抗冰平台结构的性能设计分析与验证研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寒区抗冰平台结构的设计一直存在诸多具有挑战性的课题。特别是近年来,随着海洋油气资源开发的日益追求经济性效益,抗冰平台结构的设计越来越趋于经济性设计。然而这些抗冰平台结构在运行中普遍存在冰激振动问题,致使平台结构存在多种失效模式,甚至严重冰激振动下会导致平台结构的性能丧失。因而,如何满足各种性能需求的抗冰平台结构设计是值得深入研究的课题。
     寒区抗冰平台结构的性能是由多种性能需求共同构成的。抗冰平台结构的设计过程包含概念设计、初步设计和详细设计三个阶段,其中概念设计和初步设计是决定抗冰平台结构性能的设计阶段,很有必要开展深入的研究分析工作。因而本文在平台结构现场测量数据分析及相关研究成果的基础上,开展了抗冰平台结构性能设计理论、隔振锥体减冰振策略以及简易混凝土平台结构抗冰振性能设计等方面的研究分析工作。
     寒区平台结构现场测量数据是抗冰平台结构性能设计研究的基础,其中渤海冰区已经开展了数年的现场测量工作,并取得了很多有价值的测量数据。本文介绍了渤海海冰信息及平台结构冰激振动响应的现场测量体系,以及测量方法、原理及技术等最新研究进展。在海冰荷载形成机理、冰力计算模型以及平台结构冰振失效机理等最新研究成果的基础上,给出了抗冰平台结构的性能评估指标。根据平台结构现场测量数据及性能评估指标,对JZ20-2海域的三座抗冰平台结构进行了性能评估比较分析。
     油气资源特点、开发模式和平台结构静、动力性能需求是抗冰平台结构性能设计的主要影响因素。阐述了抗冰平台结构性能设计是满足安全性能、适用性能及经济性能要求的结构设计方法。讨论了抗冰平台结构性能设计应该满足的设计控制限值,包括安全性能的强度设计限值、适用性能的冰振失效限值以及构件截面几何尺寸设计限值等。通过平台结构冰振失效和减冰振策略分析,给出了抗冰平台结构基于性能的动力设计流程。以JZ20-2油气田为例,进行了适合该油气田开发的抗冰平台结构概念设计、平台结构选型等分析。
     抗冰平台应用隔振锥体减冰振是利用了海冰物理力学特性和隔振原理。即海冰弯曲破碎强度低于压缩强度以降低冰力,同时,动冰荷载作用下隔振锥体发生主要的冰激振动响应,以减少传递给平台结构的冰激振动能量。计算分析了弹簧刚度和阻尼对隔振锥体设计的影响。结果表明弹簧刚度是影响隔振锥体设计的主要因素,同时适当的阻尼能够吸收冰激振动能量,有利于降低平台结构的冰激振动响应。以JZ20-2MUQ平台结构为例,应用数值仿真分析方法验证了隔振锥体的减冰振效果。
     以JZ20-2油气田为例,应用实例推理方法进行了基于性能的抗冰平台结构初步设计分析。包括平台结构主桩腿及支撑杆件布置方案选择,隔振锥体设计参数计算以及各性能设计限值控制条件下的平台构件截面几何尺寸参数设计。对基于性能的抗冰平台与JZ20-2MUQ原型平台的结构设计参数及结构性能参数的进行了对比分析表明,基于性能的抗冰平台结构初步设计达到了性能设计要求,从而也验证了抗冰平台结构性能设计理论及动力设计流程的正确性和可行性。
     最后,混凝土平台与钢质平台进行经济性比较分析表明,混凝土平台结构在建造成本、安装就位及维护费用等方面比钢质平台更具经济性。本文分析了适用于寒区浅海边际油气田开发的抗冰平台结构应具有简易经济性、可移动性以及抗冰振等性能,并提出了满足这些性能要求的单立柱桶型基础混凝土平台型式。以JZ9-3WHPB单立柱桶型基础钢质平台结构为例,进行了将其钢质中央立柱设计为混凝土中央立柱的初步设计分析。计算分析表明,在同等冰况下,该单立柱桶型基础混凝土平台与JZ9-3WHPB单立柱桶型基础钢质平台相比,具有更好的抗冰振性能。同时,为寒区边际油气田开发提供了一种可以选择的平台结构型式。
There has been a lot of challenging research about ice-resistant platform structures design in cold regions. In recent years, the economic design of the platform structures is considered increasingly with the pursuit of the maximum economic benefits in oil/gas resource developments. However, the ice-induced vibrations are prevalent phenomenon in those ice-resistant platform structures, resulting in multiple structure failure modes, and even severe ice-induced vibrations may cause performances failure. Therefore, how to meet the performance requirements of ice-resistant platform structures design is worthy of further study.
