基于性能的抗冰导管架结构风险设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于性能的结构设计是使设计出的结构在未来的灾害荷载下能够维持所要求的性能水平,它要求在结构设计中从以往只注重结构的安全,向全面注重结构的性能、安全、经济等诸多方面发展。针对我国渤海边际油田抗冰导管架平台设计中出现的问题—基于极端静冰荷载,没有考虑冰激振动带来的巨大风险。本文结合“863”国家高技术研究发展计划“新型平台抗冰振技术”(编号2001AA602015)项目,对边际油田抗冰导管架结构进行基于性能的风险设计,建立了柔性抗冰结构的失效模式,即设计准则,并提出了相关判据;基于投资—效益准则进行海洋平台抗冰振设计,将此转化为以结构整个寿命周期内总费用最小为目标函数的结构最优设计问题。本文研究内容包括如下几个方面:
     第一章介绍了本研究的背景、意义,回顾了边际油田抗冰结构设计思想的发展概况,概括了抗冰结构动力分析与优化设计的研究状况以及本文的研究工作。
     第二章从投资-效益准则、结构寿命周期内总费用评估、初始造价评估、结构失效损失值估计等方面,对基于性能的抗冰导管架结构设计理论中的有关问题进行了讨论,认为抗冰结构的动力分析及失效模式,即设计准则是基于性能设计的瓶颈。
     第三章基于现场原型试验,对取得的冰荷载研究成果进行了归纳,并且通过对渤海辽东湾抗冰结构及上部设施的实时测量,进一步明确冰激振动对边际油田抗冰导管架结构的影响。本章研究为抗冰结构性能设计的失效模式及结构动力分析提供可靠的理论基础。
     第四章基于多年现场冰与结构作用观测以及冰荷载的研究成果,明确了冰激振动对抗冰导管架直立结构和锥体结构的影响,即冰致抗冰结构动力放大明显。通过对失效构件的力学分析、春季检修法兰松动统计、法兰松动失效机理解释及室内试验,进一步论证了渤海石油柔性抗冰结构的动力失效模式,并确定了各种失效模式的失效判据。分析结果表明,渤海特殊的环境条件及石油分布决定了渤海导管架平台为典型的柔性抗冰结构;冰振不仅可以引起显著的管结点疲劳应力;还可以引起较大的甲板加速度响应,危害平台上部管线的安全,降低作业人员的工作效率。
     第五章基于前一章节对抗冰结构失效模式的分析,建立了冰激振动下结构的动力失效量化分析方法。包括基于监测的抗冰结构疲劳寿命估算、冰激振动对作业人员的风险评估、以及冰激抗冰平台上部管线系统的振动分析。本章研究弥补了抗冰结构设计和安全评估中忽略冰激振动的不足,很大程度上促进了现役抗冰平台在冰激振动下的安全评估,为形成更好的平台失效标准创造良好的理论基础。
     第六章针对抗冰海洋平台不同类型的失效模式,提出了相应的可靠度计算方法。首先,利用Monte-Carlo随机抽样,通过对大量样本统计分析,得到了冰区导管架海洋平台结构整体抗力及极值冰力响应的概率统计,在此基础上提出了冰区海洋平台整体可靠度分析的高效近似算法。其次,采用首次超越破坏机制来研究海洋平台冰振动力可靠性问题;最后,结合现有的冰疲劳环境荷载及冰力谱函数,提出了相对冰速、冰厚随机冰载的等效应力幅值的近似计算方法,进行疲劳寿命及可靠性分析。本章的研究是基于性能的抗冰结构风险设计中的基本工作。
     第七章基于投资—效益准则进行海洋平台抗冰振设计,将此转化为以结构整个寿命周期内总费用最小为目标函数的结构最优设计问题。确定了冰区海洋平台全寿命总费用的评估模型;考虑了抗冰平台结构多种类型的性能要求(结构、设备、人员),建立极端冰荷载和动冰荷载下各种失效模式的损失值评估方法。基于先前建立的抗冰结构各种失效模式的失效概率计算,以渤海某抗冰平台为例,实现了全寿命总费用最小的抗冰海洋平台优化设计。结果表明,基于投资-效益准则的风险设计模型对冰区海洋平台最优设计是可行的,并且与基于规范的静力设计和考虑动力的最优设计相比更加合理。
     最后,对全文工作进行总结,并提出了需要进一步研究的内容。
Performance-based design is a new concept and methodology for seismic engineering in recent years. The reasonable design is to consider structural performance, safety, economy, etc. Cost - effectiveness criterion and "individuation" performance of ice-resistant platforms are critical principle in performance-based design, considering not only engineering technology factors but also economical, social and political consequences. In order to improve the original design of ice-resistant jacket structures, only based on extrenme static ice load and not considering the significant risks induced by ice vibrations, in the marginal oil field of Bohai Sea, with financial supports of the National high-tech research development project (No. 2001AA602015), a study on performance based risk design research of ice-resistant jacket structures is conducted in this paper. The major contents are summarized as follows:
     In section 1, the history of design idea of ice-resistant structures in marginal oil field, the background and aim of this paper are introduced and the main work is drawing out.
     In section 2, from cost-effectiveness, life-cycle cost model, initial cost, and damage costs, some relevant questions of performance-based design of ice-resistant jacket structures are discussed.
     In section 3, based on the full-scale field tests, the current achievements of ice load are summarized, and the affection of ice-resistant structures induced by ice vibrations is established. This research provides reliable theory basis for failure modes and dynamic analysis in performance-based design of ice-resistant jacket structures.
     In section 4, based on the full-scale field tests and ice load research, it is pointed out that the phenomenon of dynamic magnifying is obvious on both of vertical structures and conical structures. The failure modes analysis for ice-resistant platforms in Bohai Bay is discussed and the evaluation criteria are given from the monitoring information, numerical simulation, vibration experimentation, etc. The results indicate that under extreme static ice load the safety reserves of ice-resistant jacket platforms are greater, and the structures could withstand the push-over ice force. But the ice-induced vibrations not only cause significant cyclical stress of tube nodes but also great acceleratory response, which can endanger the pipeline systems on the platform and discomfort the crew members, even affecting work efficiency.
     In section 5, based on the failure modes analysis in the pre-chapter, failure quantization evaluation of the ice-resistant structure induced by ice vibrations is built, including fatigue life estimation based on the data monitored, risk assesment of crew member induced by dynamic ice, dynamic response analysis of pipeline system exposure to ice-induced vibration on offshore platforms. This work implements shortages of ice-resistant structure design and risk assesment.
     In section 6, a central issue in performance based design is different reliability analysis, such as the global reliability under extreme ice load, structure dynamic reliability and fatigue life induced by ice vibration. Fistly, the statistical properties of the global resistance and extreme responses of the jacket platforms in Bohai Bay are studied, considering the randomness of ice load, dead load, steel elastic modulus, yield strength and structural member dimensions. Then, an efficient approximate method of the global reliability analysis for the offshore platforms is provided, which converts the implicit nonlinear performance function in the conventional reliability analysis to linear explicit one. Secondly, dynamic reliability based on fist passage breakage mechanism is analyzed. Lastly, based on ice fatigue load and ice force spectrum, the approximate explicit formula of nodes stress with respect to the ice velocity and thickness is established. The fatigue life includes two stages, crack growth and propagation, whose time -dependent reliabilities are analyzed based on the S-N formula and Paris formula, considering the resistance degradation of tubular joints.
