. Phys. Lett., 1997,71(14): 2020-2022.
    
    [121] L Ae, J. Chen, M. C. Lux-Steiner. Hybrid flexible vertical nanoscale diodes prepared at low temperature in large area [J]. Nanotechnology, 2008, 19(47): 475201.
    
    [122] B. O'Regan, F. Lenzmann, R. Muis, J. Wienke. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO_2 and CuSCN: Analysis of pore filling and IV characteristics [J]. Chem. Mater., 2002,14(12): 5023-5029.
    
    [123] K. Tennakone, A. R. Kumarasinghe, P. M. Sirimanne, G. R. R. A. Kumara. Deposition of thin polycrystalline films of cuprous thiocyanate on conducting glass and photoelectrochemical dye-sensitization [J]. Thin Solid Films, 1995,261: 307-310.
    
    [ 124 ] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, M. Gratzel. Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics [J]. Adv. Mater., 2000,12(17): 1263-1267.
    
    [125] G. R. R. A. Kumara, A. Konno, G. K. R. Senadeera, P. V. V. Jayaweera, D. B. R. A. De Silva, K. Teenakone. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide [J]. Solar Energy Mater. Solar Cell, 2001,69(2): 195-199.
    
    [126] Y. Selk, T. Yoshida, T. Oekermann. Variation of the morphology of electrodeposited copper thiocyanate films [J]. Thin Solid Films, 2008, 516(20): 7120-7124.
    
