荧光传感器的合成及应用和克服MDR自组装抗癌药物的合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荧光分子探针分析技术是一种重要的分子检测技术,具有灵敏度高、选择性好、检测方便、检测限低等特点。近几十年来,荧光分子探针技术在环境科学、医药以及生命科学等领域被广为应用。
     在论文中我们发展了一种新型的荧光可控探针Ac-SAACQ-Gly-Gly-Gly-Lys (FITC),该探针能被用于连续的选择性在体外和活细胞中检测Cu2+和L-组氨酸。分子探针结构中包含的Gly-Gly-Gly-Lys能够增加探针的水溶性和细胞渗透性;分子探针结构中SAACQ部分能够与Cu2+发生螯合作用;分子探针的荧光信号则来自于异硫氰酸荧光素(FITC),当探针分子的SAACQ部分与Cu2+结合以后由于PET现象的出现导致荧光素的荧光发生淬灭。最终我们成功实现了体外和活细胞内Cu2+以及L-组氨酸的连续性检测。
     定点标记蛋白在检测蛋白的表达、组合、转录,理解细胞内部随时间空间的变化具有重要的意义。在过去的十年中荧光蛋白已经广泛的应用到标记相应的fusion蛋白,并且具有很好的分辨率。但是它们具有高分子量以及对细胞环境迟钝的缺点。而化学探针则具有高标记的特点。
     在论文中我们通过合理改进传统的基于1,2-氨基硫醇和2-氰基苯并噻唑(CBT)的氰基的缩合反应中的底物,将该反应应用到分子成像。我们的研究体系结合了巯基与马来酰亚胺之间的亲核加成反应和CBT的-CN与半胱氨酸(Cys)的N端之间的缩合反应,最后成功的对鸡蛋膜上蛋白质的Cys残基的进行荧光标记。
     在临床上癌症多药耐药(MDR)的存在是癌症病人实施化学治疗失败的主要原因。多药耐药不仅对接触肿瘤细胞的药物产生耐药,而且对一些未曾接触、与之化学结构和作用机制完全不同的药物也产生交叉耐药,因此这给癌症的治疗带来了很大的障碍。而纳米载药体系的出现为克服MDR带来重大的突破。
     在论文中我们合理的设计了四种抗癌药物1,2,3以及对照化合物3-Scr。其中,2是化疗药物阿霉素(DOX)的衍生物。其他化合物则是紫杉醇(taxol)的衍生物。1,2,3都包含一段Arg-Val-Arg-Arg (RVRR)的肽链,该肽链能够被furin酶特异性的识别和剪切。另外,RVRR肽链片段使底物具有很好的水溶性以及细胞渗透性。当药物分子被furin酶剪切或者还原剂还原以后,缩合反应就会发生形成多聚体,进而发生自组装形成纳米颗粒,同时增加细胞内化疗药物的有效浓度。
Fluorescent probe analysis technology has been widely noted because of its high sensitivity, good selectivity, detection convenient, and low detection limit microanalysis techniques. In recent decades, the fluorescent molecular probe technology in environmental science, medicine and life sciences analysis and detection in large numbers and rapid development.
     In this dissertation, we developed a new fluorescence probe Ac-SAACQ-Gly-Gly-Gly-Lys (FITC) for sequentially and selectively sensing Cu2+and L-histidine (L-His) in vitro and in living cells for the first time. The new probe has good water-solublility and cell-permeablility because of the existence of Gly-Gly-Gly-Lys. The SAACQ motif used for Cu2+chelation clawer and the fluorescein isothiocyanate (FITC) used as fluorescence resource in the probe. The fluorenscence of probes can be quenched via PET mechanism after Cu2+chelation. Finally, we sucessfully achieved the sequentially and selectively sensing Cu2+and L-His in vitro and in living cells.
     Site-specific labeling of proteins is an important approach for direct visualization of protein expression, association, and translocation, understanding the spatial and temporal underpinnings of life inside cells. In the past decade, genetically encoded fluorescent proteins (FPs) have been widely used to label their fusion proteins with absolute specificity and spatial resolution. However, they have intrinsic shortcomings such as high molecular weight and insensitivity to cellular environment. The chemical probes for visualization of the proteins had been developed to improve the labeling efficiency.
     In this dissertation, we made the advantage of condensation reaction between the1,2-aminothiol group of cysteine (Cys) and the cyano group of2-cyanobenzothiazole (CBT), and finally applied the condensation reaction to molecular imaging by optimalizing the substrate. In our experiment, we realized the labeling of Cys residues on proteins of chicken eggshell membrane (ESM) by combining these two biocompatible reactions (nucleophilic addition between thiol and maleimide, and condensation between CBT and N-terminal Cys).
     Multidrug resistance (MDR) is the major factor in the failure of large forms of chemotherapy in cancer patients. The MDR induced the tumor cells become more and more refractory to not only its own target drugs, but also some unrelated drugs that with different chemical structures or functionalized mechanisms. Nowadays, MRD becomes a big abstacle for the cancer treatment. The development of nano-drug delivery systems made significant breakthrough for overcoming the MRD.
     In this dissertation, we rationally designed four anticancer drugs1,2,3and its scramble probe3-Scr.2is a doxorubicin (DOX) derivative chemotherapeutic drug. And the other are taxol derivative chemotherapeutic drugs.1,2, and3contained a Arg-Val-Arg-Arg (RVRR) peptides sequence which can be specifically recognized and cleaved by furin. And RVRR sequence has a good water-solubility and cell-permeable. After furin cleavaged and reduction, the condensation reaction would be happened. The intracellular self-assembly of nanoparticals were formed and enhanced the concentration of chemotherapeutic drugs.
引文
[I]J. Du, M. Hu, J. Fan, et al.2012. Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media[J]. Chem. Soc. Rev.,41 (12),4511-4535.
    [2]H. N. Kim, W. X. Ren, J. S. Kim, et al.2012. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chem. Soc. Rev.,41 (8),3210-3244.
    [3]Y. Yang, Q. Zhao, W. Feng, et al.2013. Luminescent chemodosimeters for bioimaging[J]. Chem. Rev.,113 (1),192-270.
    [4]A. P. de Silva, T. S. Moody and G. D. Wright.2009. Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools[J]. Analyst,134 (12),2385-2393.
    [5]M. Y. Chae and A. W. Czarnik.1992. Fluorometric Chemodosimetry-Mercury(Ⅰⅰ) and Silver(Ⅰ) Indication in Water Via Enhanced Fluorescence Signaling[J]. J. Am. Chem. Soc.,114 (24), 9704-9705.
    [6]K. C. Song, J. S. Kim, S. M. Park, et al.2006. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline[J]. Org. Lett.,8 (16),3413-3416.
    [7]J. E. Namgoong, H. L. Jeon, Y. H. Kim, et al.2010. Hg2+-selective fluorogenic chemodosimeter based on naphthoflavone[J]. Tetrahedron Lett.,51 (1),167-169.
    [8]M. G. Choi, Y. H. Kim, J. E. Namgoong, et al.2009. Hg2+-selective chromogenic and fluorogenic chemodosimeter based on thiocoumarins[J]. Chem. Commun., (24),3560-3562.
    [9]G. Hennrich, W. Walther, U. Resch-Genger, et al.2001. Cu(Ⅱ) and Hg(Ⅱ)-induced modulation of the fluorescence behavior of a redox-active sensor molecule[J]. Inorg. Chem.,40 (4), 641-644.
    [10]H. B. Li and H. J. Yan.2009. Ratiometric Fluorescent Mercuric Sensor Based on Thiourea-Thiadiazole-Pyridine Linked Organic Nanoparticles[J]. J. Phys. Chem. C,113 (18), 7526-7530.
    [11]T. Cheng, Y. Xu, S. Zhang, et al.2008. A highly sensitive and selective OFF-ON fluorescent sensor for cadmium in aqueous solution and living cell[J]. J. Am. Chem. Soc.,130 (48), 16160-16161.
    [12]T. Y. Cheng, T. Wang, W. P. Zhu, et al.2011. Modulating the selectivity of near-IR fluorescent probes toward various metal ions by judicious choice of aqueous buffer solutions[J]. Chem. Commun.,47 (13),3915-3917.
    [13]Z. Jin, X. B. Zhang, D. X. Xie, et al.2010. Clicking fluoroionophores onto mesoporous silicas:a universal strategy toward efficient fluorescent surface sensors for metal ions[J]. Anal. Chem., 82 (15), 6343-6346.
    [14]Z. Xu, K. H. Baek, H. N. Kim, et al. 2010. Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-penneable, and ratiometric fluorescent sensor[J]. J. Am. Chem. Soc, 132 (2), 601-610.
    [15]R. Huang, X. Zheng, C. Wang, et al. 2012. Reaction-based two-photon fluorescent probe for turn-on mercury(Ⅱ) sensing and imaging in live cells[J]. Chem.-Asian J., 7 (5), 915-918.
    [16]Y. Peng, Y. M. Dong, M. Dong, et al. 2012. A selective, sensitive, colorimetric, and fluorescence probe for relay recognition of fluoride and Cu(Ⅱ) ions with "off-on-off" switching in ethanol-water solution[J]. J. Org. Chem., 77 (20), 9072-9080.