     In section 7, the optimum design model of minimization expected lifecycle cost for ice-resistant platforms based on cost-effectiveness criterion is proposed. Multiple performance demands, such as structure, facilities and crew members, associated failure judgement criterion, costs of construction, consequences of structural failure modes including damage, revenue loss, death and injury as well as discounting cost over time are considered. In order to demonstrate the life cycle cost-effectiveness for the design of ice-resistant platforms, illustrative design example of a typical platform against ice loads in Bohai Sea is discussed. The optimal design is proposed and assessed from the generation of cost/benefit relationships. From the result of the numerical investigation, it may be positively stated that the life cycle cost-effective optimum design model proposed will lead to a more rational, economical and safer design compared with the conventional static design according to standard demand and the optimum design only considering dynamic demand.
引文
[1]曾恒一.我国海洋石油在创新中发展.船舶工业技术经济信息,2000,187:23-29.
    [2]陈惠民.加快技术创新,促进我国海洋工程开发.中国海洋平台,1999,14(3):4-8.
    [3]黄新生.滩海油田开发中海工技术发展问题思考(上)石油规划设计,1996,No.6:9-12.
    [4]黄新生.滩海油田开发中海工技术发展问题思考(下)石油规划设计,1997,No.1:10-12.
    [5]黄新生.轻型平台风险与经济性关系.石油规划设计,1997,N0.4:9-11.
    [6]黄新生.海洋简易平台.石油规划设计.1997,No.5:39-41.
    [7]API RP 2N.Recommended practice for planning,designing,and constructing fixed offshore structures in ice environments.1988.
    [8]API RP 2A.Recommended practice for planning,designing,and constructing fixed offshore structures.1991.
    [9]中华人民共和国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法—工作应力设计法,SY 10030-2003,2004.
    [10]DNV.Rules for the design,construction,and inspection of fixed offshore structures.1977.
    [11]曾恒一.影响我国海洋油气开发的海洋灾害.中国海洋平台,1998,15(3):21-24.
    [12]杨国金.海冰工程学.北京:石油工业出版社,2000.
    [13]丁德文等.工程海冰学概论.北京:海洋出版社,1999.
    [14]段梦兰,方华灿等.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [15]Sinha,N.K.,Timco,G.W.,Frederking,R.,Recent advance in ice mechanics in Canada.Appl.Mech.Rev.,1987,40(9):1214-1231.
    [16]Engelbrekston,A.,Dynamic ice loads on lighthouse structures,Proc.4~(th)Int.Conf.on Port and Oc.Engrg.under Arctic Conditions,St.John's Canada,1977,2:654-864.
    [17]Wright B,Wimco G.A review of ice forces and failure modes on the Molikpaq.Proc.12~(th)Int.Symp.On Ice.Wrondheim,Norway,1994,2:816-824.
    [18]Yue qianjin,Bi xiangjun,Ice-induced jacket structure vibrations in Bohai sea,Journal of Cold Regions Engineering,Vol.14 No.2:81-92,2001
    [19]岳前进,毕祥军,季顺迎等.平台振动与冰力测量研究报告,大连理工大学,2001.
    [20]董聪,刘西拉.海洋平台结构系统的优化理论.科技导报,1997,No.12:32-34.
    [21]Peyton H R.Sea ice strength.University of Alaska.Geophysical Institute.Report UAG R-182.Alaska,1966.
    [22]Blenkarn K A.Measurement and analysis of ice forces on Cook Inlet structures.Proceedings,2nd Offshore Technology
    [23]Maattanen M.Ice forces and vibration behavior of bottom-founded steel lighthouses.Proc.3~(rd)International Symposium on Ice Problems,USA.1975:345-354.
    [24]岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报,2003,36(2):16-19.
    [25]欧进萍.海洋平台结构安全评定—理论、方法与应用.北京:科学出版社,2004.
    [26]Loset S,Shkhinek K.Evaluation of existing ice Force prediction methods.Validation of Low Level Ice Forces on Coastal Structures(LOLEIF).Report No.4.May 1999.
    [27]Loset S,Shkhinek K and Uvarova E.An overview of the influence of structure width and ice thickness on the global ice load.Proc.15~(th)International Conference on Port and Ocean Engineering under Arctic Conditions(POAC),Helsinki,1999,1:425-434.
    [28]Wright B.Ice load prediction methods for wide vertically sided structures.Validation of Low Level Ice Forces on Coastal Structures.LOLEIF Report No.2.EU Project-Contract MAS3-CT 97-O098.June 1988.
    [29]Karl Shkhinek,Ekaterina Uvarova.Dynamics of the ice sheet interaction with the sloping structure.Proc.16~(th)Int.Conf.Port Ocean Eng.Arctic Cond.(POAC' 01).Ottawa,Canada,2001,2:639-648.
    [30]Bjerkas,M.Global design ice loads dependence of failure mode.International Journal of Offshore and Polar Engineering.2004.Vol.14,No.3.
    [31]Sanderson,T.J.O.(1988):Ice Mechanics.Risk to Offshore structures.
    [32]Blancher D,DeFranco S J.Global first-year ice loads:Scale effect and non-simultaneous failure.Proc.13~(th)IAHR Ice Symposium.Beijing,1996:203-214.
    [33]Blanchet D.Ice loads from first-year ice ridges and rubble fields.Can.J.Civ.Eng.,1998,25:206-219.
    [34]Wright B,Timco G.A review of ice forces and failure modes on the Molikpaq.Proc.12~th Int.Symp.On Ice.Trondheim,Norway,1994,2:816-824.
    [35]Ashby M F,Palmer A C,Thouless M,et al.Nonsimultaneous failure and ice loads on Arctic structures.Offshore Technology Conference,Houston,TX,May 5-8,1986:399-404.
    [36]Blanchet D,DeFranco S.On the understanding of the local ice pressure area curve-Deterministic approach,In:IUTAM Scaling Laws in Ice Mechanics and Ice Dynamics.2001:31-42.
    [37]Sodhi D S.Non-simultaneous crushing during edge indentation of freshwater ice sheets.Cold Regions Science and Technology,1998,27:179-194.
    [38]Sodhi D S.Crushing failure during ice-structure interaction.Engineering Fracture Mechanics,2001,68:1889-1921.
    [39]Takeuchi,t.,Akagawa,S.,Saeki,H.,Nakazawa,N.,Hirayama,K.and(2002).Ice load equation for level ice sheet.Int.J.Offshore Polar Eng.September 2002,171-177.
    [40]Bjerkas,M.,Moslet,P.O.,Jochmann,P.& Loset S.(2003).Global ice loads on the lighthouse Norstomsgrund in the winter 2001.Proc.17th Int.Conf.Port and 'Ocean Engineering under Arctic Conditions.Trondheim,Norway,June 16-19,2003.Vol.2,pp.829-838.