    [127] W. Wu, Z. Jin, Z. Hua, Y. Fu, J. Qiu. Growth mechanisms of CuSCN films electrodeposited on ITO in EDTA-chelated copper(II) and KSCN aqueous solution [J]. Electrochim. Acta, 2005, 50(11): 2343-2349.
    [128]X.-D.Gao,X.-M.Li,W.-D.Yu,J.-J.Qiu,X.-Y.Gan.Room-temperature deposition of nanocrystalline CuSCN film by the modified successive ionic layer adsorption and reaction method[J].Thin Solid Films,2008,517(2):554-559.
    [129]B.R.Sankapal,E.Goncalves,A.Ennaoui,M.Ch.Lux-Steiner.Wide band gap p-type windows by CBD and SILAR methods[J].Thin Solid Films,2004,451-452:128-132.
    [130]N.R.de Tacconi,Y.Son,K.Rajeshwar.Electrochemical behavior,Raman characterization,and photoelectrochemistry of cuprous thiocyanate-polypyrrole bilayers and films[J].J.Phys.Chem.,1993,97(5):1042-1049.
    [131]I.Platzman,R.Brener,H.Haick,R.Tannenbaum.Oxidation of polycrystalline copper thin films at ambient conditions[J].J.Phys.Chem.C,2008,112(4):1101-1108.
    [132]李兴林,张瑞峰.铜的价态光电子能谱和X光引发的Auger谱分析[J].光谱与光谱分析,1996,16(3):119-123.
    [133]M.Yang,J.-J.Zhu,J.-J.Li.Synthesis and characterizations of porous spherical CuSCN nanoparticles[J].Mater.Lett.,2005,59(7):842-845.
    [134]Y.-S.Lai,C.-H.Tu,D.-L.Kwong,J.S.Chen.Charge-transport characteristics in bistable resistive poly(N-vinylcarbazole) films[J].IEEE Electron Device Lett.,2006,27(6):451-453.
    [135]F.Verbakel,S.C.J.Meskers,R.A.J.Janssen,H.L.Gomes,M.Colle,M.Buchel,D.M.de Leeuw.Reproducible resistive switching in nonvolatile organic memories[J].Appl.Phys.Lett.,2007,91(19):192103.
    [136]C.Schindler,M.Weides,M.N.Kozicki,R.Waser.Low current resistive switching in Cu-SiO_2 cells[J].Appl.Phys.Lett.,2008,92(12):122910.
    [137]C.-Y.Liu,T.-Y.Tseng.Resistance switching properties of sol-gel derived SrZrO_3 based memory thin films[J].J.Phys.D:Appl.Phys.,2007,40(7):2157-2161.
    [138]S.Buhlmann,P.Muralt.Electrical nanoscale training of piezoelectric response leading to theoretically predicted ferroelastic domain contributions in PZT thin films[J].Adv.Mater.,2008,20(16):3090-3095.
    [139]J.H.Ryu,K.S.Kim,C.S.Lee,J.Jang,K.C.Park.Effect of electrical aging on field emission from carbon nanotube field emitter arrays[J].J.Vac.Sci.Technol.B,2008,26(2):856-859.
    [140]G.Raghavan,C.Chiang,P.B.Anders,S.-M.Tzeng,R.Villasol,G.Bai,M.Bohr,D.B.Fraser.Diffusion of copper through dielectric films under bias temperature stress[J].Thin Solid Films,1995,262(1-2):168-176.
    [141]L.Ma,Q.Xu,Y.Yang.Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer[J].Appl.Phys.Lett.,2004,84(24):4908-4910.
    [142]C.-Y.Lin,C.-Y.Wu,C.-Y.Wu,C.-C.Lin,T.-Y.Tseng.Memory effect of RF sputtered ZrO_2thin films[J].Thin Solid Films,2007,516(2-4):444-448.
    [143]C.-Y.Lin,C.-Y.Wu,C.-Y.Wu,T.-C.Lee,F.-L.Yang,C.Hu,T.-Y.Tseng.Effect of top electrode material on resistive switching properties of ZrO_2 film memory devices[J].IEEE Electron Device Lett.,2007,28(5):366-368.
    [144]B.Mukherjee,A.J.Pal.Multilevel conductance and memory in ultrathin organic films[J].Appl.Phys.Lett.,2004,85(11):2116-2118.
    [145]A.K.Rath,A.J.Pal.Conductance switching in an organic material:From bulk to monolayer[J].Langmuir,2007,23(19):9831-9835.
    [146]U.Russo,D.Kamalanathan,D.Ielmini,A.L.Lacaita,M.N.Kozicki.Study of multilevel programming in programmable metallization cell(PMC) memory[J].IEEE Trans.Electron Device,2009,56(5):1040-1047.
    [147]T.Zhang,B.Liu,J.-L.Xia,Z.-T.Song,S.-L.Feng,B.Chen.Structure and electrical properties of Ge_2Sb_2Te_5 thin film used for Ovonic unified memory[J].Chin.Phys.Lett.,2004,21(4):741-743.
    [148]徐伟,陈国荣,华中一.两种具有电双稳态的全有机络合物[J].真空科学与技术,1995,15(6):363-367.