    [17]Y. Shiraishi, Y. Matsunaga and T. Hirai. 2013. Phenylbenzoxazole-amide-cyclen linkage as a ratiometric fluorescent receptor for Zn(Ⅱ) in water[J]. J. Phys. Chem. A, 117 (16), 3387-3395.
    [18]N. Kumar, V. Bhalla and M. Kumar. 2014. Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions[J]. Analyst, 139 (3), 543-558.
    [19]J. Fan, M. Hu, P. Zhan, et al. 2013. Energy transfer cassettes based on organic fluorophores: construction and applications in ratiometric sensing[J]. Chem. Soc. Rev., 42 (1), 29-43.
    [20]G Zlokarnik, P. A. Negulescu, T. E. Knapp, et al. 1998. Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter[J]. Science, 279 (5347), 84-88.
    [21]M. H. Lee, H. J. Kim, S. Yoon, et al. 2008. Metal ion induced FRET OFF-ON in tren/dansyl-appendedrhodamine[J]. Org. Lett., 10 (2), 213-216.
    [22]G Fang, M. Xu, F. Zeng, et al. 2010. beta-cyclodextrin as the vehicle for forming ratiometric mercury ion sensor usable in aqueous media, biological fluids, and live cells[J]. Langmuir, 26 (22), 17764-17771.
    [23]R. Huang, X. Wang, D. Wang, et al. 2013. Multifunctional fluorescent probe for sequential detections of glutathione and caspase-3 in vitro and in cells[J]. Anal. Chem., 85 (13), 6203-6207.
    [24]R. Hu, J. Feng, D. Hu, et al. 2010. A rapid aqueous fluoride ion sensor with dual output modes[J]. Angew. Chem Int. Ed., 49 (29), 4915-4918.
    [25]S. Li, Q. Wang, Y. Qian, et al. 2007. Understanding the pressure-induced emission enhancement for triple fluorescent compound with excited-state intramolecular proton transfer[J]. J. Phys. Chem. A,111(46), 11793-11800.
    [26]W. Sun, S. Li, R. Hu, et al. 2009. Understanding solvent effects on luminescent properties of a triple fluorescent ESIPT compound and application for white light emission[J]. J. Phys. Chem. A,113 (20),5888-5895.
    [27]Y. Bao, B. Liu, H. Wang, et al.2011. A "naked eye" and ratiometric fluorescent chemosensor for rapid detection of F- based on combination of desilylation reaction and excited-state proton transfer[J]. Chem. Commun.,47 (13),3957-3959.
    [28]W. H. Chen, Y. Xing and Y. Pang.2011. A highly selective pyrophosphate sensor based on ESIPT turn-on in water[J]. Org. Lett.,13 (6),1362-1365.
    [29]S. C. Yin, V. Leen, S. Van Snick, et al.2010. A highly sensitive, selective, colorimetric and near-infrared fluorescent turn-on chemosensor for Cu2+ based on BODIPY[J]. Chem. Commun.,46 (34),6329-6331.
    [30]Y. Zhao, X. B. Zhang, Z. X. Han, et al.2009. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells[J]. Anal. Chem., 81 (16),7022-7030.
    [31]P. Mahato, S. Saha, E. Suresh, et al.2012. Ratiometric detection of Cr3+ and Hg2+ by a naphthalimide-rhodamine based fluorescent probe[J]. Inorg. Chem.,51 (3),1769-1777.
    [32]C. Kar, M. D. Adhikari, A. Ramesh, et al.2013. NIR- and FRET-based sensing of Cu2+ and S2- in physiological conditions and in live cells[J]. Inorg. Chem.,52 (2),743-752.
    [33]L. Yuan, W. Lin, B. Chen, et al.2012. Development of FRET-based ratiometric fluorescent Cu2+ chemodosimeters and the applications for living cell imaging[J]. Org. Lett.,14 (2), 432-435.
    [34]J. Fan, P. Zhan, M. Hu, et al.2013. A fluorescent ratiometric chemodosimeter for Cu2+ based on TBET and its application in living cells[J]. Org. Lett.,15 (3),492-495.
    [35]G J. He, X. W. Zhao, X. L. Zhang, et al.2010. A turn-on PET fluorescence sensor for imaging Cu2+ in living cells[J]. New J. Chem.,34 (6),1055-1058.
    [36]H. S. Jung, P. S. Kwon, J. W. Lee, et al.2009. Coumarin-derived Cu(2+)-selective fluorescence sensor:synthesis, mechanisms, and applications in living cells[J]. J. Am. Chem. Soc.,131 (5), 2008-2012.
    [37]H. H. Wang, L. Xue, Z. J. Fang, et al.2010. A colorimetric and fluorescent chemosensor for copper ions in aqueous media and its application in living cells[J]. New J. Chem.,34 (7), 1239-1242.
    [38]Z. Xu, J. Yoon and D. R. Spring.2010. A selective and ratiometric Cu2+ fluorescent probe based on naphthalimide excimer-monomer switching[J]. Chem. Commun.,46 (15), 2563-2565.
    [39]J. Jo, H. Y. Lee, W. Liu, et al.2012. Reactivity-based detection of copper(II) ion in water: oxidative cyclization of azoaromatics as fluorescence turn-on signaling mechanism[J]. J. Am. Chem. Soc.,134 (38),16000-16007.
    [40]M. Fernandez-Suarez and A. Y. Ting.2008. Fluorescent probes for super-resolution imaging in living cells[J]. Nat. Rev. Mol. Cell Biol.,9 (12),929-943.
    [41]R. Y. Tsien.1998. The green fluorescent protein[J]. Annu. Rev. Biochem..67 509-544.
    [42]B. Seiwert, H. Hayen and U. Karst.2008. Differential labeling of free and disulfide-bound thiol functions in proteins[J]. J. Am. Soc. Mass Spectrom.,19 (1),1-7.
    [43]V. Tolmachev, M. Altai, M. Sandstrom, et al.2011. Evaluation of a maleimido derivative of NOTA for site-specific labeling of affibody molecules[J]. Bioconjugate Chem.,22 (5), 894-902.
    [44]M. Depuydt, S. E. Leonard, D. Vertommen, et al.2009. A periplasmic reducing system protects single cysteine residues from oxidation[J]. Science,326 (5956),1109-1111.
    [45]J. Nicolas, E. Khoshdel and D. M. Haddleton.2007. Bioconjugation onto biological surfaces with fluorescently labeled polymers[J]. Chem. Commun., (17),1722-1724.
    [46]M. W. Jones, G Mantovani, S. M. Ryan, et al.2009. Phosphine-mediated one-pot thiol-ene "click" approach to polymer-protein conjugates[J]. Chem. Commun., (35),5272-5274.
    [47]E. Saxon and C. R. Bertozzi.2000. Cell surface engineering by a modified Staudinger reaction[J]. Science,287 (5460),2007-2010.
    [48]S. S. van Berkel, M. B. van Eldijk and J. C. M. van Hest.2011. Staudinger Ligation as a Method for Bioconjugation[J]. Angew. Chem. Int. Ed.,50 (38),8806-8827.
    [49]A. S. Cohen, E. A. Dubikovskaya, J. S. Rush, et al.2010. Real-Time Bioluminescence Imaging of Glycans on Live Cells[J]. J. Am. Chem. Soc.,132 (25),8563-8565.
    [50]H. C. Kolb, M. G. Finn and K. B. Sharpless.2001. Click chemistry:Diverse chemical function from a few good reactions[J]. Angew. Chem. Int. Ed.,40 (11),2004-2021.
    [51]J. Guo, S. Wang, N. Dai, et al.2011. Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging[J]. Proc. Natl. Acad. Sci. U. S. A.,108 (9),3493-3498.
    [52]Y. Zeng, T. N. C. Ramya, A. Dirksen, et al.2009. High-efficiency labeling of sialylated glycoproteins on living cells[J]. Nat. Methods,6 (3),207-209.
    [53]L. K. Mahal, K. J. Yarema and C. R. Bertozzi.1997. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis[J]. Science,276 (5315),1125-1128.
    [54]V. K. Kodali, S. A. Gannon, S. Paramasivam, et al.2011. A novel disulfide-rich protein motif from avian eggshell membranes[J]. Plos One,6 (3), e18187.
    [55]A. A. Meratan, A. Ghasemi and M. Nemat-Gorgani.2011. Membrane integrity and amyloid cytotoxicity:a model study involving mitochondria and lysozyme fibrillation products[J]. J. Mol. Biol.,409 (5),826-838.
    [56]J. Xie, M. Qin, Y. Cao, et al.2011. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme:the interplay between hydrophobic interactions and formation of intermolecular disulfide bonds[J]. Proteins,79 (8),2505-2516.
    [57]G Rabbani, E. Ahmad, N. Zaidi, et al.2011. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white[J]. Cell Biochem. Biophys.,61 (3),551-560.
    [58]Y. Zhang, G Wen, Y. Zhou, et al.2007. Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane[J]. Biosens. Bioelectron.,22 (8),1791-1797.