     The performances of ice-resistant platform structure constitute a variety of performance requirements.The design process of the ice-resistant platform structures inclues conceptual design, preliminary design and detailed design, and the conceptual design and the preliminary design are to determine the performances of the ice-resistant platform structures, which is necessary to carry on in-depth research. A systematic research on the ice-resistant performance design theory of the platform structures, the local-oscillator theory of the isolation cones and the concrete platform structure with economic performance is presented based on in-situ results of ice-induced vibration and the current progress of ice load.
     Based on the field test data, the performance design of the ice-resistant platform structures is studied. There has been carried out field tests for many years, and has gained a lot of valuable measurement data. For Bohai Sea as an example, the full-scale field test system of ice conditions and ice-induced vibration responses are introduced, and the recent research progress about monitoring methods, principle and technology is summarized. Based on ice-force mechanism, ice loading model and ice-induced vibration failure, the evaluation index of ice-resistant performances is developed for the platform structures in cold regions. A general analysis about ice-resistant performances evaluation for three typical platform structures is processed according to the performance evaluation index and the field test data in the JZ20-2Seas.
     The main influence factors of performances design for ice-resistant platform structures are the characteristics and development model of oil/gas resources, static and dynamic properties of platform structures. The performances design theory is met the requirements of security, serviceability and economic performance for ice-resistant platform structures. And the performance design control limits of ice-resistant platform structures are discussed, including the strength design limits of security performance, the ice-induced vibration failure limits of serviceability performance, structure member section design limits etc. Based on the analysis of ice-induced vibration failure and reducing ice-induced vibration methods, the performance-based dynamical design process is proposed for ice-resistant platform structures. A general analysis about conceptual design and structure type for ice-resistant platform structure is processed in the JZ20-2oilfield.
     The ice-induced vibration reduction of isolation cones is the application of ice mechanical properties and isolation theory. That is, the ice forces is reduced by flexural strength less than compressive strength, and the isolation cones have a major vibration response in order to reduce the ice-induced vibration energy transferred to the platform structure under the dynamic ice forces. The main parameters of the isolation cones are the spring stiffness and the damping coefficient, and the results show that the spring stiffness is the main influencing factor for isolation cone design, the appropriate damping could absorb the ice-induced vibration energy, which is useful for reducing ice-induced vibrations of the platform structures. For JZ20-2MUQ platform as an example, the ice-induced vibration reduction effect of isolation cones is verified by simulation computations.
     The initial design of the ice-resistant platform structure is studied by case-based reasoning method for JZ20-2oil field, which including the layout design of piles and supporting members for the platform structure, the parameters design of the isolation cones. The comparison of structure parameters and performances is conducted between initial design platform and JZ20-2MUQ prototype platform. The results show that the initial design platform structure meets the ultimate strength limits, and the correctness and feasibility is verified for the performance design theory and process.
     Finally, the economic comparison between steel platforms and concrete platforms shows that the concrete platform structures are more economic on construction costs, installation and service costs. The ice-resistant platform structures should have the simplicity, mobility and ice-resistant performances during the marginal oil/gas field developments in cold regions. Then a single concrete pile platform with bucket foundations is proposed. Taking JZ9-3WHPB platform as an example, the initial design of the single concrete pile platform instead of the single steel pile is conducted and its ice-resistant performance is verfied. This is also provided a reference for platform structure types during the marginal oil/gas field development.
引文
[1]阳连丰,彭艳.我国海洋油气开发面临的历史机遇[J].中国造船,2006,47:27-31.
    [2]张波,陈晨.我国南海石油天然气资源特点及开发利用对策[J].特种油藏,2004,11(6):5-8.
    [3]周文,赵安坤,周秋媚.中国石油战略问题思考和对策分析[J].成都理工大学学报(社会科学版),2010,18(3):57-63.
    [4]张莉.论我国南海资源的特点及开发利用对策[J].湛江海洋大学学报,2002,22(2):14-17.
    [5]杨国金.海洋工程灾害与环境载荷[J].中国海洋平台,1995,10(5):202-203.
    [6]曾恒一.影响我国海洋油气开发的海洋灾害[J].海洋预报,1998,15(3):21-25.
    [7]段梦兰,方华灿,陈如恒.渤海老二号平台被冰推倒的调查结论[J].石油矿场机械,1994,23(3):1-4.
    [8]MICHAEL P., COLLINS, FRANK J., et al. The failure of an offshore platform[C].Concrete International,1997,19(8):28-35.
    [9]杨国金.渤海抗冰结构设计中的若干问题[J].中国海上油气(工程),1994,6(3):5-10.
    [10]XU J. Z. Views on Bohai Sea ice engineering[C]. Proceedings of Beijing 93's International Symposium of Sea Ice, Beijing, China Ocean Press,1994:201-206.