    [41]K.Shkhinek,T.Karna,S.Kapustiansky,A.& Jilenkov(2001b).Influence of ice speed and thickness on ice pressure and load.Proc.16~(th)International Conference on Port and Ocean Engineering under Arctic Conditions(POAC-01).Ottawa,Canada,August 12-17.Vol 2,pp.657-668.
    [42]Sodhi,D.S.,Vertical penetration of floating ice sheets.International Journal of Solids and Structures,1998,35(31-32):4275-4297.
    [43]中国海洋石油总公司.渤海海域钢质固定平台结构设计规定.天津:中国海洋石油总公司企业标准.2002.
    [44]Jochmann P,Schwarz J.The influence of individual parameters on the effective pressure on level ice against lighthouse "Norstromsgund".Proc.18~(th)International Conference on Port and Ocean Engineering under Arctic Conditions.Clarkson University,Potsdam,NY,USA,2005,4.
    [45]Karna T,Qu Y.Pressure-Area relationship based on field data.Proc.18~(th)International Conference on Port and Ocean Engineering under Arctic Conditions.Clarkson University,Potsdam,NY,USA,2005,4.
    [46]Peyton H R.Sea ice forces.Ice pressures against structures.National research council of Canada.Canada,Technical Memorandum 92,1968:117-123.
    [47]Daley C,Tuhkuri J,Riska K.The role of discrete failures in local ice loads.Cold Regions Science and Technology,1998,27:197-211.
    [48]史庆增.海冰的动力作用和冰力谱.海洋学报,1994,16(5):106-112.
    [49]欧进萍,段忠东.渤海导管架平台桩柱冰压力随机过程模型及其参数确定.海洋学报,1998,20(5):110-117.
    [50]Karna T,Qu Y,Kuhnlein W.A New spectral method for modeling dynamic ice actions.Proceedings of OMAE04 23~(rd)International Conferense on Offshore Mechanics and Arctic Engineering.Vancouver,Canada,2004:8-16.
    [51]Maattanen M.Ice force design and measurement of conical structure.Proc.of 12~(th)International Symposium on Ice(IAHR).Trondheim,Norway,1994,1:401-410.
    [52]Maattanen M.et al.Ice failure and ice loads on a conical structure-Kemi-1 cone full scale ice force measurement data analysis.Proc.of 13~(th)International Symposium on Ice (IAHR).Beijing,China,1996,1:8-17.
    [53]Thomas G.Brown,Mauri Maattanen.Comparison of KEMI-I and Confederation Bridge cone Ice Load Measurement Results.In Proc.IAHR Symposium on Ice,DUNEDIN NEW ZEALAND,2002,503-514.
    [54]Brown T G.The Confederation bridge-early results from ice monitoring program,In proc.CSCE Annual Conference,Sherbrooke,Canada,1997(1):177-186.
    [55]Mayne D C,Brown T G.Rubble pile observations.In Proc.10th International Offshore and Polar Engineering Conference,Seattle,USA,2000(1):596-599.
    [56]Edwards R Y,Crosasdale K Y.Model experiments to determine ice forces on conical structures.Symposium of Applied Glaciology International Glaciological Socialty.1976.
    [57]Kato K,Izumiyama K.Simulation of Ice Load on a Conical Shaped Structure:Comparison with Experimental Results.Proceedings of the Seventh International Offshore and Polar Conference,1997:360-367.
    [58]Hirayama K,Obara I.Ice forces on inclined structures.Proc of the 5th International Offshore Mechanicsand Arctic Engineering.Japan,1986:515-520.
    [59]Ralston T D.Plastic Limit Analysis of Sheet Ice Loads Structures.IUTAM Symposium on Physics and Mechanics of Ice.Springer-Verlag,New York,1980:289-308
    [60]Crosadale K R.Ice Forces on Fixed Rigid Structures,Report for the Working Group on Ice Forces on Structures,Astate-of-the-art Report,CRREL Special Report,1980:34-106.
    [61]冯玮,时忠民,刘立明.用于锥体冰荷载计算的改进模型.中国海上油气.2004,16(4):pp281-284.
    [62]Chao,J.C.Comparison of Sheet Ice Load Prediction Methods and Experimental Data for Conical Structures,OMAE-92,Vol.Ⅳ,pp.183-193.
    [63]Lau M,et al.Influence of velocity on Ice-Cone interaction.IUTAM symposium "scaling laws in Ice Mechanics and Ice Dynamics",June,2000.
    [64]Dmitri G.Matskevitch.Velocity effects on conical structure ice loads.Proceeding of OMAE' 02:21~(st)International Conference on Offshore Mechanics and Arctic Engineering.Oslo,Norway,2002:1-10.
    [65]Karl Shkhinek,Ekaterina Uvarova.Dynamics of the ice sheet interaction with the sloping structure.Proc.16~(th)Int.Conf.Port Ocean Eng.Arctic Cond.(POAC' 01).Ottawa,Canada,2001,2:639-648.
    [66]Wessels E,Kato K.Ice forces on fixed and floating conical structures.Proc.Of the 9~(th)International IAHR Symposium on Ice.Sapporo,Japan,1988,2:666-691.
    [67]史庆增,黄焱,宋安等.锥体冰力的试验研究.海洋工程,2004,22(1):88-92.
    [68]史庆增,刘波,李勇等.锥体上冰力的实验研究.中国海上油气,2005,17(2):119-124.
    [69]史庆增,彭忠.冰力作用下锥体的合理结构形式及在柱体上设计锥体的合理性讨论.中国海上油气,2005,17(5):342-346.
    [70]Yue,Q.,Bi,X.,Sun,B.,Zhang,T.& Chen,X.(1996).Full scale force measurement on JZ20-2 platform.Proc.IAHR Ice Symp.(IAHR' 96)Beijing.pp.282-289.
    [71]李锋,岳前进.冰在斜面结构的纵横弯曲破坏分析.水利学报,2000,9:44-47.
    [72]李锋,岳前进.窄锥冰力幅值与作用周期分析.力学与实践.2001.Vol 23:pp44-47
    [73]李锋,于晓,胡玉镜,岳前进.冰排在锥面上的断裂长度.海洋工程.2002.Vol 20:pp44-47
    [74]屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25(2),pp:326-329.
    [75]屈衍.基于现场实验的海洋结构随机冰荷载分析:(博士学位论文).大连:大连理工大学.2006.
    [76]Koh Izumiyama,Hiromitsu Kitagawa,Koichi Koyama,Shotaro Uto.On the interaction between a conical structure and ice sheet.Proc.of the 11~(th)International Conference on Port and Ocean Engineering under Arctic Conditions(POAC),St.John's,Canada,September 24-28,1991,pp:155-166.
    [77]Sodhi,D.S.,(1987).Dynamic analysis of failure modes on ice sheets encountering sloping structures,Proc.6~(th)Int.Conf.on Offshore Mechanics and Arctic Engineering.Houston.Vol.4,pp.281-284.