    [59]J. Alegre-Cebollada, P. Kosuri, J. A. Rivas-Pardo, et al.2011. Direct observation of disulfide isomerization in a single protein[J]. Nat. Chem.,3 (11),882-887.
    [60]J. M. Thornton.1981. Disulfide Bridges in Globular-Proteins[J]. J. Mol. Biol.,151 (2), 261-287.
    [61]H. F. Gilbert.1995. Thiol/disulfide exchange equilibria and disulfide bond stability[J]. Methods Enzymol.,2518-28.
    [62]M. E. B. Smith, F. F. Schumacher, C. P. Ryan, et al.2010. Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides[J]. J. Am. Chem. Soc.,132 (6),1960-1965.
    [63]J. M. Chalker, G J. Bernardes, Y. A. Lin, et al.2009. Chemical modification of proteins at cysteine:opportunities in chemistry and biology[J]. Chem.-Asian J.,4 (5),630-640.
    [64]O. Shimoni, A. Postma, Y. Yan, et al.2012. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting[J]. Acs Nano,6 (2), 1463-1472.
    [65]J. L. Vanderhooft, B. K. Mann and G. D. Prestwich.2007. Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials[J]. Biomacromolecules,8 (9),2883-2889.
    [66]B. Seiwert and U. Karst.2007. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides[J]. Anal. Chem.,79 (18),7131-7138.
    [67]P. Schelte, C. Boeckler, B. Frisch, et al.2000. Differential reactivity of maleimide and bromoacetyl functions with thiols:application to the preparation of liposomal diepitope constructs[J]. Bioconjugate Chem.,11 (1),118-123.
    [68]R. A. Bednar.1990. Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase[J]. Biochemistry,29 (15), 3684-3690.
    [69]J. D. Gregory.1955. The stability of N-ethylmaleimide and its reaction with sulfhydryl groups[J]. J. Am. Chem. Soc.,77 (14),3922-3923.
    [70]A. Persidis.1999. Cancer multidrug resistance[J]. Nat. Biotechnol.,17 (1),94-95.
    [71]H. Maeda, J. Wu, T. Sawa, et al.2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review[J]. J. Control. Release,65 (1-2),271-284.
    [72]P. G Debenham, N. Kartner, L. Siminovitch, et al.1982. DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression[J]. Mol. Cell. Biol.,2 (8), 881-889.
    [73]J. R. Riordan, K. Deuchars, N. Kartner, et al.1985. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines[J]. Nature,316 (6031),817-819.
    [74]C. J. Chen, J. E. Chin, K. Ueda, et al.1986. Internal duplication and homology with bacterial transport proteins in the mdrl (P-glycoprotein) gene from multidrug-resistant human cells[J]. Cell,47 (3),381-389.
    [75]S. P. Cole, G. Bhardwaj, J. H. Gerlach, et al.1992. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line[J]. Science,258 (5088),1650-1654.
    [76]Y. Z. Min, C. Q. Mao, S. M. Chen, et al.2012. Combating the Drug Resistance of Cisplatin Using a Platinum Prodrug Based Delivery System[J]. Angew. Chem. Int. Ed.,51 (27), 6742-6747.
    [77]Y. J. Son, J. S. Jang, Y. W. Cho, et al.2003. Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect[J]. J. Control. Release,91 (1-2),135-145.
    [78]O. C. Farokhzad and R. Langer.2009. Impact of Nanotechnology on Drug Delivery[J]. Acs Nano,3 (1),16-20.
    [79]D. Peer, J. M. Karp, S. Hong, et al.2007. Nanocarriers as an emerging platform for cancer therapy[J]. Nat. Nanotechnol.,2 (12),751-760.
    [80]V. P. Torchilin.2007. Micellar nanocarriers:pharmaceutical perspectives[J]. Pharmaceut Res, 24(1),1-16.
    [81]H. Saito, A. S. Hoffman and H. I. Ogawa.2007. Delivery of doxorubicin from biodegradable PEG hydrogels having Schiff base linkages[J]. J. Bioact. Compat. Polym.,22 (6),589-601.
    [82]T. Etrych, M. Jelinkova, B. Rihova, et al.2001. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage:synthesis and preliminary in vitro and in vivo biological properties[J]. J. Control. Release,73 (1),89-102.
    [83]W. A. Henne, D. D. Doorneweerd, A. R. Hilgenbrink, et al.2006. Synthesis and activity of a folate peptide camptothecin prodrug[J]. Bioorg. Med. Chem. Lett.,16 (20),5350-5355.
    [84]C. P. Leamon, J. A. Reddy, I. R. Vlahov, et al.2005. Synthesis and biological evaluation of EC72:A new folate-targeted chemotherapeutic[J]. Bioconjugate Chem.,16 (4),803-811.
    [85]I. R. Vlahov, H. K. R. Santhapuram, P. J. Kleindl, et al.2006. Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1:EC 145, a folic acid conjugate of desacetylvinblastine monohydrazide[J]. Bioorg. Med. Chem. Lett.,16 (19), 5093-5096.
    [86]T. Suzuki, S. Hisakawa, Y. Itoh, et al.2007. Design, synthesis, and biological activity of folate receptor-targeted prodrugs of thiolate histone deacetylase inhibitors[J]. Bioorg. Med. Chem. Lett.,17 (15),4208-4212.
    [87]D. E. L. de Menezes, L. M. Pilarski and T. M. Allen.1998. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B-cell lymphoma[J]. Cancer Res.,58 (15), 3320-3330.
    [88]J. W. Park, K. L. Hong, D. B. Kirpotin, et al.2002. Anti-HER2 immunoliposomes:Enhanced efficacy attributable to targeted delivery[J]. Clin. Cancer Res.,8 (4),1172-1181.
    [89]I. R. Vlahov, H. K. Santhapuram, P. J. Kleindl, et al.2006. Design and regioselective synthesis of a new generation of targeted chemotherapeutics. Part 1:EC145, a folic acid conjugate of desacetylvinblastine monohydrazide[J]. Bioorg. Med. Chem. Lett.,16 (19), 5093-5096.
    [90]J. H. Ryu, S. Bickerton, J. Zhuang, et al.2012. Ligand-decorated nanogels:fast one-pot synthesis and cellular targeting[J]. Biomacromolecules,13 (5),1515-1522.
    [91]S. Chen, X. Zhao, J. Chen, et al.2010. Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release[J]. Bioconjugate Chem.,21 (5),979-987.
    [92]M. H. Lee, J. Y. Kim, J. H. Han, et al.2012. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug[J]. J. Am. Chem. Soc.,134 (30),12668-12674.
    [93]S. Santra, C. Kaittanis, O. J. Santiesteban, et al.2011. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy [J]. J. Am. Chem. Soc.,133 (41),16680-16688.
    [94]Y. C. Wang, F. Wang, T. M. Sun, et al.2011. Redox-Responsive Nanoparticles from the Single Disulfide Bond-Bridged Block Copolymer as Drug Carriers for Overcoming Multidrug Resistance in Cancer Cells[J]. Bioconjugate Chem.,22 (10),1939-1945.
    [95]S. R. MacEwan, D. J. Callahan and A. Chilkoti.2010. Stimulus-responsive macromolecules and nanoparticles for cancer drug delivery[J]. Nanomedicine,5 (5),793-806.
    [96]E. R. Gillies, T. B. Jonsson and J. M. Frechet.2004. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers[J]. J. Am. Chem. Soc.,126 (38),11936-11943.
    [97]E. S. Lee, Z. G. Gao and Y. H. Bae.2008. Recent progress in tumor pH targeting nanotechnology[J]. J. Control. Release,132 (3),164-170.
    [98]M. Murakami, H. Cabral, Y. Matsumoto, et al.2011. Improving drug potency and efficacy by nanocarrier-mediated subcellular targeting[J]. Sci. Transl. Med.,3 (64),64ra62.
    [99]S. Ganta, H. Devalapally, A. Shahiwala, et al.2008. A review of stimuli-responsive nanocarriers for drug and gene delivery[J]. J. Control. Release,126 (3),187-204.
    [100]W. Gao, J. M. Chan and O. C. Farokhzad.2010. pH-Responsive nanoparticles for drug delivery[J]. Mol. Pharm.,7 (6),1913-1920.
    [101]K. H. Min, J. H. Kim, S. M. Bae, et al.2010. Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy[J]. J. Control. Release,144 (2),259-266.
    [102]S. M. Lee, H. Chen, C. M. Dettmer, et al.2007. Polymer-caged lipsomes:a pH-responsive delivery system with high stability[J]. J. Am. Chem. Soc.,129 (49),15096-15097.
    [103]Y. L. Zhao, Z. Li, S. Kabehie, et al.2010. pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles[J]. J. Am. Chem. Soc.,132 (37),13016-13025.
    [104]Y. Bae, S. Fukushima, A. Harada, et al.2003. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:polymeric micelles that are responsive to intracellular pH change[J]. Angew. Chem. Int. Ed.,42 (38),4640-4643.
    [105]Y. Shen, Z. Zhou, M. Sui, et al.2010. Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery[J]. Nanomedicine,5 (8),1205-1217.