    [11]XU J. Z., LI T. K. A critical sea ice state warning system for winter offshore oil production in North Bohai Sea[C]. In:Ice in Surface Water,1998:273-276.
    [12]WRIGHT B. Ice load prediction methods for wide vertically sided structures. Validation of Low Level Ice Forces on Coastal Structures[R]. LOLEIF Report No.2.EU Project-Contract MAS3-CT 97-0098. June 1998.
    [13]ASHBY M. F., PALMER A. C., THOULESS M., et al. Nonsimultaneous failure and ice loads on Arctic Structures[C]. Offshore Technology Conference, Houston, TX, May 5-8,1986:339-404.
    [14]岳前进,季顺迎.渤海局地海冰数值模式及其工程应用[C].第四届全国冰工程会议,威海,1999.
    [15]LIU L. M. Sea ice engineering in the Bohai Sea[C]. Proceedings of 13th IAHR International Symposium on Ice,1996,3:907-913.
    [16]季顺迎.渤海海冰数值模拟及其工程应用[D].大连:大连理工大学,2001.
    [17]刘圆.抗冰海洋平台动力分析与结构选型研究[D].大连:大连理工大学,2006.
    [18]中华人民共和国海洋石油天然气行业标准.海上固定平台规划、设计和建造的推荐作法—工作应以设计法[S],SY 10030-2003,2004.
    [19]API RP 2N. Recommended practice for planning, designing, and constructing fixed offshore structures in ice environments[S].1988.
    [20]API RP 2N. Recommended practice for planning, designing, and constructing fixed offshore structures[S].1991.
    [21]DNV. Rules for the design,construction,and inspection of fixed offshore structures[S].1977.
    [22]杨国金.海冰工程学[M].北京:石油工业出版社,2000:60-70.
    [23]丁德文等.工程海冰学概论[M].北京:海洋出版社,1999:55-60.
    [24]PEYTON H. R. Sea ice strength[R]. University of Alaska.Geophysical Institute.Report UAG R-182.Alaska,1996.
    [25]BLENKARN K. A. Measuremnet and anslysis of ice forces on Cook Inlet structures[C]. Proceedings of 2nd Offshore Technology Conference,1970,OTC1261(2):365-378.
    [26]ENGELBREKTSON A., JANSON E. Field observations of ice action on concrete structures in the Baltic Sea[J].Concrete International,1985:48-52.
    [27]ENGELBREKTSON A. Observations of a resonance vibrating lighthouse structure in moving ice[C],POAC,1984.
    [28]MAATTANEN M. Ice forces and vibration behavior of bottom-founded steel lighthouses[C]. Proceedings of 3rd International Symposium on Ice Problems, USA.1975:345-354.
    [29]岳前进,毕祥军,季顺迎,等.平台振动与冰力测量研究报告[R].大连理工大学,2001.
    [30]Evaluation of human exposure to whole-body vibration.International standard[S], ISO2631-2.
    [31]中华人民共和国国家标准.人体全身振动暴露的舒适性降低界限和评价标准[S].GB/T13442-92.
    [32]中华人民共和国国家标准.关于固定结构特定时建筑物和海上结构的居住者对低频(0.063-1Hz)水平运动响应的评价导则[S].GB/T13921-92.
    [33]MAATTANEN M. Ten years of ice-induced vibration isolation in Light-house[C]. Proceedings of Offshore Mechanics and Arctic Engineering, House, TX, USA,1987,4:261-266.
    [34]The Sakhalin Project. Technological design institute of scientific instrument engineering[EB], http://www.tdisie.nsc.ru.
    [35]LEE H. H. Stochastic analysis for offshore platform with added mechanical dampers[J].Ocean Engineering,1997,24(9):817-834.
    [36]欧进萍,邹向阳,等.设置粘弹性耗能器的JZ20-2MUQ平台结构冰振控制[J].海洋工程,2000,18(3):9-14.
    [37]OU J. P., LONG X., LI Q. S., et al. Vibration control of steel jacket offshore platform stuructures with damping isolation systems[J]. Engineering Structures,2007,29:1525-1538.
    [38]YOSHIDA K., SUZUKI H. Control of dynamic response of towerlike offshore structures in wave[J]. Transaction of ASME,112:14-20.
    [39]王翎羽,金明,陈星,等.TLD的减振原理及其在JZ20-2MUQ平台减冰振中的应用研究[J].海洋学报,1996,18(6):]06-113.
    [40]张春巍,欧进萍.海洋平台结构振动的AMD主动控制参数分析[J].地震工程与工程振动,2002,22(4):151-156.
    [41]CHEN X., WANG L. Y., XU J. Z. TLD technique for reducing ice-induced vibration on platforms[J].Journal of Cold Regions Engineering,1999,13(3):139-152.