    [78]曲月霞,李志军,王永学,李广伟.作用于正倒锥结构上冰力物理模拟试验研究.大连理工大学学报.2001,41(3).pp:231-236.
    [79]曲月霞,李广伟,李志军,王永学.正倒锥结构上冰力谱分析实验研究.海洋工程.2001,Vol 19(3),pp:38-42.
    [80]曲月霞.海冰与近海结构物作用的物理模拟研究:(博士学位论文).大连:大连理工大学.2001.
    [81]C.James Montgomery and A.William Lipsett.Dynamic test and analysis Of a massive pier subjected to ice force.Can.J.CIV.Eng.VOL.7.1980.PP.432-441.
    [82]张运良.冰载荷的识别及冰激振动的实验与数值模拟:(博士学位论文).大连:大连理工大学.2001.
    [83]黄炎.冰激海洋平台振动的动力模型试验研究:(博士学位论文).天津:天津大学.2004.
    [84]Blenkarn,K.A.(1970).Measurements and analysis of ice forces on Cook Inlet structures.Proc.Offshore Technology Conference.Houston,TX,April 22-24,1970.Paper No OTC 1261.
    [85]Karna T.A flaking model of dynamic ice-structure interaction.VTT Building Technology 1997
    [86]岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载.工程力学,2004,21(1):202-208.
    [87]Matlock H.,Dawkins W.and Panak J.,A model for the prediction of ice structure interaction.Journal of Engineering mechanics,ASCE,EM4,1969,pp.1083-1092.
    [88]Engelbrekston,A.,Observations of a resonance vibrating lighthouse structure in moving ice,POAC,1983
    [89]Sodhi,D.S.,Vertical penetration of floating ice sheets.International Journal of Solids and Structures,1998,35(31-32):4275-4297.
    [90]Maattanen,M..Stability of self-excited ice-induced structural vibration.4~(th)Int.Conf.On Port and Ocean Engineering Under Arctic Conditions,Newfoundland,1977,pp684-694
    [91]Maattanen,M.(1978).On conditions for the rise of self-excited ice-induced autonomous oscillations in slender marine pile structures.Research Report No 25,Winter Navigation Board,98 p.
    [92]Maattanen M.(1984):The effect of structural properties on ice-induced self-excited vibrations,Proc.IAHR Symposium on Ice 1984,Hamburg,West Germany,Vol Ⅱ,pp.11-20.
    [93]Maattanen M.(1987):Ten years of ice-induced vibration isolation in lighthouses.OMAE 1987,Houston,TX,USA,Vol Ⅳ,pp.261-266.
    [94]Maattanen M.(1988):Ice-induced Vibrations in Structures-Self-Excitation.Proc.IAHR Symposium on Ice 1988,University of Hokkaido,Sapporo,Japan,Vol 2.pp.658-665.
    [95]Yue,Q.,Zhang,X,Bi,X and Shi,Z.(2001).Measurements and analysis of ice induced steady state vibration.Proc.16~(th)Int Conf.Port and Ocean Engineering under Arctic Conditions.POAC'01.August 12-17
    [96]Karna,T.,Steady-state vibrations of offshore structures.Proceedings of the 1st RAO Conference,1993,77-186.
    [97]Karna,T.,Kamesaki,K.& Tsukuda,H.,A numerical model for dynamic ice-structure interaction.Computers and Structures 72(1999),1999,PP 645-658.
    [98]Karna,T.,Turunen,R..A straightforward technique for analyzing structural response to dynamic ice action.Proc.9~(th)OMAE Conf.Houston.1990.Vol Ⅳ,pp.135-142.
    [99]Karna,T.Mitigation of steady-state vibration induced by ice.Proc.4~(th)ISOPE Conf.,Osaka,Japan,April 10-15,1994,pp.534-539.
    [100]Toyama,Y.,Sensu,T.,Minami,M and Yashima,N.Model test on ice-induced self-excited vibration fo cylindrical structures.Proc.7~(th)POAC Conf.,1983.Vol Ⅱ,pp.834-844.
    [101]徐继祖.,王翎羽.冰力振子模型及其数值解.天津大学学报,1988,21(2):28-34.
    [102]欧进萍,段忠东,王刚.海冰作用下平台结构自激振动的参数分析与响应的数值计算.工程力学,2001,18(5):8-17.
    [103]张希.冰激直立结构稳态振动:(硕士学位论文).大连:大连理工大学.2002.
    [104]D.P.Jin,H.Y.Hu.Ice-induced No-linear vibration of an offshore platform.Journal of Sound and Vibration.1998.214(3),pp:431-422.
    [105]Sundararajan,C.and Reddy,D.V.(1973).Stochastic analysis of ice-structure interaction.Proc.2~(nd)Int.Conf.Port Ocean Eng.Arctic Cond.(POAC' 73).Reykjavik,Iceland,August 27-30,1973.pp.345-353.
    [106]Reddy,D.V.,Swamidas,A.S.and Cheema,P.S.(1975).Ice force response spectrum modal analysis of offshore towers.Proc.3~rd Int.Conf.Port and Ocean Engineering under Arctic Conditions.University of Alaska,11-15 August 1975.pp.887-910.
    [107]Reddy,D.V.,Cheema,P.S.& Sundarajan C.(1977).Relationship between response spectrum and power spectral density analysis of ice-structure analysis.Proc.4~(th)Int.Conf.Port and Ocean Engineering under Artic Conditions.Memorial University of Newfoundland,Canada.26-30 Septe4mber 1977.Vol.Ⅱ,pp.664-683.
    [108]Engelbrekston A.Observations of a resonance vibrating lighthouse structure in moving ice.POAC,Uelsinki,Finland,1983.
    [109]段梦兰,吴永宁.固定石油平台冰激振动的时域与频域响应.机械强度,1999,21(1):14-17.
    [110]段梦兰,柳春图.海上固定平台的冰激振动响应计算与分析.海洋工程,1995,13(2):22-30.
    [111]段梦兰,柳春图.冰与结构的动力相互作用.随机自激振动.工程力学部(增刊),1995,1070-1074.
    [112]马网扣,唐友刚,宋峥嵘.基于自激冰力的导管架平台冰激振动计算.中国海上油气(工程),2003,15(5):16-19.
    [113]刘玉标,申仲翰.冰与结构的耦合振动模型.海洋工程,2000,18(4):1-6.
    [114]张剑波,张韶光.冰载荷作用下自升式平台的动力响应分析研究.中国海洋平台,2005,20(4):20-24.
    [115]欧进萍,段忠东,肖仪清等.基于实测动冰力时程的海洋平台结构冰振反应分析.海洋工程,1999,17(2):71-78.
    [116]刘健,陈国明,杨晓刚等.基于ANSYS软件实现平台结构的冰激振动分析.中国海上油气,2005,17(1):65-69.
    [117]曲月霞,王永学.海冰对近海结构物作用的随机模型.中国海洋平台,2000,15(2):16-19.
    [118]Yue Q J,Bi X J.Ice induced jacket structure vibration.Journal of Cold Regions Engineering.1999,14(2):68-80.