    [106]E. M. Bachelder, T. T. Beaudette, K. E. Broaders, et al.2008. Acetal-derivatized dextran:an acid-responsive biodegradable material for therapeutic applications[J]. J. Am. Chem. Soc., 130 (32),10494-10495.
    [107]C. C. Lee, E. R. Gillies, M. E. Fox, et al.2006. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas[J]. Proc. Natl. Acad. Sci. U. S. A.,103 (45),16649-16654.
    [108]C. C. Lee, A. T. Cramer, F. C. Szoka, Jr., et al.2006. An intramolecular cyclization reaction is responsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics of hydrazone carboxylate derivatives of doxorubicin[J]. Bioconjugate Chem.,17 (5), 1364-1368.
    [109]A. P. Griset, J. Walpole, R. Liu, et al.2009. Expansile nanoparticles:synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system[J]. J. Am. Chem. Soc.,131 (7),2469-2471.
    [110]Y. Lee, S. Fukushima, Y. Bae, et al.2007. A protein nanocarrier from charge-conversion polymer in response to endosomal pH[J]. J. Am. Chem. Soc.,129 (17),5362-5363.
    [111]C. C. Lee, J. A. MacKay, J. M. Frechet, et al.2005. Designing dendrimers for biological applications[J]. Nat. Biotechnol.,23 (12),1517-1526.
    [112]J. Z. Du, X. J. Du, C. Q. Mao, et al.2011. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery[J]. J. Am. Chem. Soc.,133 (44),17560-17563.
    [113]Y. Dai, P. Ma, Z. Cheng, et al.2012. Up-conversion cell imaging and pH-induced thermally controlled drug release from NaYF4/Yb3+/Er3+@hydrogel core-shell hybrid microspheres[J]. Acs Nano,6 (4),3327-3338.
    [114]N. Singh, A. Karambelkar, L. Gu, et al.2011. Bioresponsive mesoporous silica nanoparticles for triggered drug release[J]. J.Am. Chem. Soc.,133 (49),19582-19585.
    [115]M. H. Xiong, Y. Bao, X. Z. Yang, et al.2012. Lipase-sensitive polymeric triple-layered nanogel for "on-demand" drug delivery[J]. J. Am. Chem. Soc.,134 (9),4355-4362.
    [116]R. Tong, H. D. Hemmati, R. Langer, et al.2012. Photoswitchable nanoparticles for triggered tissue penetration and drug delivery[J]. J. Am. Chem. Soc.,134 (21),8848-8855.
    [117]Q. Yuan, Y. Zhang, T. Chen, et al.2012. Photon-manipulated drug release from a mesoporous nanocontainer controlled by azobenzene-modified nucleic acid[J]. Acs Nano,6 (7),6337-6344.
    [118]L. Sun, X. Ma, C. M. Dong, et al.2012. NIR-responsive and lectin-binding doxorubicin-loaded nanomedicine from Janus-type dendritic PAMAM amphiphiles[J]. Biomacromolecules,13 (11),3581-3591.
    [119]H. A. Meng, M. Xue, T. A. Xia, et al.2010. Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves[J]. J. Am. Chem. Soc., 132 (36),12690-12697.
    [120]F. Muhammad, M. Y. Guo, W. X. Qi, et al.2011. pH-Triggered Controlled Drug Release from Mesoporous Silica Nanoparticles via Intracelluar Dissolution of ZnO Nanolids[J]. J. Am. Chem Soc.,133 (23),8778-8781.
    [121]R. Liu, Y. Zhang, X. Zhao, et al.2010. pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker [J]. J. Am. Chem. Soc., 132(5),1500-1501.
    [122]Y. F. Zhu, J. L. Shi, W. H. Shen, et al.2005. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure[J]. Angew. Chem. Int. Ed.,44 (32),5083-5087.
    [123]C. Y. Lai, B. G. Trewyn, D. M. Jeftinija, et al.2003. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. J. Am. Chem. Soc.,125 (15), 4451-4459.
    [124]A. M. Sauer, A. Schlossbauer, N. Ruthardt, et al.2010. Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging[J]. Nano Lett.,10 (9),3684-3691.
    [125]H. Kim, S. Kim, C. Park, et al.2010. Glutathione-induced intracellular release of guests from mesoporous silica nanocontainers with cyclodextrin gatekeepers[J]. Adv. Mater.,22 (38),4280-4283.
    [126]Z. Luo, K. Y. Cai, Y. Hu, et al.2011. Mesoporous Silica Nanoparticles End-Capped with Collagen:Redox-Responsive Nanoreservoirs for Targeted Drug Delivery[J]. Angew. Chem. Int. Ed.,50 (3),640-643.
    [127]A. Bernardos, L. Mondragon, E. Aznar, et al.2010. Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides"[J]. Acs Nano,4 (11),6353-6368.
    [128]C. Park, H. Kim, S. Kim, et al.2009. Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests[J]. J. Am. Chem. Soc.,131 (46), 16614-16615.
    [129]P. D. Thornton and A. Heise.2010. Highly specific dual enzyme-mediated payload release from peptide-coated silica particles[J]. J. Am. Chem. Soc.,132 (6),2024-2028.
    [130]K. Patel, S. Angelos, W. R. Dichtel, et al.2008. Enzyme-responsive snap-top covered silica nanocontainers[J]. J. Am. Chem. Soc., 130 (8),2382-2383.
    [131]Q. Lin, Q. Huang, C. Li, et al.2010. Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process[J]. J. Am. Chem. Soc.,132 (31),10645-10647.
    [132]D. P. Ferris, Y. L. Zhao, N. M. Khashab, et al.2009. Light-operated mechanized nanoparticles[J]. J. Am. Chem. Soc.,131 (5),1686-1688.
    [133]J. L. Vivero-Escoto, Slowing, Ⅱ, C. W. Wu, et al.2009. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere[J]. J. Am. Chem. Soc.,131 (10),3462-3463.
    [134]N. G Liu, D. R. Dunphy, P. Atanassov, et al.2004. Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane[J]. Nano Lett.,4 (4), 551-554.
    [135]P. M. Peiris, L. Bauer, R. Toy, et al.2012. Enhanced delivery of chemotherapy to tumors using a multicomponent nanochain with radio-frequency-tunable drug release[J]. Acs Nano,6 (5),4157-4168.
    [136]A. Schlossbauer, S. Warncke, P. M. E. Gramlich, et al.2010. A Programmable DNA-Based Molecular Valve for Colloidal Mesoporous Silica[J]. Angew. Chem. Int. Ed.,49 (28), 4734-4737.
    [137]C. E. Chen, J. Geng, F. Pu, et al.2011. Polyvalent Nucleic Acid/Mesoporous Silica Nanoparticle Conjugates:Dual Stimuli-Responsive Vehicles for Intracellular Drug Delivery[J]. Angew. Chem. Int. Ed.,50 (4),882-886.
    [138]E. Climent, A. Bernardos, R. Martinez-Manez, et al.2009. Controlled delivery systems using antibody-capped mesoporous nanocontainers[J]. J. Am. Chem. Soc.,131 (39), 14075-14080.
    [139]Y. Zhao, B. G Trewyn, Slowing, Ⅱ, et al.2009. Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP[J]. J. Am. Chem. Soc.,131 (24),8398-8400.
    [140]C. L. Zhu, C. H. Lu, X. Y. Song, et al.2011. Bioresponsive controlled release using mesoporous silica nanoparticles capped with aptamer-based molecular gate[J]. J. Am. Chem. Soc.,133 (5),1278-1281.
    [141]C. R. Thomas, D. P. Ferris, J. H. Lee, et al.2010. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles[J]. J. Am. Chem. Soc.,132 (31),10623-10625.
    [142]S. D. Kong, W. Zhang, J. H. Lee, et al.2010. Magnetically vectored nanocapsules for tumor penetration and remotely switchable on-demand drug release[J]. Nano Lett.,10 (12), 5088-5092.
    [143]E. Ruiz-Hernandez, A. Baeza and M. Vallet-Regi.2011. Smart drug delivery through DNA/magnetic nanoparticle gates[J]. Acs Nano,5 (2),1259-1266.
    [144]B. E. Kim, T. Nevitt and D. J. Thiele.2008. Mechanisms for copper acquisition, distribution and regulation[J]. Nat. Chem. Biol.,4 (3),176-185.
    [145]R. Uauy, M. Olivares and M. Gonzalez.1998. Essentiality of copper in humans[J]. Am. J. Clin. Nutr.,67 (5),952s-959s.
    [146]B. Schleper and H. J. Stuerenburg.2001. Copper deficiency-associated myelopathy in a 45-year-old woman[J]. J. Neurol,248 (8),705-706.
    [147]G. Georgopoulos, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, P. J. Lioy.2001. Environmental copper:its dynamics and human exposure issues[J]. J. Toxicol. Environ. Health, Part B,4 (4),341-394.
    [148]B. P. Zietz, H. H. Dieter, M. Lakomek, et al.2003. Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply[J]. Sci. Total Environ.,302 (1-3),127-144.