    [42]欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究[J].高技术通讯,2002,10:85-90.
    [43]张纪刚,吴斌,欧进萍.海洋平台冰振控制试验研究[J].东北大学学报(自然科学版),2005, 35(1):31-34.
    [44]徐田甜,王宁.渤海导管架平台的破冰锥体设计[J].船舶结构,2007,6:33-42.
    [45]QU Y., YUE Q. J., BI X. J., et al. A Random Ice Force Model for Narrow Conical Structures[J]. Cold Regions Science and Technology,2006,45:148-157.
    [46]RELSTON T. D. Ice force design considerations for conical offshore structures[C].Proceedings 4th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC 77),Memorial University of Newfoundland,Canada,1977,741-752.
    [47]FREDERKING R., SCHWARZ J. Model test of ice forces on fixed and oscillating cones[J].Cold Regions Science and Technology,1982,6(l):61-72.
    [48]HIRAYAMA K., OBARA I. Ice force on inclined structures[C].Proceedings of 5th International Conference on Offshore Mechanics and Arctic Engineering,Ocean, Offshore and Arctic Engineering Div. of ASME,New York,1986:515-520.
    [49]SHKHINEK K., KAPUSTIANSKY S., JILENKOV A. Ice loads onto the sloping structures[C]. Proceedings of International Conference on Development and Commercial Utilization of Technologies in Polar Regions,St. Petersburg,Russia,1996:171-178.
    [50]MATSKEVITCH D. G. Velocity effects on conical structure ice loads[C]. Proceedings of OMAE'02:21st International Conference on Offshore Mechanics and Artie Engineering, Ocean, Offshore and Arctic Engineering Div. of ASME, New York,2002:1-10.
    [51]BARKER A., TIMCO G., GRAVESEN H., et al. Ice loading on Danish wind turbines:Part 1.Dynamic model tests[J].Cold Regions Science and Technology,2005,41(1):1-23.
    [52]YUE Q. J., BI X. J. Full-scale test and analysis of dynamic interaction between ice sheet and conical structure[C]. Proceedings of 14th International Association for Hydraulic Research(IAHR) Sympium on Ice, New York,1998,2:939-945.
    [53]YUE Q. J., BI X. J. Ice-induced jacket structure vibrations in Bohai Sea[J].Journal of Cold Regions Engineering,2000,14(2):81-92.
    [54]宋小软.预应力轻骨料混凝土采油平台罐体模型的试验研究[D].大连:大连理工大学,2001.
    [55]FIP Recommendation:Design and Construction of Concrete Sea Structures[R].4th Edition,1978.
    [56]RONNEVERG, HANNE, SANDVIK, et al. High strength concrete for North Sea platform[C].Concrete International:Design and Construction,1990,12:29-34.
    [57]KNUDSEN A., GUDMESTAD O. T. New applications for concrete structures[C].Proceedings of the International Offshore Mechanics and Artic Engineering Symposium,1989,3:595-598.
    [58]SHARP B. N. Reinforced and prestressed concrete in maritime structures[C].Proceedings of the Institution of Civil Engineers,Structures and Buildings,1996:449-469.
    [59]李金玉,曹建国,徐文雨,等.混凝土冻融破坏机理的研究[J].水利学报,1999,1:41-49.
    [60]宋玉普,冀晓东.混凝土冻融损伤可靠度分析及剩余寿命预测[J].水利学报,2006,37(3):259-263.
    [61]胡瑞华.近海钢质桩基平台[M].北京:海洋出版社,1989:102-109.
    [62]孙树民.海洋平台结构的发展[J].广东造船,2000,4:32-37.
    [63]龚顺风.海洋平台结构碰撞损伤及可靠性与疲劳寿命评估研究[D].浙江大学,2001.
    [64]王兴国.导管架海洋平台结构优化设计研究[D].大连:大连理工大学,2003.
    [65]陆文发,李林普,高明道.近海导管架平台[M].北京:海洋出版社,1992:56-67.
    [66]STERLING G. H. Analysis of the pipe foundation system for a North Sea drilling platform[C]. Behaviour of Offshore Structures,Proceedings of the 3th International Conference,1978.
    [67]MOKSNES J. Concrete platform history, technology,break thoughts and future[C].OTC, T630, Houston,1994.
    [68]王惟诚,孙绍述,宋玉普.近海混凝土平台[M].北京:海洋出版社,1992:12-16.
    [69]刑至庄,王惟诚,钱令希.海上混凝土平台的现状与发展[J].中国海上油气(工程),1998,10(1):9-12.
    [70]OVE T., GUDMESTAD. Present and future North Sea gravity platforms[R].Norway Statoil, 1984.