    [119]C Guedes Soares.Risk and Reliability in Marine Technology.Netherlands:A.A.BALKEMA /ROTTERDAM/BTROOK-FIELD,1998.
    [120]UKOOA.Piper Alpha-A History,Britain:Health and Safety Index,1999.
    [121]余庆、肖熙,海洋平台结构风险评估,海洋工程,Vol.15 NO.3,1997
    [122]胡云昌、黄海燕,基于概率影响图的海洋平台安全风险评估方法,中国造船No.3,1998
    [123]罗桦槟、张世瑛,海洋平台定量风险评估,管理工程学报,NO.1,1999
    [124]赵峰.海洋平台及设备可靠性的评价与监测.石油机械,2000,28(11):53-55.
    [125]吕秀艳,刘德辅,牟善军,李晓冬.基于随机分析和概率预测的固定式海洋平台结构风险评估研究.中国海洋平台,2005,20(5):6-16.
    [126]李玉刚.综合安全评估方法(FSA)在海洋平台上的应用.大连:大连理工大学,2002.
    [127]李玉刚.渤海8号自升式海洋钻井平台结构总强度计算书(Report 2001 10 B8-1).大连:大连理工大学船舶CAD工程中心,2001.
    [128]大连理工大学,新型平台抗冰振技术课题(2003AA602150)专项“抗冰平台的荷载、优化、控制”,2006,6.
    [129]岳前进,等.渤海辽东湾海冰管理,大连理工大学与中海石油公司天津分公司合作科研报告,1999-2006
    [130]L.Manuel,D.G.Schmucker,C.A.Cornell,J.E.Carballo,A reliability-based design format for jacket platforms under wave loads.Marine Structures,11,1998
    [131]阎宏生、胡云昌、余建星、方小安,冰区海洋平台LRFD方法的系数标定及优化设计,海洋工程,Vol.17 No.4,1999
    [132]封盛、宋玉普、康海贵,导管架海洋平台结构优化设计中约束的有效处理,海洋工程,Vol.18No.3,.2000
    [133]宋玉普,封盛,康海贵,考虑结构-桩-土相互作用的导管架平台优化设计,海洋工程,Vol.18No.2,2000
    [134]鲍国斌、李润培、顾永宁,张力腿平台的尺度优化设计,船舶工程,No.1,1999
    [135]杨树耕、孟昭瑛、任贵永、孙东昌、张世华,海上桶基平台基础边界条件的简化方法与结构优化,海洋工程,Vol.17 No.2,1999
    [136]胡涛、肖熙,海洋平台结构整体优化设计,中国海洋平台,No.1,2001
    [137]Farkas,J,Optimum design of Circular Hollow Section Beam-Columns.Isope,Vol.4,1992
    [138]Lassen,Optimum Design of Three-Dimensional Framework Structures.Journal of Structural Engineering,Vol.119 No.3,1993
    [139]R.P.Nordgren,The Design of Tension Leg Platforms by a constrained Optimization Method,Journal of Offshore mechanics and Arctic Engineering,Vol.111,1989
    [140]W.K.Rule,A Response Surface for Structural Optimization,Journal of Offshore mechanics and Arctic Engineering,Vol.119,1997
    [141]马红艳、刘书田、顾元宪,海洋平台结构的形状与拓扑优化设计,海洋工程,Vol.19 No.4,2001
    [142]康海贵等,.近海导管架平台的模糊选型优化,中国海洋平台,Vol.15 No.6,2000
    [143]封盛、宋玉普、康海贵,导管架海洋平台结构优化设计,大型复杂结构的关键科学问题及设计理论研究论文集(1999),大连理工出版社,2000
    [144]封盛、翟刚军,导管架海洋平台结构模糊优化设计,东北大学学报(增刊),2000
    [145]衣伟、宋玉普、张燕坤,近海多功能混凝土平台选型与优化,海洋学报,Vol.21 No.3,1999
    [146]张志强,孟昭瑛,边际油田轻型平台及其选型的层次分析法,石油工程建设,No.6,1998
    [147]Gibson,R.E.Dowse,B.E.W,Influence of Geotechnical Engineering On the Evolution Of Offshore Structures In The North Sea,Canadian Geotechnical Journal,Vol.18 No.2,1981
    [148]顾元宪,马红艳,姜成,亢战 海洋平台结构动力响应优化设计与灵敏度分析 海洋工程2001.1
    [149]王兴国、贾默伊、周晶。地震作用下的导管架海洋平台动力优化设计研究.海洋工程,2003,Vol21,No.2:16-19.
    [150]G.F.Clauss,L.Birk.Hydrodynamic shape optimization of large offshore structures.Applied Ocean Research Aug 1996 p 157-171.
    [151]Markiewicz,Marian.Shape optimization of offshore structures under extreme environmental conditions.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering-OMAE,1998,Jul:5-9.
    [152]张连营、胡云昌.基于遗传算法的简易海洋平台的疲劳可靠性优化设计.海洋工程,1997,Vol.15,No.2:8-15
    [153]张连营,余建星等.简易海洋平台的疲劳可靠性优化设计的进化算法.海洋学报,1998,Vol.20.No.6:101-109.
    [154]Toula Onoufriou.Overview of advanced structural and reliability techniques for optimum design of fixed offshore platform.J.Construct Steel Res.1997,44(3):181-201.
    [155]T.Onoufriou and V.J.Forbes.Development in structural system reliability assessment of fixed steel offshore platform.Reliability Engineering and system safety,2001:189-199.
    [156]朱位秋.随机振动.北京科学出版社,1992.
    [157]陈建军、车建文.结构动力优化设计评述与展望.力学进展,2001,Vol31,No.21.181-192.封盛、翟刚军.导管架海洋平台结构模糊优化设计.东北大学学报(增刊)2000.
    [158]封盛、翟刚军 导管架海洋平台结构模糊优化设计.工程力学,2002,Vol.19,No.2:109-114.
    [159]郭军、肖熙、朱静.海洋工程结构的多目标模糊优化设计.海洋工程,1994,12,(4):1-7.
    [160]Department of Energy,1990,"The Public Inquiry Into the Piper Alpha Disaster." ISBN010113102,London,UK
    [161]J.wang,O.Kieran Offshore Safety Assessment and Safety-Based Decision-Making——The Current Status and Future Aspects.Journal of Offshore mechanics and Arctic Engineering,2000,Vol122,100-108.
    [162]Robert.G.Bea.Risk assessment and management of offshore structures.Risk And Offshore Structures,2001,3:180-187.
    [163]Shetty,N.K,Guedes Soares,C.Fire safety assessment and optimal design of passive fire protection for offshore structures.Reliability Engineering & System Safety,1998,vol.61,No.1-2,Jul-Aug:139-149.
    [164]R.G.Bea,A.Brandtzaeg,M.J.K.Craig.Life-cycle Reliability Characteristics Of Minimum Structures.Journal of Offshore mechanics and Arctic Engineering,1998,Vol 120,129-138.
    [165]Rodney Pinna,Beverley F.Ronalds,Mark A.Andrich.Cost-Effective Design Criteria for Australian Monopod Platforms.Journal of Offshore mechanics and Arctic Engineering,2003,Vol 125:132-138.