    [149]R. J. Sundberg and R. B. Martin.1974. Interactions of Histidine and Other Imidazole Derivatives with Transition-Metal Ions in Chemical and Biological-Systems[J]. Chem. Rev., 74 (4),471-517.
    [150]P. Deschamps, P. P. Kulkarni, M. Gautam-Basak, et al.2005. The saga of copper(Ⅱ)-L-histidine[J]. Coord. Chem. Rev.,249 (9-10),895-909.
    [151]B. Sarkar.1999. Treatment of Wilson and menkes diseases[J]. Chem. Rev.,99 (9), 2535-2544.
    [152]L. C. Papadopoulou, C. M. Sue, M. M. Davidson, et al.1999. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene[J]. Nat. Genet.,23 (3),333-337.
    [153]G. L. Liang, H. J. Ren and J. H. Rao.2010. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells[J]. Nat. Chem.,2 (1),54-60.
    [154]G. L. Liang, J. Ronald, Y. X. Chen, et al.2011. Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents[J]. Angew. Chem. Int. Ed.,50 (28),6283-6286.
    [155]C. Y. Cao, Y. Y. Shen, J. D. Wang, et al.2013. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents[J]. Sci Rep,3 1024.
    [156]G Thomas.2002. Furin at the cutting edge:From protein traffic to embryogenesis and disease[J]. Nat. Rev. Mol. Cell Biol.,3 (10),753-766.
    [157]N. G. Seidah, R. Day, M. Marcinkiewicz, et al.1998. Precursor convertases:an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins[J]. Ann.NYAcad.Sci.,839 9-24.
    [158]C. Thacker and A. M. Rose.2000. A look at the Caenorhabditis elegans Kex2/subtilisin-like proprotein convertase family[J]. Bioessays,22 (6),545-553.
    [159]G M. Whitesides, J. P. Mathias and C. T. Seto.1991. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures[J]. Science,254 (5036),1312-1319.
    [160]J. M. Lehn.1990. Perspectives in Supramolecular Chemistry-from Molecular Recognition Towards Molecular Information-Processing and Self-Organization[J]. Angew. Chem. Int. Ed., 29(11),1304-1319.
    [161]L. A. Estroff and A. D. Hamilton.2004. Water gelation by small organic molecules[J]. Chem. Rev.,104 (3),1201-1217.
    [162]G. A. Silva, C. Czeisler, K. L. Niece, et al.2004. Selective differentiation of neural progenitor cells by high-epitope density nanofibers[J]. Science,303 (5662),1352-1355.
    [163]W. A. Petka, J. L. Harden, K. P. McGrath, et al.1998. Reversible hydrogels from self-assembling artificial proteins[J]. Science,281 (5375),389-392.
    [164]E. H. White, G. F. Field, W. D. Mcelroy, et al.1961. Structure and Synthesis of Firefly Luciferin[J]. J. Am. Chem. Soc.,83 (10),2402-2403.
    [165]H. J. Ren, F. Xiao, K. Zhan, et al.2009. A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins[J]. Angew. Chem. Int. Ed.,48 (51), 9658-9662.
    [166]K. Okada, H. Iio, I. Kubota, et al.1974. Firefly Bioluminescence.3. Conversion of Oxyluciferin to Luciferin in Firefly[J]. Tetrahedron Lett., (32),2771-2774.
    [167]K. Gomi and N. Kajiyama.2001. Oxyluciferin, a luminescence product of firefly luciferase, is enzymatically regenerated into luciferin[J]. J. Biol. Chem.,276 (39),36508-36513.
    [I]I. A. Koval, P. Gamez, C. Belle, et al.2006. Synthetic models of the active site of catechol oxidase:mechanistic studies[J]. Chem. Soc. Rev.,35 (9),814-840.
    [2]R. Uauy, M. Olivares and M. Gonzalez.1998. Essentiality of copper in humans[J]. Am. J. Clin. Nutr.,67 (5),952s-959s.
    [3]B. E. Kim, T. Nevitt and D. J. Thiele.2008. Mechanisms for copper acquisition, distribution and regulation[J]. Nat. Chem. Biol.,4 (3),176-185.
    [4]M. C. Linder and M. HazeghAzam.1996. Copper biochemistry and molecular biology[J]. Am. J. Clin. Nutr.,63 (5), S797-S811.
    [5]B. Schleper and H. J. Stuerenburg.2001. Copper deficiency-associated myelopathy in a 45-year-old woman[J]. J. Neurol.,248 (8),705-706.
    [6]X. W. Cao, W. Y. Lin and W. Wan.2012. Development of a near-infrared fluorescent probe for imaging of endogenous Cu+ in live cells[J]. Chem. Commun.,48 (50),6247-6249.
    [7]Z. C. Xu, S. J. Han, C. Lee, et al.2010. Development of off-on fluorescent probes for heavy and transition metal ions[J]. Chem. Commun.,46 (10),1679-1681.
    [8]D. W. Domaille, L. Zeng and C. J. Chang.2010. Visualizing Ascorbate-Triggered Release of Labile Copper within Living Cells using a Ratiometric Fluorescent Sensor[J]. J. Am. Chem. Soc.,132(4),1194-1195.
    [9]W. Y. Lin, L. Yuan, W. Tan, et al.2009. Construction of Fluorescent Probes Via Protection/Deprotection of Functional Groups:A Ratiometric Fluorescent Probe for Cu2+[J]. Chem.-Eur. J.,15 (4),1030-1035.
    [10]Y. Zhao, X. B. Zhang, Z. X. Han, et al.2009. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells[J]. Anal. Chem., 81 (16),7022-7030.
    [11]K. C. Ko, J. S. Wu, H. J. Kim, et al.2011. Rationally designed fluorescence 'turn-on' sensor for Cu2+[J]. Chem. Commun.,47 (11),3165-3167.
    [12]Y. Liu, X. Dong, J. Sun, et al.2012. Two-photon fluorescent probe for cadmium imaging in cells[J]. Analyst,137 (8),1837-1845.
    [13]T. P. Thomas, M. T. Myaing, J. Y. Ye, et al.2004. Detection and analysis of tumor fluorescence using a two-photon optical fiber probe[J]. Biophys. J.,86 (6),3959-3965.
    [14]S. M. Potter, C. M. Wang, P. A. Garrity, et al.1996. Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy [J]. Gene,173 (1 Spec No),25-31.
    [15]J. Jiang, H. W. Gu, H. L. Shao, et al.2008. Manipulation Bifunctional Fe3O4-Ag Heterodimer Nanoparticles for Two-Photon Fluorescence Imaging and Magnetic Manipulation[J]. Adv. Mater.,20 (23),4403-4407.
    [16]D. R. Larson, W. R. Zipfel, R. M. Williams, et al.2003. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science,300 (5624),1434-1436.
    [17]A. R. Clapp, T. Pons, I. L. Medintz, et al.2007. Two-photon excitation of quantum-dot-based fluorescence resonance energy transfer and its applications[J]. Adv. Mater.,19 (15), 1921-1926.
    [18]G. Georgopoulos, A. Roy, M. J. Yonone-Lioy, R. E. Opiekun, P. J. Lioy.2001. Environmental copper:its dynamics and human exposure issues[J]. J. Toxicol. Environ. Health, Part B,4 (4), 341-394.
    [19]B. P. Zietz, H. H. Dieter, M. Lakomek, et al.2003. Epidemiological investigation on chronic copper toxicity to children exposed via the public drinking water supply[J]. Sci. Total Environ.,302 (1-3),127-144.
    [20]A. M. Smith, M. C. Mancini and S. M. Nie.2009. BIOIMAGING Second window for in vivo imaging[J]. Nat. Nanotechnol.,4 (11),710-711.
    [21]K. Welsher, Z. Liu, S. P. Sherlock, et al.2009. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice[J]. Nat. Nanotechnol.,4 (11),773-780.
    [22]F. Helmchen and W. Denk.2005. Deep tissue two-photon microscopy[J]. Nat. Methods,2 (12),932-940.
    [23]B. Beauvoit, S. M. Evans, T. W. Jenkins, et al.1995. Correlation between the Light-Scattering and the Mitochondrial Content of Normal-Tissues and Transplantable Rodent Tumors[J]. Anal. Biochem.,226 (1),167-174.
    [24]C. H. Zong, K. L. Ai, G Zhang, et al.2011. Dual-Emission Fluorescent Silica Nanoparticle-Based Probe for Ultrasensitive Detection of Cu2+[J]. Anal. Chem.,83 (8), 3126-3132.
    [25]Q. Qu, A. W. Zhu, X. L. Shao, et al.2012. Development of a carbon quantum dots-based fluorescent Cu2+ probe suitable for living cell imaging[J]. Chem. Commun.,48 (44), 5473-5475.
    [26]X. L. Shao, H. Gu, Z. Wang, et al.2013. Highly Selective Electrochemical Strategy for Monitoring of Cerebral Cu2+Based on a Carbon Dot-TPEA Hybridized Surface[J]. Anal. Chem.,85(1),418-425.