    [71]STOCK P. F., JARNINE R., MCINTOSH W. Foundation monitoring on the Hutton Tension Leg platform[C]. Proceedings International Conference on Offshore Site Investigation and Foundation Behavior,1993,128:469-491.
    [72]WAEGTER J. Shallow water concrete platform for the Danish continental shelf[C]. Eighth International Conference on Offshore Mechanics and Arctic Engineering, March 19-23, 1989:506-510.
    [73]刘立名,孙振平,孙宝仓.渤海石油固定平台结构抗冰结构设计回顾[C].2009全国钢结构学术年会论文集,2009,10:590-594.
    [74]岳前进,王胜永,樊哲良等.番禺30-1导管架海洋平台结构振动监测及安全分析[J].海洋工程,2013,3(2):41-44.
    [75]L(?)SET S., SHKHINEK K., GUDMESTAD O. T., et al. Comparison of the physical environment of some Arctic seas [J].Cold Regions Science and Technology,1999,29:201-214.
    [76]渤海工程设计公司.辽东湾北岸海冰物理力学性质测试与分析[R].1991.
    [77]渤海石油公司.大连理工大学.渤海辽东湾海冰力学性能实验阶段报告[R].1990.
    [78]大连理工大学.渤海工程设计公司.辽东湾海冰物理力学性质测试研究报告[R].1991.
    [79]国家海洋环境保护研究所.辽河油田滩海勘探开发公司.盖州辽东湾北部盖州滩海区工程海冰环境原位监测与研究[R].1995.
    [80]国家海洋局第一海洋研究所.渤海石油工程设计公司.辽东湾北部潮间海冰调查及分析[R].1991.
    [81]国家海洋环境监测中心.辽东湾北部盖州滩海区海冰冰情预报[R].1993.
    [82]黄润恒.渤海海冰卫星遥感监测业务系统[J].海洋预报,1991,8(3):57-63.
    [83]国家海洋局海洋技术研究所.辽东湾航空遥感冰情调查分析报告[R].1986.
    [84]苏洁,费立淑.海冰卫星遥感资料的分析与应用技术研究[J].海洋通报,1997,16(1):56-64.
    [85]大连理工大学工程力学系.雷达测冰技术开发与应用[R].1995.
    [86]张明元,邵春财.海冰的物化性质[J].海洋科技资料,1981,5:36-43.
    [87]张方俭.我国的海冰[M].海洋出版社,1986:26-32.
    [88]张明元.辽东湾海冰物理特性[J].中国海洋平台,1995,10(2):59-65.
    [89]孟广琳.渤海海冰单轴抗压强度的研究[J].冰川冻土,1987,9(4):329-338.
    [90]隋吉学.渤海海冰三点弯曲强度的试验研究[J].海洋环境科学,1989,8(1):91-95.
    [91]隋吉学.辽东湾三道沟附近海域海冰弯曲强度[J].中国海洋平台,1992,7(1):8-11.
    [92]张明元.三道沟附近海域海冰剪切强度[J].中国海洋平台,1991,7(1):8-11.
    [93]李志军.海冰蠕变特性试验研究[J].冰川冻土,1990,12(3):243-249.
    [94]杨国金.中国近海工程环境参数区划[J].海洋预报,1998,15(3):132-139.
    [95]杨国金.渤海海冰烈度区划[J].海洋石油,1988,(1):54-61.
    [96]刘德辅,李桐魁.渤海辽东湾海冰条件的概率分析[J].海洋石油,1987,(2):66-73.
    [97]中国海洋石油总公司.渤海海冰设计作业条件规定[R].1998.
    [98]孟广琳.渤海平整冰抗压强度设计标准的划区分析[J].海洋环境科学,1994,13(2):75-80.
    [99]杨国金.渤海海冰区划[J].中国海洋平台,1994,Z1:483-487.
    [100]刘春厚,陈祥余,杨国金.渤海冰力计算方法的探讨[J].中国海上油气(工程),1994,6(4):36-41.
    [101]张明元,杨国金.辽东湾北岸海冰物理力学性质[J].中国海上油气(工程),1999,11(4):13-20.
    [102]段忠东,欧进萍,杨国金.中国近海石油开发区环境条件参数区划[J].海洋通报,2001,20(6):10-16.
    [103]李志军,高树岗.渤海平整冰厚度的分区统计[J].中国海上油气(工程),1996,8(1):43-46.
    [104]李志军,王永学.渤海海冰工程设计特征参数[J].海洋工程,2000,18(1):61-64.
    [105]COLE D. M. On the relationship between the physical and mechanical properties of sea ice[C].Proceedings of the 13th IAHR International Symposium on Ice, Beijing,1996,3:913-930.