    [166]Dimitri V.Val,Mark.G.Stewart.Life-cycle cost analysis of reinforced concrete structures in marine environments.Structural Safety 2003,Vol25,121-130.
    [167]David De Leon,Alfredo H-S.Ang.Development of a Cost-benefit Model for the Management of Structural Risk on Oil Facilities in Mexico.Computational Structural Engineering,2002,2,(1):19-23.
    [168]Y.Garbatov,C.Guedes Soares.Cost and reliability based strategies for fatigue maintenance planning of floating structures.Reliability Engineering and System Safety,2001,Vol 73,293-301.
    [169]Applied Technology Council,ATC40 Seismic Evaluation and Retrofit of Concrete Buildings,1996
    [170]Federal Emergency Management Agency,FEMA 273 NEHRP Guidelines for seismic Rehabilitation of buildings,1997
    [171]李刚、程耿东,基于性能的结构抗震设计——理论、方法与应用,科学出版社,北京,2004
    [172]徐培福、戴国莹,超限高层建筑结构基于性能抗震设计的研究,土木工程学报,Vol.38 No.1:1-10,2005.1
    [173]ISO,General principles on reliability for structure,ISO 2394-1998(E),Geneva,1998
    [174]Structural Engineering Association of California(SEAOC),Performance Based Seismic Engineering of Building,April,1995.
    [175]Federal Emergency Agency(FEMA),Performance-based Seismic Design of Buildings,FEMA Report 283,September,1996.
    [176]Yamanouchi H et al.,Performance-based engineering for structural design of buildings,Building Research Institute,Japan,2000
    [177]陈定外译,何广乾校,结构可靠性总原则(ISO 2394:1998),中国工程建设标准化协会、建设部标准定额站,1999
    [1]陈定外译,何广乾校,结构可靠性总原则(ISO 2394:1998),中国工程建设标准化协会、建设部标准定额站,1999
    [2]程耿东,李刚,蔡悦,基于可靠度的抗震结构优化设计,抗震结构的最优设防烈度与可靠度(第二部分),科学出版社,1999
    [3]刘怀高,金融工程:资产估值理论,兰州商学院学报,2002,18(6):112-114
    [4]Ang A H-S,Lee J C,Cost optimal design of R/C buildings,Reliability Engineering and System safety,2001,73:233-238
    [5]Ang A.H.-S,Leon D D,Determination of optimal target reliabilities for design and upgrading of structures.Structural Safety 1997,19(1):91-103
    [6]王光远,抗震结构最优可靠度的决策方法,地震工程与工程振动,1989,9,(3):1-8
    [7]Robert E.Melchers.Rational optimization of reliability and safety policies.Reliability Engineering and System Safety,2001,73:263-268
    [8]Kanda J,Takao Adachi.Influence of probability distribution of loads on optimum reliability.Reliability Engineering and System Safety,2001,73:197-204
    [9]Kanda J,Ellingwood B,Formulation of load factors based on optimum reliability,Structural Safety,1991,9:197-210
    [10]Aktas E,Moses F,Gbosn M,Cost and safety optization of structural design specifications,Reliability Engineering and System Safety,2001,73:205-212
    [11]David De Leon,Alfredo H-S.Ang.Development of a Cost-benefit Model for the Management of Structural Risk on Oil Facilities in Mexico.Computational Structural Engineering,2002,2(1):19-23
    [12]Dimitri V.Val,Mark.G.Stewart.Life-cycle cost analysis of reinforced concrete structures in marine environments.Structural Safety,2003,25:245-256
    [13]陈朝晖等服役结构抗震维修策略,国家基础性研究重大项目“现有混凝土结构耐久性评估”年度研究报告,清华大学土木工程系,1995
    [14]Mladen Lukic,Christian Cremona.Probabilistic optimization of welded joints maintenance versus fatigue and fracture.Reliability Engineering and System Safety,2001,72:253-264
    [15]Bruce R.Ellingwood,Yasuhiro Mori.Reliability-Based service life assessment of concrete structures in nuclear power plants:optimum inspection and repair.Nuclear Engineering and Design,1997,175:247-258
    [16]Y.K.Wen.Minimum lifecycle cost design under multiple hazards.Reliability Engineering and System Safety,2001,73:223-231
    [17]高小旺,邵卓民,苏经宇,地震作用与结构抗震可靠度标准,抗震结构的最优设防烈度与可靠 度(第三部分),科学出版社,1999
    [18]Park Y J,Ang A H-S,Mechanistic seismic damage model for reinforced concrete,ASCE Journal of Structural Engineering,2001,127(3):330-346
    [19]ISO 2631,Evaluation of Human Exposure to Whole-body Vibration,1985
    [1]渤海工程设计公司.JZ20-2-1平台冰力测量环境工况表,1991.
    [2]大连理工大学.JZ20-2平台冰激振动测量与分析海冰监测与预报.1999-2000年度工作报告,2000.5
    [3]毕祥军,于雷,王瑞学等.海冰厚度的现场图像测量方法.冰川冻土,2005,27(4):563-567.
    [4]大连理工大学.JZ20-2平台冰激振动测量分析与海冰监测预报.1999-2000年度工作报告,2000.5
    [5]李辉辉.海洋平台冰振失效的预警标准:(硕士学位论文).大连:大连理工大学.2004.
    [6]大连理工大学.JZ20-2MSW平台冰振失效预警标准研究.2004.
    [7]季顺迎.渤海海冰数值模拟及其工程应用:(博士学位论文).大连:大连理工大学.2001.
    [8]API,API recommended practice for planning,design and constructing fixed offshore structures,API RP 2A 19Ed.,1991
    [9]Schwarz,J.Treibsduck auf Pfahle.Mitteilungen des Franzius-Insituts.(1970).TU Hanover,Heft 34.Hannover 1970.193 p.
    [10]中国海洋石油总公司.渤海海域钢质固定平台结构设计规定.天津:中国海洋石油总公司企业标准.2002.
    [11]Hirayama K,Obara I.Ice forces on inclined structures.Proc of the 5th International Offshore Mechanicsand Arctic Engineering.Tokyo,Japan,1986:515-520.
    [12]Tuomo Karna,Qu Yan.A New Spectral Method for Modeling Dynamic Ice Actions.Proceedings of OMAE' 04,23rd International Conference on Offshore Mechanics and Arctic Engineering,2004:8-16.
    [13]Yue Q J,Bi X J.Ice-induced jacket structure vibrations in Bohai Sea.Journal of Cold Regions Engineering,2001,14(2):81-92.
    [14]岳前进,毕祥军,于晓等.锥体结构的冰激振动与冰力函数.土木工程学报 2003,36(2):16-19.
    [15]Qu Y,Yue Q J,Bi X J.et al.Random Ice Forces on Conical Structures,Proceedings of the 17th International Conference on Port and Ocean Engineering under Arctic Conditions,POAC' 03,Trondheim,Norway,2003:259-270.