    [27]Y. Zhou, S. X. Wang, K. Zhang, et al.2008. Visual detection of copper(Ⅱ) by azide-and alkyne-functionalized gold nanoparticles using click chemistry[J]. Angew. Chem., Int. Ed., 47 (39),7454-7456.
    [28]X. L. Chai, X. G Zhou, A. W. Zhu, et al.2013. A Two-Channel Ratiometric Electrochemical Biosensor for InVivo Monitoring of Copper Ions in a Rat Brain Using Gold Truncated Octahedral Microcages[J]. Angew. Chem., Int. Ed.,52 (31),8129-8133.
    [29]A. W. Zhu, Q. Qu, X. L. Shao, et al.2012. Carbon-Dot-Based Dual-Emission Nanohybrid Produces a Ratiometric Fluorescent Sensor for In Vivo Imaging of Cellular Copper Ions[J]. Angew. Chem., Int. Ed.,51 (29),7185-7189.
    [30]N. J. Robinson and D. R. Winge.2010. Copper Metallochaperones[J]. Annu. Rev. Biochem., 79537-562.
    [31]D. W. Domaille, E. L. Que and C. J. Chang.2008. Synthetic fluorescent sensors for studying the cell biology of metals[J]. Nat. Chem. Biol.,4 (3),168-175.
    [32]I. Bertini and A. Rosato.2008. Menkes disease[J]. Cell. Mol. Life Sci.,65 (1),89-91.
    [33]K. L. Haas and K. J. Franz.2009. Application of Metal Coordination Chemistry To Explore and Manipulate Cell Biology[J]. Chem. Rev.,109 (10),4921-4960.
    [34]A. C. Liu, D. C. Chen, C. C. Lin, et al.1999. Application of cysteine monolayers for electrochemical determination of sub-ppb copper(Ⅱ)[J]. Anal. Chem.,71 (8),1549-1552.
    [35]M. Boiocchi, L. Fabbrizzi, M. Licchelli, et al.2003. A two-channel molecular dosimeter for the optical detection of copper(ii)[J]. Chem. Commun., (15),1812-1813.
    [36]Y. Zheng, J. Orbulescu, X. Ji, et al.2003. Development of Fluorescent Film Sensors for the Detection of Divalent Copper[J]. J. Am. Chem. Soc.,125 (9),2680-2686.
    [37]H. S. Jung, P. S. Kwon, J. W. Lee, et al.2009. Coumarin-Derived Cu2+-Selective Fluorescence Sensor:Synthesis, Mechanisms, and Applications in Living Cells[J]. J. Am. Chem. Soc.,131 (5),2008-2012.
    [38]Y. Zhao, X. B. Zhang, Z. X. Han, et al.2009. Highly Sensitive and Selective Colorimetric and Off-On Fluorescent Chemosensor for Cu2+ in Aqueous Solution and Living Cells[J]. Anal. Chem.,81 (16),7022-7030.
    [39]S. Sirilaksanapong, M. Sukwattanasinitt and P. Rashatasakhon.2012.1,3,5-Triphenylbenzene fluorophore as a selective Cu2+ sensor in aqueous media[J]. Chem. Commun.,48 (2), 293-295.
    [40]J. L. Yao, K. Zhang, H. J. Zhu, et al.2013. Efficient Ratiometric Fluorescence Probe Based on Dual-Emission Quantum Dots Hybrid for On-Site Determination of Copper Ions[J]. Anal. Chem.,85 (13),6461-6468.
    [41]N. Kumar, V. Bhalla and M. Kumar.2014. Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions[J]. Analyst,139 (3),543-558.
    [42]J. F. Wu and E. A. Boyle.1997. Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS[J]. Anal. Chem.,69 (13),2464-2470.
    [43]S. Caroli, A. Alimonti, F. Petrucci, et al.1991. Online Preconcentration and Determination of Trace-Elements by Flow-Injection Inductively Coupled Plasma Atomic Emission-Spectrometry[J]. Anal. Chim. Acta,248 (1),241-249.
    [44]S. Tokalioglu, S. Kartal and L. Elci.2000. Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure[J]. Anal. Chim. Acta,413 (1-2),33-40.
    [45]B. Y. Deng, Y. Z. Wang, P. C. Zhu, et al.2010. Study of the binding equilibrium between Zn(II) and HSA by capillary electrophoresis-inductively coupled plasma optical emission spectrometry[J]. Anal. Chim. Acta,683 (1),58-62.
    [46]S. Lee, I. Choi, S. Hong, et al.2009. Highly selective detection of Cu2+ utilizing specific binding between Cu-demetallated superoxide dismutase 1 and the Cu2+ ion via surface plasmon resonance spectroscopy[J]. Chem. Commun., (41),6171-6173.
    [47]S. Sarkar, M. Pradhan, A. K. Sinha, et al.2012. Selective and Sensitive Recognition of Cu2+ in an Aqueous Medium:A Surface-Enhanced Raman Scattering (SERS)-Based Analysis with a Low-Cost Raman Reporter[J]. Chem.-Eur. J.,18 (20),6335-6342.
    [48]R. Kramer.1998. Fluorescent Chemosensors for Cu2+ Ions:Fast, Selective, and Highly Sensitive[J]. Angew. Chem. Int. Ed.,37 (6),772-773.
    [49]J. Du, M. Hu, J. Fan, et al.2012. Fluorescent chemodosimeters using "mild" chemical events for the detection of small anions and cations in biological and environmental media[J]. Chem. Soc. Rev.,41 (12),4511-4535.
    [50]L. Feng, H. Li, Y. Lv, et al.2012. Colorimetric and "turn-on" fluorescent determination of Cu2+ ions based on rhodamine-quinoline derivative[J]. Analyst,137 (24),5829-5833.
    [51]J. Jo, H. Y. Lee, W. Liu, et al.2012. Reactivity-based detection of copper(II) ion in water: oxidative cyclization of azoaromatics as fluorescence turn-on signaling mechanism[J]. J. Am. Chem. Soc.,134(38),16000-16007.
    [52]C. F. Monson, X. Cong, A. D. Robison, et al.2012. Phosphatidylserine Reversibly Binds Cu2+ with Extremely High Affinity [J]. J. Am. Chem. Soc.,134 (18),7773-7779.
    [53]A. Ganguly, B. K. Paul, S. Ghosh, et al.2013. Selective fluorescence sensing of Cu(ii) and Zn(ii) using a new Schiff base-derived model compound:naked eye detection and spectral deciphering of the mechanism of sensory action[J]. Analyst,138 (21),6532-6541.
    [54]S. Sarkar, S. Roy, A. Sikdar, et al.2013. A pyrene-based simple but highly selective fluorescence sensor for Cu(2+) ions via a static excimer mechanism[J]. Analyst,138 (23), 7119-7126.
    [55]J. Liu and Y. Lu.2007. A DNAzyme catalytic beacon sensor for paramagnetic Cu2+ ions in aqueous solution with high sensitivity and selectivity[J]. J. Am. Chem. Soc.,129 (32), 9838-9839.
    [56]J. W. Liu, Z. H. Cao and Y. Lu.2009. Functional Nucleic Acid Sensors[J]. Chem. Rev.,109 (5),1948-1998.
    [57]Z. Y. Fang, J. Huang, P. C. Lie, et al.2010. Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity[J]. Chem. Commun.,46 (47),9043-9045.
    [58]F. A. Settle,1997.in Handbook of Instrumental Techniques for Analytical Chemistry, Prentice Hall, New Jersey.
    [59]K. A. Stephenson, J. Zubieta, S. R. Banerjee, et al.2004. A new strategy, for the preparation of peptide-targeted radiopharmaceuticals based on ion of peptide-targeted an Fmoc-lysine-derived single amino acid chelate (SAAC). Automated solid-phase synthesis, NMR characterization, and in vitro screening of fMLF(SAAC)G and fMLF[(SAAC-Re(CO)(3))(+)]G[J]. Bioconjugate Chem.,15 (1),128-136.
    [60]K. A. Stephenson, S. R. Banerjee, T. Besanger, et al.2004. Bridging the gap between in vitro and in vivo imaging:Isostructural Re and Tc-99m complexes for correlating fluorescence and radioimaging studies[J]. J. Am. Chem. Soc.,126 (28),8598-8599.
    [61]X. Lou, L. Zhang, J. Qin, et al.2010. Colorimetric sensing of alpha-amino acids and its application for the "label-free" detection of protease[J]. Langmuir,26 (3),1566-1569.
    [62]L. An, L. Liu and S. Wang.2009. Label-free, homogeneous, and fluorescence "turn-on" detection of protease using conjugated polyelectrolytes[J]. Biomacromolecules,10 (2), 454-457.
    [63]R. J. Sundberg and R. B. Martin.1974. Interactions of Histidine and Other Imidazole Derivatives with Transition-Metal Ions in Chemical and Biological-Systems[J]. Chem. Rev., 74 (4),471-517.
    [64]P. Deschamps, P. P. Kulkarni, M. Gautam-Basak, et al.2005. The saga of copper(Ⅱ)-L-histidine[J]. Coord. Chem. Rev.,249 (9-10),895-909.