    [149]E.Koglin,B.J.Kip,R.J.Meier.Adsorption and displacement of melamine at the Ag/electrolyte interface probed by surface-enhanced Raman microprobe spectroscopy[J].J.Phys.Chem.,1996,100(12):5078-5089.
    [150]M.K.Marchewka.Infrared and Raman spectra of melaminium chloride hemihydrate[J].Mater.Sci.Engineering B,2002,95(3):214-221.
    [151]D.Tondelier,K.Lmimouni,D.VuiUaume,C.Fery,G.Hass.Metal/organic/metal bistable memory devices[J].Appl.Phys.Lett.,2004,85(23):5763-5765.
    [152]M.Terai,K.Fujita,T.Tsutsui.Electrical bistability of organic thin-film device using Ag electrode[J].Jpn.J.Appl.Phys.,2006,45(4B):3754-3757.
    [153]Y.Song,Q.D.Ling,C.Zhu,E.T.Kang,D.S.H.Chan,Y.H.Wang,D.-L.Kwong.Memory performance of a thin-film device based on a conjugated copolymer containing fluorene and chelated europium complex[J].IEEE Electron Device Lett.,2006,27(3):154-156.
    [154]J.E.Meinhard.Organic rectifying junction[J].J.Appl.Phys.,1964,35:3059-3060.
    [155]A.Aviram,M.Ratner.Molecular rectifiers[J].Chem.Phys.Lett.,1974,29(2):277-283.
    [156]D.Vuillaume,B.Chen,R.M.Metzger.Electron transfer through a monolayer of Hexadecylquinolinium Tricyanoquinodimethanide[J].Langmuir,1999,15(11):4011-4017.
    [157]B.Chen,R.M.Metzger.Rectification between 370 and 105 K in Hexadecylquinolinium Tricyanoquinodimethanide[J].J.Phys.Chem.B,1999,103(21):4447-4451.
    [158]R.M.Metzger,B.Chen,U.Hopfner,M.V.Lakshmikantham,D.Vuillanume,T.Kawai,X.Wu,H.Tachibana,T.V.Hughes,H.Sakurai,J.W.Baldwin,C.Hosch,M.P.Cava,L.Brehrner,G.J.Ashwell.Unimolecular electrical rectification in Hexadecylquinolinium Tricyanoquinodimethanide[J].J.Am.Chem.Soc.,1997,119(43):10455-10466.
    [159]T.Xu,I.R.Peterson,M.V.Lakshrnikantham,R.M.Metzger.Rectification by a monolayer of Hexadecylquinolinium Tricyanoquinodimethanide between gold electrodes[J].Angew.Chem.Int.Ed.,2001,40(9):1749-1752.
    [160]R.M.Metzger,J.W.Baldwin,W.J.Shumate,I.R.Peterson,P.Mani,G.J.Mankey,T.Morris,G.Szulczewski,S.Bosi,M.Prato,A.Comito,Y.Rubin.Electrical rectification in a Langmuir-Blodgett monolayer of Dimethyanilinoazafullerene sandwiched between gold electrodes[J].J.Phys.Chem.B,2003,107(4):1021-1027.
    [161]J.W.Baldwin,R.R.Amaresh,1.R.Peterson,W.J.Shumate,M.P.Cava,M.A.Amid,R.Hamilton,G J.Ashwell,R.M.Metzger.Rectification and nonlinear optical properties of a Langmuir-Blodgett monolayer of a Pyridinium dye[J].J.Phys.Chem.B,2002,106(47):12158-12164.
    [162]A.Honciuc,A.Jaiswal,A.Gong,K.Ashworth,C.W.Spangler,I.R.Peterson,L.R.Dalton,R.M.Metzger.Current rectification in a Langmuir-Schaefer monolayer of Fullerene-bis-[4-diphenylamino-4"-(N-ethyl-N-2"'-ethyl)amino-1,4-diphenyl-1,3-butadiene]malonate between Au electrodes[J].J.Phys.Chem.B,2005,109(2):857-871.
    [163]C.Zhou,M.R.Deshpande,M.A.Reed,L.Jones II,J.M.Tour.Nanoscale metal/self -assembled monolayer/metal heterostructures[J].Appl.Phys.Lett.,1997,71(5):611-613.
    [164]A.S.Martin,J.R.Sambles,G.J.Ashwell.Molecular rectifier[J].Phys.Rev.Lett.,1993,70(2):218-221.
    [165]N.Okazaki,J.R.Sambles,M.J.Jory,G.J.Ashwel].Molecular rectification at 8 K in an Au/C_(16)H_(33)Q-3CNQ LB film/Au structure[J].Appl.Phys.Lett.,2002,81(12):2300-2302.
    [166]G.J.Ashwell,A.Chwialkowska.Controlled alignment of molecular diodes via ionic assembly of cationic donor-(π-bridge)-acceptor molecules on anionic surfaces[J].Chem.Commun.,2006,(13):1404-1406.
    [167]G.J.Ashwell,A.Mohib.Improved molecular rectification from self-assembled monolayers of a sterically hindered dye[J].J.Am.Chem.Soc.,2005,127(46):16238-16244.
    [168]G.J.Ashwell,W.D.Tyrrell,A.J.Whittam.Molecular rectification:self-assembled monolayers in which donor-(π-bridge)-acceptor moieties are centrally located and symmetrically coupled to both gold electrodes[J].J.Am.Chem.Soc.,2004,126(22):7102-7110.