    [16]Qu Yan,Yue Qianjin,Bi Xiangjun,et al.A random ice fForce model for nNarrow conical Structures.Cold Regions Science and Technology.2006.
    [17]Neumann G.On wind generated ocean waves with special reference to the problem of wave forecasting.N.Y.U.,Coll of Eng.,Res.Div,Dept.of Metcor.And Ocean-ogr.,1952.
    [18]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社,2000.
    [1]Sinha,N.K.、Timco,G.W.、Frederking,R.,Recent advance in ice mechanics in Canada.Appl.Mech.Rev.,1987,40(9):1214-1231.
    [2]Engelbrekston,A.,Dynamic ice loads on lighthouse structures,Proc.4th Int.Conf.on Port and Oc.Engrg.under Arctic Conditions,St.John's Canada,1977,2:654-864.
    [3]Maattanen M,Reddy D,Arockiasamy M,et al.Ice-structure interaction studied on a lighghouse in the Gulf of Bothnia using response spectrum and power spectral density function analyses.Proc.4th International Conference on Port and Ocean Engineering under Arctic Conditions.Newfoundland,Canads,1977:321-334.
    [4]段梦兰,方华灿.渤海老二号平台被冰推倒的调查结论.石油矿场机械,1994,23(3):1-4.
    [5]Yue qianjin,Bi xiangjun,Ice-induced jacket structure vibrations in Bohai sea,Journal of Cold Regions Engineering,Vol.14 No.2:81-92,2001
    [6]岳前进,杜小振,毕祥军等.冰与柔性结构作用挤压破坏形成的动荷载[J].工程力学,2004,21(1):202-208,
    [7]岳前进,毕祥军,于晓等.锥体结构冰激振动与冰立函数[J].土木工程学报,2003,36(2):16.
    [8]杜小振.冰致柔性直立结构振动的动冰力:(硕士学位论文).大连:大连理工大学.2004.
    [9]屈衍,岳前进,Casey Brister.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25(2):326-329.
    [10]刘圆.抗冰海洋平台动力分析与结构选型研究:(博士学位论文).大连:大连理工大学.2006.
    [11]DNV,2001.Recommended practice DNV-RP-C203 fatigue strength analysis of offshore steel structures.
    [12]API 2A,1991.Recommended practice for planning,designing,and constructing fixed offshore structures.Reduced comfort boundary and evaluation criteria for human exposure to whole-body vibration,GB,GB/T 13442-92
    [13]J.N.Goodier、R.J.Sweeney,Loosening by vibration of threaded fasteners,Mechanical Engineering,Vol.67:798-802,1945
    [14]G.H.Junker,New criteria for self-loosening of fasteners under vibration,SAE paper NO.69005,1969.
    [15]G.H.Junker,New criteria for self-loosening of fasteners under vibration,SAE paper NO.69005,1969.
    [16]T.Sakai,Investigation of bolt loosening mechanisms,Bulletin of the Japanese society of mechanical engineers,Vol.21:1391-1394,1978
    [17]K.Koga,Loosening by repeated impact of threaded fastenings,Bulletin of the Japanese society of mechanical engineers,Vol.13:140-149,1969
    [18]D.P.Hess,Vibration-induced loosening and tightening of threaded fasteners,Vibration of nonlinear,random,and time-varying system,1165-1167,1995(84-1)
    [1]API 2N.Recommended practice for planning,designing,and constructing fixed offshore structures in ice environments(API RP 2N).1~(st)Edition.June 1988.
    [2]Fang Huacan,Duan Menglan,Jia Xu Fayan.Reliability analysis of ice-induced fatigue and damage in offshore engineering structures.China Ocean Engineering,2000,14(1):12-24.
    [3]Fang Huacan,Duan Menglan,Jia Xinglan and Xie Bin.Fuzzy fatigue reliability analysis of offshore platforms in ice infested waters.China Ocean Engineering,2003,17(3):307-314.
    [4]API RP 2A.Recommended practice for planning,design,and constructing fixed offshore structures.API RP 2A,19Ed.1991.
    [5]DNV.Rules for the design,construction,and inspection of fixed offshore structures.1977
    [6]Evaluation of human exposure to whole-body vibration.International standard,ISO 2631-2.
    [7]人体全身振动暴露的舒适性降低界限和评价标准.中华人民共和国国家标准 GB/T 13442-92.
    [8]关于固定结构特定时建筑物和海上结构的居住者对低频(0.063-1Hz)水平运动响应的评价导则.中华人民共和国标准 GB/T13921-92.
    [9]申仲翰,刘玉标,崔瑞意.涠11-4平台在极端环境条件下的人员工作安全评估.海洋工程,1998,8:26-32
    [10]海上固定平台规划、设计和建造的推荐作法——工作应力设计法.中华人民共和国标准(SY 10030-2003).
    [11]S.Ziade、H.Sperling、H.Fisker,Vibration of a High-pressure Piping System due to Flow in a Spherical Elbow,Journal of Fluids and Structures,2001,15:751-767.
    [12]Usik Lee,Hyuckjin Oh,The Spectral Element Model for Pipeline Conveying Internal Steady Flow,Engineering Structures,2003,25:1045-1055.
    [13]李长俊、汪玉春、王元春,天然气管道系统的振动分析,天然气工业,2000,20(2):80-83.
    [14]TaG Xu、Bo Lauridsen、Yong Bai,Wave-induced Fatigue of Multi-span Pipslines,Marine Structures,1999,12:83-106.
    [15]S.W.Gong,K.Y.Lam,C.Lu,Structural Analysis of a Submarine Pipeline Subjected to Underwater Shock,International Journal of Pressure Vessels and Piping,2000,77:417-423.
    [16]Luciano Lazzeri,On the Nonlinear Response of Piping to Seismic Loads,Journal of Pressure Vessel Technology,2001,123:324-331.
    [17]H.O.Soliman、T.K.Datta,The Seismic Response of a Piping System to Non-stationary Random Ground Motion,Journal of Sound and Vibration,1995,180(3):459-473.
    [18]T.K.Datta,Seismic Response of Buried Pipelines:a State-of-the-art Review,Nuclear Engineering and Design,1999,192:271-284.
    [19]M P Paidoussis,N T Issid.Dynamic stability of pipes conveying fluid.Journal of Sound and Vibration,1974,33(3):267-294
    [20]科列涅夫.地震动下工程结构物的动力计算.北京:地震出版社,1994.
    [21]CAESARΠ Technical reference manual,COADE/Engineering Physics software,Inc,1984-2002.
    [22]CAESARΠ Applications Guide,COADE/Engineering Physics software,Inc,1984-2002.
    [1]杨志勇,肖熙.海洋平台结构系统可靠性分析及其构件安全等级评价,中国造船,1998,2:71-79
    [2]邓洪洲,孙秦,海洋平台结构系统可靠性分析,海洋工程,1996,14(2):1-7
    [3]董聪,现代结构系统可靠性理论及其应用,科学出版社,2001
    [4]Onoufriou T,Forbes V J,Developments in structural system reliability assessments of fixed steel offshore platforms,Reliability Engineering and System Safety 2001,71:189-199
    [5]Efthymiou M,van de Graaf JW,Tromans PS,Hines IM.Reliability based criteria for fixed steel offshore platforms.Journal of Offshore Mechanics and Arctic Engineering,Transactions of the ASME,1997,119(2):116-124.