    [65]X. H. Li, H. M. Ma, S. Y. Dong, et al.2004. Selective labeling of histidine by a designed fluorescein-based probe[J]. Talanta,62 (2),367-371.
    [66]X. H. Li, H. M. Ma, L. H. Nie, et al.2004. A novel fluorescent probe for selective labeling of histidine[J]. Anal. Chim. Acta,515 (2),255-260.
    [67]M. A. Hortala, L. Fabbrizzi, N. Marcotte, et al.2003. Designing the selectivity of the fluorescent detection of amino acids:A chemosensing ensemble for histidine[J]. J. Am. Chem. Soc.,125(1),20-21.
    [68]B. Sarkar.1999. Treatment of Wilson and menkes diseases[J]. Chem. Rev.,99 (9), 2535-2544.
    [69]L. C. Papadopoulou, C. M. Sue, M. M. Davidson, et al.1999. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene[J]. Nat. Genet.,23 (3),333-337.
    [70]M. Huang, Z. Ma, E. Khor, et al.2002. Uptake of FTTC-Chitosan Nanoparticles by A549 Cells[J]. Pharmaceut Res,19 (10),1488-1494.
    [71]Y. M. Yang, Q. Zhao, W. Feng, et al.2013. Luminescent Chemodosimeters for Bioimaging[J]. Chem. Rev.,113 (1),192-270.
    [72]X. M. He, N. Y. Zhu and V. W. W. Yam.2009. Synthesis, Characterization, Structure, and Selective Cu2+ Sensing Studies of an Alkynylgold(Ⅰ) Complex Containing the Dipicolylamine Receptor[J]. Organometallics,28 (13),3621-3624.
    [73]I. R. Loftin, N. J. Blackburn and M. M. McEvoy.2009. Tryptophan Cu(I)-pi interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF[J]. J. Biol. Inorg. Chem.,14 (6),905-912.
    [74]J. T. Rubino, M. P. Chenkin, M. Keller, et al.2011. A comparison of methionine, histidine and cysteine in copper(Ⅰ)-binding peptides reveals differences relevant to copper uptake by organisms in diverse environments[J]. Metallomics,3 (1),61-73.
    [75]L. Hong and J. D. Simon.2011. Insights into the thermodynamics of copper association with amyloid-beta, alpha-synuclein and prion proteins[J]. Metallomics,3 (3),262-266.
    [76]D. Valensin, F. Camponeschi, M. Luczkowski, et al.2011. The role of His-50 of alpha-synuclein in binding Cu(Ⅱ):pH dependence, speciation, thermodynamics and structure[J]. Metallomics,3 (3),292-302.
    [77]M. Remelli, D. Valensin, L. Toso, et al.2012. Thermodynamic and spectroscopic investigation on the role of Met residues in Cu-II binding to the non-octarepeat site of the human prion protein[J]. Metallomics,4 (8),794-806.
    [78]Y. You, Y. Han, Y. M. Lee, et al.2011. Phosphorescent Sensor for Robust Quantification of Copper(Ⅱ) Ion[J]. J. Am. Chem. Soc.,133 (30),11488-11491.
    [79]M. X. Yu, M. Shi, Z. G Chen, et al.2008. Highly sensitive and fast responsive fluorescence turn-on chemodosimeter for Cu(2+) and its application in live cell imaging[J]. Chem.-Eur. J., 14 (23),6892-6900.
    [1]M. Fernandez-Suarez and A. Y. Ting.2008. Fluorescent probes for super-resolution imaging in living cells[J]. Nat. Rev. Mol. Cell Biol.,9 (12),929-943.
    [2]R. Y. Tsien.1998. The green fluorescent protein[J]. Annu. Rev. Biochem..67 509-544.
    [3]B. Seiwert, H. Hayen and U. Karst.2008. Differential labeling of free and disulfide-bound thiol functions in proteins[J]. J. Am. Soc. Mass Spectrom.,19 (1),1-7.
    [4]V. Tolmachev, M. Altai, M. Sandstrom, et al.2011. Evaluation of a maleimido derivative of NOTA for site-specific labeling of affibody molecules[J]. Bioconjugate Chem.,22 (5), 894-902.
    [5]M. Depuydt, S. E. Leonard, D. Vertommen, et al.2009. A periplasmic reducing system protects single cysteine residues from oxidation[J]. Science,326 (5956),1109-1111.
    [6]J. Nicolas, E. Khoshdel and D. M. Haddleton.2007. Bioconjugation onto biological surfaces with fluorescently labeled polymers[J]. Chem. Commun., (17),1722-1724.
    [7]M. W. Jones, G Mantovani, S. M. Ryan, et al.2009. Phosphine-mediated one-pot thiol-ene "click" approach to polymer-protein conjugates[J]. Chem. Commun., (35),5272-5274.
    [8]E. Saxon and C. R. Bertozzi.2000. Cell surface engineering by a modified Staudinger reaction[J]. Science,287 (5460),2007-2010.
    [9]S. S. van Berkel, M. B. van Eldijk and J. C. M. van Hest.2011. Staudinger Ligation as a Method for Bioconjugation[J]. Angew. Chem. Int. Ed.,50 (38),8806-8827.
    [10]A. S. Cohen, E. A. Dubikovskaya, J. S. Rush, et al.2010. Real-Time Bioluminescence Imaging of Glycans on Live Cells[J]. J. Am. Chem. Soc.,132 (25),8563-8565.
    [11]H. C. Kolb, M. G Finn and K. B. Sharpless.2001. Click chemistry:Diverse chemical function from a few good reactions[J]. Angew. Chem. Int. Ed.,40 (11),2004-2021.
    [12]J. Guo, S. Wang, N. Dai, et al.2011. Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging[J]. Proc. Nat1. Acad. Sci. U. S. A.,108 (9),3493-3498.
    [13]Y. Zeng, T. N. C. Ramya, A. Dirksen, et al.2009. High-efficiency labeling of sialylated glycoproteins on living cells[J]. Nat. Methods,6 (3),207-209.
    [14]L. K. Mahal, K. J. Yarema and C. R. Bertozzi.1997. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis[J]. Science,276 (5315),1125-1128.
    [15]V. K. Kodali, S. A. Gannon, S. Paramasivam, et al.2011. A novel disulfide-rich protein motif from avian eggshell membranes[J]. Plos One,6 (3), e18187.
    [16]A. A. Meratan, A. Ghasemi and M. Nemat-Gorgani.2011. Membrane integrity and amyloid cytotoxicity:a model study involving mitochondria and lysozyme fibrillation products[J]. J. Mol. Biol.,409 (5),826-838.
    [17]J. Xie, M. Qin, Y. Cao, et al.2011. Mechanistic insight of photo-induced aggregation of chicken egg white lysozyme:the interplay between hydrophobic interactions and formation of intermolecular disulfide bonds[J]. Proteins,79 (8),2505-2516.
    [18]G Rabbani, E. Ahmad, N. Zaidi, et al.2011. pH-dependent conformational transitions in conalbumin (ovotransferrin), a metalloproteinase from hen egg white[J]. Cell Biochem. Biophys.,61 (3),551-560.
    [19]Y. Zhang, G Wen, Y. Zhou, et al.2007. Development and analytical application of an uric acid biosensor using an uricase-immobilized eggshell membrane[J]. Biosens. Bioelectron.,22 (8),1791-1797.
    [20]J. Alegre-Cebollada, P. Kosuri, J. A. Rivas-Pardo, et al.2011. Direct observation of disulfide isomerization in a single protein[J]. Nat. Chem.,3 (11),882-887.
    [21]J. M. Thornton.1981. Disulfide Bridges in Globular-Proteins[J]. J. Mol. Biol.,151 (2), 261-287.
    [22]H. F. Gilbert.1995. Thiol/disulfide exchange equilibria and disulfide bond stability[J]. Methods Enzymol.,2518-28.
    [23]M. E. B. Smith, F. F. Schumacher, C. P. Ryan, et al.2010. Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides[J]. J. Am. Chem. Soc.,132 (6),1960-1965.
    [24]J. M. Chalker, G. J. Bernardes, Y. A. Lin, et al.2009. Chemical modification of proteins at cysteine:opportunities in chemistry and biology[J]. Chem.-Asian J.,4 (5),630-640.
    [25]O. Shimoni, A. Postma, Y. Yan, et al.2012. Macromolecule functionalization of disulfide-bonded polymer hydrogel capsules and cancer cell targeting[J]. ACS Nano,6 (2), 1463-1472.
    [26]J. L. Vanderhooft, B. K. Mann and G D. Prestwich.2007. Synthesis and characterization of novel thiol-reactive poly(ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials[J]. Biomacromolecules,8 (9),2883-2889.
    [27]B. Seiwert and U. Karst.2007. Simultaneous LC/MS/MS determination of thiols and disulfides in urine samples based on differential labeling with ferrocene-based maleimides[J]. Anal. Chem.,79 (18),7131-7138.
    [28]P. Schelte, C. Boeckler, B. Frisch, et al.2000. Differential reactivity of maleimide and bromoacetyl functions with thiols:application to the preparation of liposomal diepitope constructs[J]. Bioconjugate Chem.,11 (1),118-123.