    [169]J.Zhao,C.Zeng,X.Cheng,K.Wang,G.Wang,J.Yang,J.G.Hou,Q.Zhu.Single C_(59)N molecule as a molecular rectifier[J].Phys.Rev.Lett.,2005,95(4):045502.
    [170]X.-L.Fan,C.Wang,D.-L.Yang,L.-J.Wan,C.Bai.Molecule rectifier fabricated by capillary tunnel junction[J].Chem.Phys.Lett.,2002,361(5-6):465-468.
    [171]吕银祥,蓝碧健,季欣,金兰,徐伟.基于[4-[(N-(2-巯基乙基),N'-甲基)胺基]苯基]三氰基乙烯(TAPE)的分子整流器[J].功能材料,2006,37(10):1617-1619.
    [172]蓝碧健,沈淼,吕银祥,蔡永挚,徐伟,华中一.[J].基于分子自组装的单分子层整流器[J].真空科学与技术学报,2006,26(1):12-15.
    [173]蓝碧健,刘春明,吕银祥,张骅,徐伟,华中一.[J].一种分子整流器件及其工艺研究,复旦学报,2005,44(4):597-600.
    [174]J.M.Tour,L.J.II,D.L.Pearson,J.J.S.Lamba,T.P.Burgin,G.M.Whitesides,D.L.Allara,A.N.Parikh,S.V.Atre.Self-assembled monolayers and multilayers of conjugated thiols,α,ω-dithiols,and thioacetyl-containing adsorbates.Understanding attachments between potential molecular wires and gold surfaces[J].J.Am.Chem.Sot.,1995,117(37):9529-9534.
    [175]R.P.Andres,T.Bein,M.Dorogi,S.Feng,J.I.Henderson,C.P.Kubiak,W.Mahoney,R.G.Osifchin,R.Reifenberger."Coulomb staircase" at room temperature in a self-assembled molecular nanostructure[J].Science,1996,272(5266):1323-1325.
    [176]C.D.Bain,E.B.Troughton,Y.-T.Tao,J.Evall,G.M.Whitesides,R.G.Nuzzo.Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold[J].J.Am.Chem.Soe.,1989,111(1):321-335.
    [177]R.C.Thomas,L.Sun,R.M.Crooks,A.J.Ricco.Real-time measurements of the gas-phase adsorption of n-Alkylthiol mono-and multilayers on gold[J].Langmuir,1991,7(4):620-622.
    [178]O.Dannenberer,M.Buck,M.Grunze.Self-assembly of n-Alkanethiols:A kinetic study by second harmonic generation[J].J.Phys.Chem.B,1999,103(12):2202-2213.
    [179]M.Himmelhaus,F.Eisert,M.Buck,M.Grunze.Self-Assembly of n-Alkanethiol monolayers.A study by IR-Visible sum frequency spectroscopy(SFG)[J].J.Phys.Chem.B,2000,104(3):576-584.
    [180]R.M.Metzger,T.Xu,I.R.Peterson.Electrical rectification by a monolayer of Hexadecylquinolinium tricyanoquinodimethanide measured between macroscopic gold electrodes [J].J.Phys.Chem.B,2001,105(30):7280-7290.
    [181]蓝碧健.分子基整流材料及工艺研究[D].上海:复旦大学,2006.
    [182]周辉.纳米多孔金膜的制备以及分子整流特性的研究[D].上海:复旦大学,2006.
    [183]徐伟.一种动态分子基电子器件及其操作方法[P].中国专利:200510111538.0,2007-06-20.
    [184]徐伟.动态分子基电子器件及其操作方法[P].中国专利:200510111832.1,2006-7-19.
    [185]徐伟.基于肼衍生物分子材料的动态分子基电子器件[P].中国专利:200510112197.9,2006-7-26.
    [186]Y.Zhao,W.Perez-Segarra,Q.Shi,A.Wei.Dithiocarbamate assembly on gold[J].J.Am.Chem.Soc.,2005,127(20):7328-7329.
    [187]A.Ulman.Formation and structure of self-assembled monolayers[J].Chem.Rev.,1996,96(4):1533-1554.
    [188]R.Colorado,Jr.R.J.Villazana,T.R.Lee.Self-assembled monolayers on gold generated from aliphatic dithiocarboxylic acids[J].Langmuir,1998,14(22):6337-6340.
    [189]S.Yasuda,T.Nakamura,M.Matsumoto,H.Shigekawa.Phase switching of a single isomeric molecule and associated characteristic rectification[J].J.Am.Chem.Soc.2003,125(52):16430-16433.
    [190]P.A.Lewis,C.E.Inman,F.Maya,J.M.Tour,J.E.Hutchison,P.S.Weiss.Molecular engineering of the polarity and interactions of molecular electronic switches[J].J.Am.Chem.Sot.,2005,127(49):17421-17426.
    [191]陈成钧.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996.
    [192]G.Binnig,H.Rohrer,Ch.Gerber,E.Weibel.Tunneling through a controllable vacuum gap [J].Appl.Phys.Lett.,1982,40(2):178-180.
    [193]Z.J.Donhauser,B.A.Mantooth,K.F.Kelly,L.A.Bumm,J.D.Monnell,J.J.Stapleton,D.W.Price Jr.,A.M.Rawlett,D.L.Allara,J.M.Tour,P.S.Weiss.[J].Science,2001,292(5525),2303-2307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700