    [6]Dier A F,Morandi A C,Smith D,Birkinshaw M,Dixon A,A comparison of jacket and jack-up structural reliability,Marine Structures,2001,14:507-521
    [7]Manuel L,Schmucker D G,Cornell G A,Carballo J E,A reliability-based design format for jacket platforms under wave loads,Marine Structures,1998,11:413-428
    [8]张燕坤,金伟良,李卓东,极端荷载作用下海洋导管架平台体系可靠度分析,海洋工程,2001,19(4):15-21
    [9]Li G,Statistical Properties of the Maximum Elastoplastic Story Drift of Steel Frames Subjected to Earthquake Load,Steel & Composite Structures An International Journal,2003,3(3),185-198.
    [10]季顺迎,岳前进,毕祥军.辽东湾JZ20-2海域海冰参数的概率分布.海洋工程,2002,20(3):39-48.
    [11]Saiidi,M.,and Sozen,M.A.,Simple nonlinear seismic analysis of R/C structures,Journal of Structural Division,ASCE,1981,107(STS),937-951.
    [12]Fajfar,P.,and Fischinger,M.,N2-a method for nolinear seismic analysis of regular structures,Proceedings of the 9~(th)World Conference of Earthquake Engineering,Tokyo-Kyoto,Japan,1988,5:111-116.
    [13]Federal Emergency Management Agency(FEMA),NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings,FEMA Report 274,1997
    [14]Jin weiliang,Zhang zhongshuang,Li haibo,et al.Hybrid analysis approach for stochastic response of offshore jacket platforms[J].China Ocean Engineering,2002,14(2):143-152.
    [15]金伟良,郑忠双,李海波.地震荷载作用下海洋平台结构物动力可靠度分析.浙江大学学报(工学版),2002,5(3):233-238.
    [16]庄一舟,金伟良,李海波等.海洋导管架平台抗震可靠性分析方法.海洋学报,1999,21(5):129-136.
    [17]李海波等海洋平台结构抗震可靠性时程分析方法.海洋工程,2004,22(2):46-50.
    [18]Sniady,Pawel.Random vibrations and reliability of structures under various loads.Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering -OMAE,1996 2(6):143-150.
    [19]Faber,M.H.Reliability analysis of an offshore structure:a case study-1.Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium v 2Jun 7-12 1992:449-455
    [20]Melchers,Robert E.Directional simulation for time-dependent reliability problems.Lecture Notes in Engineering n 61 Mar 26-28 1990,1991Publ by Springer-Verlag Berlin p 261-272.
    [21]欧进萍,王光远.结构随机振动.北京:高等教育出版社,1998.5
    [22]李桂青,李秋胜.工程结构时变可靠度理论及其应用.北京:科学出版社,2001.
    [23]余建星等.半潜式海洋平台结构的疲劳失效概率计算研究.海洋工程,1994,11(2):32-39.
    [24]陈伯真等.海洋平台管节点的疲劳可靠性分析.中国海洋平台,1996,11(3):114-117.
    [25]邓洪洲,孙秦,杨庆雄.海洋平台结构系统疲劳可靠性分析方法.中国造船,1995,4(131):62-68.
    [26]Shetty,N.K.Fatigue reliability of tubular joints in offshore structures.Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium v 2 Feb 18-231990:33-40.
    [27]Lanning.D,Shen.u-H.H.Reliability of structures containing short cracks.Journal offshore mechanics and arctic engineering,1999,8:153-158.
    [28]Hovde.O,Moan.T.Fatigue reliability of TLP tether.Journal offshore mechanics and arctic engineering,1998,8:133-141.
    [29]方华灿.冰区海上石油钢结构安全可靠性分析.石油工业技术监督,1998,9(14):1-5.
    [30]许国亮,陈国明,陆玲.海洋石油平台冰激振动可靠性分析.石油工业技术监督,2002,11(18):8-10.
    [31]国家海洋环境保护研究所,辽河油田滩海勘探开发公司.盖州辽东湾北部盖州滩海区工程海冰环境原位监测与研究.1994
    [32]国家海洋局第一海洋研究所,渤海石油工程设计公司.辽东湾北部潮间海冰调查及分析.1991
    [33]国家海洋环境监测中心等.辽东湾北部盖州滩海区海冰冰情预报.1994
    [34]邓树奇.渤海海冰特征.海洋预报,1985,2(2):73-75
    [35]刘德辅,李桐魁,张涛等.渤海辽东湾海冰条件的概率分布.天津大学学报,1987,4:48-55
    [36]季顺迎,岳前进.渤海特征冰厚分析.海洋学报,2000,19(2):8-14
    [37]石油大学,中国海洋石油渤海公司.概率型冰荷载与冰激疲劳寿命研究.2000
    [38]赵达壮.工程力学中的数值方法[M].北京:中国铁道出版社,1993.
    [39]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析[M].北京:人民交通出版社,1997.
    [40]方华灿,陈国明.冰区海上结构物的可靠性分析[M].北京:石油工业出版社,2000.
    [1]李刚、程耿东,基于性能的结构抗震设计——理论、方法与应用,科学出版社,北京,2004
    [2]张大勇、李刚、岳前进,海洋平台优化设计的研究进展,海洋工程,2005,23(1):107-112
    [3]ISO,General principles on reliability for structure,ISO 2394-1998(E),Geneva,1998
    [4]海上固定平台规划、设计和建造的推荐作法——工作应力设计法,中华人民共和国海洋石油天然气行业标准,SY 10030-2003
    [5]岳前进、李辉辉、于学兵,渤海石油平台的冰振及对作业人员的影响,中国海洋平台,2005,20(3):35-39
    [6]Vue Q.J,Zhang D.Y,Li G,Zhou Q,Dynamic response analysis of natural gas pipeline system exposure to ice-induced vibration on offshore platform,Proceeding of the seventh (2006)ISOPE Pacific/Asia Offshore Mechanics Symposium,2006,110-113
    [7]Wen Y K,Minimum lifecycle cost design under multiple hazards,Reliability engineering and system safety,2001,73:223-231
    [8]Jun Kanda,Bruce Ellingwood,Formulation of load factors based on optimum reliability,Structural Safety,1991,1(9):197-210
    [9]Onoufriou T.Reliability based inspection planning of offshore structures,Marine structures,1999,12:521-539
    [10]David De Leon,Alfredo H-S.Ang,Development of a Cost-benefit Model for the Management of Structural Risk on Oil Facilities in Mexico.Computational,Structural Engineering,2002,2(1):19-23
    [11]建设部抗震办公室编,建筑地震破坏等级划分标准,地震出版社,1991
    [12]Park Y J,Ang AH-S.Mechanistic seismic damage model for reinforced concrete.J Structure Engineering,1985,111(4):722-739
    [13]大连理工大学,新型平台抗冰振技术课题(2003AA602150)专项“抗冰平台的优化设计”,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700