    [29]R. A. Bednar.1990. Reactivity and pH dependence of thiol conjugation to N-ethylmaleimide: detection of a conformational change in chalcone isomerase[J]. Biochemistry,29 (15), 3684-3690.
    [30]J. D. Gregory.1955. The Stability of N-Ethylmaleimide and Its Reaction with Sulfhydryl Groups[J]. J. Am. Chem. Soc.,77 (14),3922-3923.
    [31]G. L. Liang, H. J. Ren and J. H. Rao.2010. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells[J]. Nat. Chem.,2 (1),54-60.
    [32]G L. Liang, J. Ronald, Y. X. Chen, et al.2011. Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents[J]. Angew. Chem. Int. Ed.,50 (28),6283-6286.
    [33]C. Y. Cao, Y. Y. Shen, J. D. Wang, et al.2013. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents [J]. Sci Rep,3
    [34]E. H. White, H. Worther, H. H. Seliger, et al.1966. Amino Analogs of Firefly Luciferin and Biological Activity Thereof[J]. J. Am. Chem. Soc.,88 (9),2015-2019
    [I]A. Persidis.1999. Cancer multidrug resistance[J]. Nat. Biotechnol.,17 (1),94-95.
    [2]M. M. Gottesman, T. Fojo and S. E. Bates.2002. Multidrug resistance in cancer:Role of ATP-dependent transporters[J]. Nat. Rev. Cancer,2 (1),48-58.
    [3]G Szakacs, J. K. Paterson, J. A. Ludwig, et al.2006. Targeting multidrug resistance in cancer[J]. Nat. Rev. Drug Discovery,5 (3),219-234.
    [4]Y. A. Luqmani.2005. Mechanisms of Drug Resistance in Cancer Chemotherapy[J]. Med. Princ. Pract,14 35-48.
    [5]S. M. Weis and D. A. Cheresh.2011. Tumor angiogenesis:molecular pathways and therapeutic targets[J]. Nat. Med.,17 (11),1359-1370.
    [6]D. Peer, J. M. Karp, S. Hong, et al.2007. Nanocarriers as an emerging platform for cancer therapy[J]. Nat. Nanotechnol.,2 (12),751-760.
    [7]V. Wagner, A. Dullaart, A. K. Bock, et al.2006. The emerging nanomedicine landscape[J]. Nat. Biotechnol.,24 (10),1211-1217.
    [8]W. Chen, N. F. Xu, L. G. Xu, et al.2010. Multifunctional Magnetoplasmonic Nanoparticle Assemblies for Cancer Therapy and Diagnostics (Theranostics)[J]. Macromol. Rapid Commun.,31 (2),228-236.
    [9]B. Pelaz, S. Jaber, D. J. de Aberasturi, et al.2012. The State of Nanoparticle-Based Nanoscience and Biotechnology:Progress, Promises, and Challenges[J]. Acs Nano,6 (10), 8468-8483.
    [10]O. Pillai, A. B. Dhanikula and R. Panchagnula.2001. Drug delivery:an odyssey of 100 years[J]. Curr. Opin. Chem. Biol.,5 (4),439-446.
    [11]H. Rosen and T. Abribat.2005. The rise and rise of drug delivery[J]. Nat. Rev. Drug Discovery,4 (5),381-385.
    [12]E. R. Balmayor, H. S. Azevedo and R. L. Reis.2011. Controlled Delivery Systems:From Pharmaceuticals to Cells and Genes[J]. Pharmaceut Res,28 (6),1241-1258.
    [13]T. M. Allen and P. R. Cullis.2004. Drug delivery systems:Entering the mainstream[J]. Science,303 (5665),1818-1822.
    [14]C. R. Lowe.2000. Nanobiotechnology:the fabrication and applications of chemical and biological nanostructures[J]. Curr. Opin. Struct. Biol.,10 (4),428-434.
    [15]A. D. Bangham and R. W. Home.1964. Negative Staining of Phospholipids and Their Structural Modification by Surface-Active Agents as Observed in the Electron Microscope[J]. J. Mol. Biol.,8660-668.
    [16]P. Couvreur, P. Tulkens, M. Roland, et al.1977. Nanocapsules:a new type of lysosomotropic carrier[J]. FEBS Lett.,84 (2),323-326.
    [17]J. Kreuter and P. P. Speiser.1976. Invitro Studies of Poly(Methyl Methacrylate) Adjuvants[J]. J. Pharm. Sci.,65 (11),1624-1627.
    [18]V. R. Devadasu, V. Bhardwaj and M. N. Kumar.2013. Can controversial nanotechnology promise drug delivery?[J]. Chem. Rev.,113 (3),1686-1735.
    [19]B. Chen, Q. Sun, X. Wang, et al.2008. Reversal in multidrug resistance by magnetic nanoparticle of Fe3O4 loaded with adriamycin and tetrandrine in K562/A02 leukemic cells[J]. Int. J. Nanomed.,3 (2),277-286.
    [20]Z. Huang and Y. Huang.2005. The change of intracellular pH is involved in the cisplatin-resistance of human lung adenocarcinoma A549/DDP cells[J]. Cancer Invest.,23 (1), 26-32.
    [21]N. Dos Santos, D. Waterhouse, D. Masin, et al.2005. Substantial increases in idarubicin plasma concentration by liposome encapsulation mediates improved antitumor activity[J]. J. Control. Release,105 (1-2),89-105.
    [22]A. Lamprecht and J. P. Benoit.2006. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibiltion[J]. J. Control. Release, 112 (2),208-213.
    [23]A. C. deVerdiere, C. Dubernet, F. Nemati, et al.1997. Reversion of multidrug resistance with polyalkylcyanoacrylate nanoparticles:Towards a mechanism of action[J]. Br. J. Cancer,76 (2),198-205.
    [24]L. E. van Vlerken, Z. F. Duan, M. V. Seiden, et al.2007. Modulation of intracellular ceramide using polymeric nanoparticles to overcome multidrug resistance in cancer[J]. Cancer Res.,67 (10),4843-4850.
    [25]H. L. Wong, R. Bendayan, A. M. Rauth, et al.2006. Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid Hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer[J]. J. Control. Release,116 (3),275-284.
    [26]M. E. Kooi, V. C. Cappendijk, K. B. J. M. Cleutjens, et al.2003. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging[J]. Circulation,107 (19),2453-2458.
    [27]P. Cozzi, N. Mongelli and A. Suarato.2004. Recent anticancer cytotoxic agents[J]. Curr. Med. Chem.,4 (2),93-121.
    [28]G Minotti, P. Menna, E. Salvatorelli, et al.2004. Anthracyclines:molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity[J]. Pharmacol. Rev.,56 (2),185-229.
    [29]E. A. Perez.2009. Microtubule inhibitors:Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance[J]. Mol. Cancer Ther.,8 (8), 2086-2095.
    [30]W. M. Fan, M. H. Sui and Y. Huang.2004. Glucocorticoids selectively inhibit paclitaxel-induced apoptosis:Mechanisms and its clinical impact[J]. Curr. Med. Chem.,11 (4),403-411.
    [31]I. Ojima, J. Chen, L. Sun, et al.2008. Design, synthesis, and biological evaluation of new-generation taxoids[J]. J. Med. Chem.,51 (11),3203-3221.
    [32]G L. Liang, H. J. Ren and J. H. Rao.2010. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells[J]. Nat. Chem.,2 (1),54-60.
    [33]G. L. Liang, J. Ronald, Y. X. Chen, et al.2011. Controlled Self-Assembling of Gadolinium Nanoparticles as Smart Molecular Magnetic Resonance Imaging Contrast Agents[J]. Angew. Chem. Int. Ed.,50 (28),6283-6286.
    [34]C. Y. Cao, Y. Y. Shen, J. D. Wang, et al.2013. Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents[J]. Sci Rep,3 1024.
    [35]E. H. White, H. Worther, H. H. Seliger, et al.1966. Amino Analogs of Firefly Luciferin and Biological Activity Thereof[J]. J. Am. Chem. Soc.,88 (9),2015-2019.
    [36]Y. Gao, Y. Kuang, Z. F. Guo, et al.2009. Enzyme-Instructed Molecular Self-assembly Confers Nanofibers and a Supramolecular Hydrogel of Taxol Derivative[J]. J. Am. Chem. Soc.,131 (38),13576-13577.
    [37]F. Dosio, P. Brusa, P. Crosasso, et al.1997. Preparation, characterization and properties in vitro and in vivo of a paclitaxel-albumin conjugate[J]. J. Control. Release,47 (3),293-304.
    [38]Y. Luo, N. J. Bernshaw, Z. R. Lu, et al.2002. Targeted delivery of doxorubicin by HPMA copolymer-hyaluronan bioconjugates[J]. Pharmaceut Res,19 (4),396-402.
    [39]S. J. Zhu, M. H. Hong, L. H. Zhang, et al.2010. PEGylated PAMAM Dendrimer-Doxorubicin Conjugates:In Vitro Evaluation and In Vivo Tumor Accumulation[J]. Pharmaceut Res,27 (1),161-174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700