    [106]LI Z. J., WU Z. G. On the application of ice porosity in the analysis of ice compressive strength[C]. Proceedings of the 13th IAHR International Symposium on Ice,Beijing,1996, 1:80-85.
    [107]LI Z. J., WANG Y. X. Statistical ice conditions of Bohai Sea[C]. Proceeding of the 20th International Conference on Offshore Mechanics and Arctic Engineering[C]. Rio de Janeiro. Brazil,2001,4:1-6.
    [108]李志军,DEVINDER S.,卢鹏.渤海海冰工程设计参数分布[J].工程力学,2001,4:1-6.
    [109]MAATTANEN M. Ice force design and measurement of conical structure[C]. Proceedings of 12th International Symposium on Ice,Trondheim,Norway,1994(1):401-410.
    [110]MAATTANEN M, HOIKKANEN A. N., AVIS J. Ice failure and ice loads on a conical structure KEMI-I cone full scale ice force measurement data analysis [C]. Proceedings of 19th IAHR Ice Symposium, Beijing, China,1996(l):8-16.
    [111]BRUCE J. R., BROWN T. G. Operating an ice force monitoring system on the Confederation Bridge[R]. Ottawa, Canada,2001:299-308.
    [112]MAYNE D. C., BROWN T. G. Comparison of flexural failure ice-force models[C]. Proceedings of 19th International Conference on Offshore Mechanics and Arctic Engineering, New Orleans, USA,2000.
    [113]BROWN, T. G. The Confederation Bridge-early results from ice monitoring program[C]. Proceedings of CSCE Annual Conference, Sherbrooke, Canada,1997(1):177-186.
    [114]XU, N., YUE, Q. J., QU, Y., et al. Results of field monitoring on ice actions on conical structures[J].Journal of Offshore Mechanics and Arctic Engineering,2011,133(4):23-30.
    [115]郭峰玮.基于实验数据分析的直立结构挤压冰荷载研究[D].大连:大连理工大学,2010.
    [116]许宁.锥体海洋结构的冰荷载研究[D].大连:大连理工大学,2011.
    [117]KARNA T. Steady-state vibration of offshore structures[C]. First International Conference on Development of the Russian Arctic Offshores,St. Peterburg,1993.
    [118]岳前进.冰荷载-海冰与近海结构相互作用[J].国际学术动态,1999,5:97-103.
    [119]SODHI D. S. A theoretical model for ice-structure interaction[C]. Proceedings of 12th International IAHR Symposium on Ice,1994,2:807-815.
    [120]徐继祖,王翎羽.冰力振子模型及其数值解[J].天津大学学报,1988,21(2):28-34.
    [121]ANDERSON. Ice Mechanics:Risks to Offshore Structures[M]. London, UK:Graham and Trotman,1988, Chapter 1 and 6.
    [122]TIMCO, CROASDALE. How well can we predict ice loads[C]. Proceedings of the 18th IAHR International Symposium on Ice,2006:167-174.
    [123]ASHBY M. F., PALMER A. C., TROULESS M., et al. Non-simultaneous failure and ice loads on structures[C].Proceedings of Offshore Technology Conference,Houston,TX,1986:399-404.
    [124]SODHI. Ice induced vibrations of structures[C].IAHR'88,Ice Symposium,1988:625-657.
    [125]SCHWARZ J. Advances in ice mechanics in West Germany[J]. Applied Mechanics Reviews, 1987,40(9):1208-1213.
    [126]MATLOCK H. Analytical model for ice structure interaction[J]. Journal of Engineering Mechanica, ASCE,1971,(EM4):1083-1092.
    [127]MAATTANEN M. Ice-structure dynamic interaction in continuous crushing[R]. CRREL Report, Hanover, NH, USA,1981.
    [128]董聪,刘西拉.海洋平台结构系统的优化理论[J].科技导报,1997,12:32-34.
    [129]王光远.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,1999:34-36.
    [130]VENKAYYA V. B. Design of optimum structures[J]. Computers and Structures,1971,1: 265-309.
    [131]VABDERPLAATS G. N. Structural design optimization status and direction [J]. Journal of Aircraft,1999,36(1):11-20.
    [132]BROWN T. G. The Confederation Bridge-early results from ice monitoring program[C]. Proceedings of CSCE Annual Conference, Sherbrooke, Canada,1997(1):177-186.
    [133]杨树耕,孟昭瑛,任贵永,等.海上桶基平台基础边界条件的简化方法与结构优化[J].海洋工程,1999,17(2):22-30.
    [134]胡涛,肖熙.海洋平台结构整体优化设计[J].中国海洋平台,2001,1:15-20.
    [135]FARKAS J. Optimum design of Circular Hollow Section Beam-Columns[J].Isope,1992,4:9-13.
    [136]LASSEN. Optimum design of three-dimensional framework structures[J].Journal of Structural Engineering,1993,119(3):23-34.
    [137]ONOUFRIOU T. Overview of advanced structural and reliability techniques for optimum design of fixed offshore platform[J].Journal of Construct Steel Research,1997,44(3):181-201.
    [138]ONOUFRIOU T., FORBES V. J. Development in structural system reliability assessment of fixed steel offshore platform[J].Reliability Engineering and System Safety,2001:189-199.
    [139]大连理工大学.新型平台抗冰振技术课题(2003AA602150)专项“抗冰平台的荷载、优化、控制”,2006,6.
    [140]岳前进.渤海辽东湾海冰管理报告,大连理工大学,1999-2013.
    [141]周福霖.工程结构减振控制[M].北京:地震工程出版社,1997:5-10.
    [142]周福霖.隔振耗能减震和结构控制技术的发展和应用(下)[J].世界地震工程,1990,1:7-17.
    [143]吴波,李惠.建筑结构被动控制的理论与应用[M].哈尔滨:哈尔滨工业大学出版社,1997:10-15.
    [144]NIELSEN E. J., et al. Viscoelastic damper overview for seismic and wind application [C]. Proceedings of the First World Conference on Structure Control,1994,3.
    [145]HARTOG J. P. Mechanical vibrations[C].4th ed.,McGraw-Hill,New York,1956.
    [146]WIESNER K. B. Tuned mass dampers to reduce building wind motion[C].ASCE,Convention and Exposition,Boston,Mass.,1979.
    [147]屈衍.基于现场实验的海洋结构随机冰载荷分析[D].大连:大连理工大学,2006.
    [148]岳前进.平台冰激振动及疲劳分析研究报告[R].大连理工大学,2004.
    [149]董须瑜,刘春厚.关于辽东湾JZ20-2海区海冰设计条件的修改意见[J].中国海上油气(工程),1989,1(1):36-44.
    [150]毕祥军,于雷,王瑞学,等.海冰厚度的现场图像测量方法[J].冰川冻土,2005,27(4):563-567.
    [151]QU Y., YUE, Q. J., BI, X. J., et al. A random ice force model for narrow conical stuructures[J]. Journal of Cold Regions Engineering,2000,14(2):81-92.
    [152]SCHWARZ J., JOCHMANN P. Ice force measurement within the LOLEIF project[C]. Proceedings of 16th International Conference on Port and Ocean Engineering under Arctic Conditions. Ottawa, Canada, August 12-17,2001:669-680.
    [153]KARNA T., IZUMIYANNA K., YUE Q. J., et al. An upper bound model for self-excited vibrations[C]. Proceedings of 19th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC),2007:177-189.
    [154]ZHANG D. Y., YUE Q. J. Major challenges of offshore platforms desing for shallow water oil and gas field in moderate ice conditions[J]. Ocean Engineering,2011,38:1220-1224.
    [155]WESSELS E., KATO K. Ice forces on fixed and floating conical structures[C]. Proc. Of the 9th International IAHR Symposium on Ice. Sapporo, Japan, Vol.11,1988:666-691.
    [156]IZUMIYANNA K., KITAGAWA H., KOYAMA K., et al. On the interaction between a conical structure and ice sheet[C]. Proceeding of the 11th International Conference on Port and Ocean Engineering under Arctic Conditions (POAC), St.John's, Canada, September 24-28, 1991:155-166.
    [157]CROASDALE K. R. Ice forces on fixed rigid structures[R].Working Group on Ice Interaction on Hydraulic Structures. Committee on Ice Problems, International Association for Hydraulic Research. Galgary,1978.
    [158]CROASDALE K. R. A method for the calculation of sheet ice loads on sloping structures[C]. IAHR ice symposium,1984:874-885.
    [159]EDWARDS R. Y, CROASDALE K. Y. Model experiments to determine ice forces on conical structures[C]. Symposium of Applied Glaciology International Glaciological Socialty.1976: 102-109.
    [160]KATP K. Experimental studies of ice forces on conical structures. Proceedings of 8th IAHR Ice Symposium.1986:309-312.
    [161]岳前进,毕祥军,于晓,等.锥体结构的冰激振动与冰力函数.土木工程学报,2001,36(2):16-19.
    [162]屈衍,岳前进,BRISTER C.冰与锥体作用破碎周期及破碎长度分析.冰川冻土,2003,25(2):326-329.
    [163]YUE, Q. J., BI, X. J. Ice-induced jacket structure vibrations in Bohai Sea[J]. Journal of Cold Regions Engineering.2000,14(2):81-92.
    [164]王玉文.影响海洋石油开发经济效益的因素初析[J].海洋开发与管理.1989,01:54-55.
    [165]何生厚,洪学福.浅海固定式平台平台设计与研究[M].中国石化出版社,2003:89-92.
    [166]李宏伟,谭家华.边际油田群的综合开发[J].中国海上油气(工程),1997,9(4):55-59.
    [167]王世圣,刘立名,高德利,等.海洋导管架平台结构动力优化研究[J].中国海上油气,2004,16(4):276-279.
    [168]中华人民共和国国家标准.建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.
    [169]An American Natioal Standard. Specification for Structural Steel Buildings[S].AISC Committee, 2005.
    [170]车啸飞.基于原型测量的抗冰导管架平台设计评价[D].大连:大连理工大学,2011.
    [171]张大勇.基于性能的抗冰导管架平台结构风险设计研究[D].大连:大连理工大学,2007.
    [172]孙利民,闫兴非.人行桥人行激励振动及设计方法[J].同济大学学报(自然科学版),2004,32(8):996-999.
    [173]中华人民共和国推荐性行业标准.公路桥梁抗风设计规范[S].中华人民共和国交通部,2004.
    [174]张力.导管架海洋平台冰激振动控制的实验研究[D].大连:大连理工大学,2008.
    [175]EDWARDS R. Y. CROASDALE K. R. Model experiments to determine ice forces on conical structures [J].Journal of Glaciology,1977,19(1):245-256.
    [176]SAEKI H., HAMANAKA K., OZAKI A. Experimental study on ice force on a pile[C].Proceedings of 4th International Conference on Port and Ocean Engineering under Arctic Conditions(POAC77), Memorial University of Newfoundland, Canada,1977:695-706.
    [177]Canasian Standards Association(CSA). General requirments,design criteria,the environment,and loads[S].CAN/CSA-S471-92,Toronto,1992.
    [178]SCHWARZ J. Low level ice forces[C].Proceedings of 12th International Ice Sympsium.New York,1994,3:1040-1050.
    [179]CROASDALE K. R. Ice load consensus study[R].Report to Joint Industry Partners.K.R. Croasdale and Associates,Calgary,AL,Canada,1996.
    [180]American Petroleum Institute. Recommended practice for planning, designing and constructing fixed offshore platforms-Working stress design[S]. RP 2A, API Publishing Services, Washington, DC,2000.
    [181]WANG S. Y., YUE Q. J. Vibration reduction of bucket foundation platform with fixed ice-breaking cone in the Bohai Sea[J].Journal of Cold Regions Engineering,2012,26:160-168.
    [182]王胜永.桶型基础平台在渤海边际油田开发中的应用研究[D].大连:大连理工大学,2008.
    [183]WANG S. Y., YUE Q. J. Ice-induced vibration and its isolation of an offshore platform with bucket foundations in marginal oilfields[C].Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering,Shanghai,China,2010,4:811-815.
    [184]MROZ A., HOLNICKI J., KARNA T. Mitigation of ice loading on off-shore wind turbines: Feasibility study of a semi-active solution[J]. Compution Struture.2008,86,217-226.
    [185]KARNA T., LUBBAD R., L(?)SET S., et al. Ice failure process on fixed and compliant cones[C]. Proc. of the HYDRALAB Joint User Meeting, Hannover,2010:1-4.
    [186]于骁.环境荷载激励下工程结构振动控制方法及实验研究[D].大连:大连理工大学,2007.
    [187]刘翔.面向动力性能的抗冰导管架平台优化设计研究[D].大连:大连理工大学,2008.
    [188]朱石坚,楼京俊,何其伟,等.振动理论与隔振技术[M].北京.国防工业出版社,2008:67-78.
    [189]曾恒一.渤海小型油田、边际油田开发设施的探讨[J].中国海洋平台,1991,8(1):16-21.
    [190]王勇.用混凝土平台开发海上边际油田[J].中国海洋平台,1995,1:43-46.
    [191]唐海燕,史庆增.浅海混凝土平台的发展及应用前景[J].石油工程建设,1999,2(1):8-10.
    [192]王惟成.近海混凝土平台[M].海洋出版社,1992:3-6.
    [193]徐铨彪,宋玉普.多功能混凝土采油平台在我国浅海地区应用研究[J].中国海洋平台,2004,19(3):38-41.
    [194]刘听,刘建军.滩海油田钢筋混凝土平台的可行性探讨[J].中国海洋平台,1995,10(6):231-233.
    [195]JANSON J. E. Long term resistance of concrete offshore structures in ice environment[C]. In: 7th International Conference on Offshore Mechanics and Arctic Engineering, Houston, Texas, 1988:7-12.
    [196]BURY M. R. C., DOMONE P. L. The role of research in the design of concrete offshore structures[C]. Offshore Technology Conference,1974,1:155-168.
    [197]中华人民共和国水利部.SL191-2008水工混凝土结构设计规范[S].北京:中国水利水电出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700